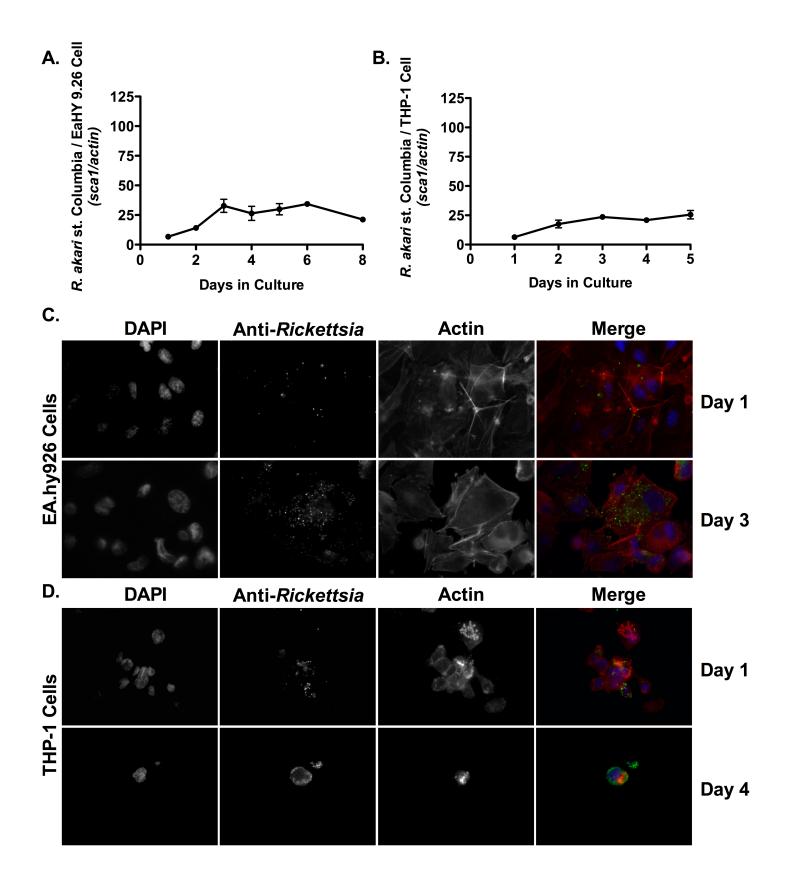
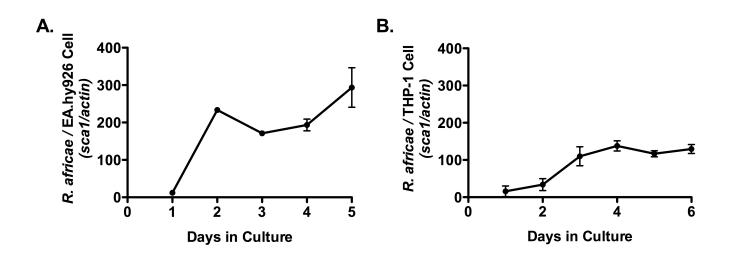
| Rickettsia spp. | <b>Primer/Probe</b>          | Sequence $(5' \rightarrow 3')$                                  |  |
|-----------------|------------------------------|-----------------------------------------------------------------|--|
| R. africae      | Sca1_africae_fwd             | CGT GGT ATG TAC GGC ACT AAT AA                                  |  |
|                 | Sca1_africae_rev             | TTT CAG CAT CGA ACC CGA TAG                                     |  |
|                 | Sca1_africae                 | /56-FAM/ACC GGT CAT/ZEN/ATT CTC AAC GCG TCC/3IABk               |  |
| R. rickettsii   | Rr Sca1 F5271                | CAA GCT CGT TAT TAC CCC GAA T                                   |  |
|                 | Sca1_RR_R5371                | CTA CCG CTC CTT GGA ATG TTA GAC C                               |  |
|                 | Sca1_RC_RR_Probe             | /56-FAM/TCG GCT TAA/ZEN/GAT ACG GGA AGT/3IABkFQ/                |  |
| R. parkeri      | Rpp Sca-1 (316 bp)<br>FWD    | TGA TTC GTA ACA GAT TAG ATG C                                   |  |
|                 | Rpp Sca-1 (316 bp)<br>REV    | CCG TAA ATA GAA ACC ACA TGA C                                   |  |
|                 | Rpp Sca-1 PRB Set<br>2       | /56-FAM/ACC GGT CAT/ZEN/ATT CTC AAC GCG TCC/3IABkFQ/            |  |
|                 | Sca1akari_444_fwd            | ACT AAC AGA GCA AAC GCC TAA                                     |  |
| R. akari        | Sca1akari_568_rev            | CGG TGA TGC CAG AGA AGT ATT                                     |  |
|                 | Sca1_akari(494-<br>518)probe | /56-FAM/CGC CTA CTG/ZEN/TTA GCC CAG CTT CAA/3IABkFQ/            |  |
|                 | Sca1bellii_13_fwd            | GAC AGG GTA GCT GCA GAT ATA AA                                  |  |
| D 1 11.         | Sca1bellii_162_rev           | CCC AAG GAG CTA TGT TCA TTA GT                                  |  |
| R. bellii       | Sca1_bellii(57-<br>83)probe  | /56-FAM/<br>TGC AGC GAA/ZEN/AGG CTT AAA CGA TCA AC<br>/3IABkFQ/ |  |
| Host Cell Actin | Primer/Probe                 | Sequence $(5' \rightarrow 3')$                                  |  |
|                 | Actin-F420                   | CCT GTA TGC CTC TGG TCG TA                                      |  |
| pEC3            | Actin-R681                   | CCA TCT CCT GCT CGA AGT CT                                      |  |
|                 | Actin_MS_Probe               | /5MAXN/ ACT GTG CCC/ZEN/ATC TAC GAG/3IABkFQ/                    |  |
|                 | 1                            | 1                                                               |  |

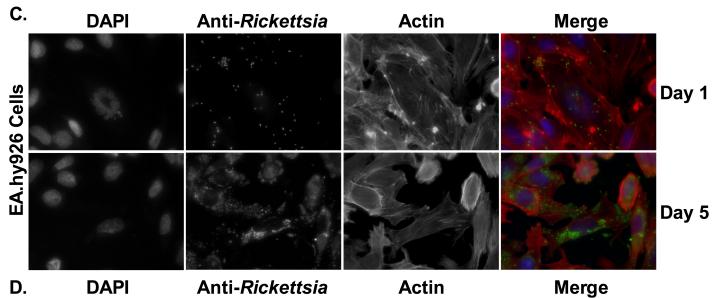
#### Supplementary Table 1. Primers and probes used for quantitative PCR (qPCR).

All primers and probes for *Rickettsia* species were designed from the rickettsial antigen, Sca1.

#### Supplemental Figure Legends

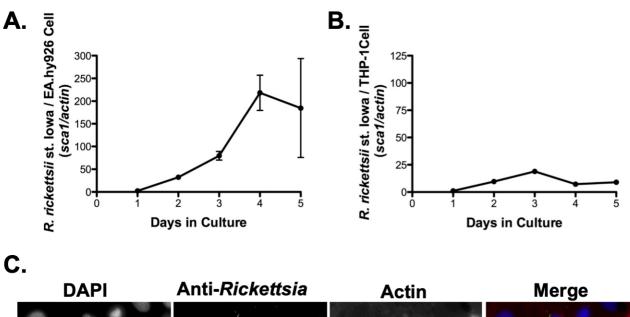

Supplemental Figure 1: *R. akari* st. Columbia significantly grows within endothelial cells (EA.hy926) and human derived macrophage cells (THP-1). (A,B) EA.hy926 cells and PMA-differentiated THP-1 cells were infected with *R. akari* st. Columbia (MOI=2.5), and genomic DNA was extracted at each time point post-infection. Each time point represents the ratio of *R. akari sca1* to host cell *actin* genes amplified from genomic DNA and determined by quantitative PCR (qPCR). Immunofluorescence microscopy growth analyses in EA.hy926 cells at days 1 and 3 post-infection (**C**) and in PMA-differentiated THP-1 cells at days 1 and 4 post-infection demonstrate significant intracellular proliferation. DAPI (blue) was used to visualize host cell nuclei, anti-*Rickettsia* antibody (RcPFA) followed by Alexa Fluor 488 (green) was utilized to reveal *R. rickettsii* st. Sheila Smith, and Alexa Fluor 546 Phalloidin (red) was used to indicate the host actin cytoskeleton in **C** and **D**. Scale bar= 10  $\mu$ m. A logistic regression test was used to measure significance (p<0.05) in growth over time in both mammalian cell lines in **A** and **B**.

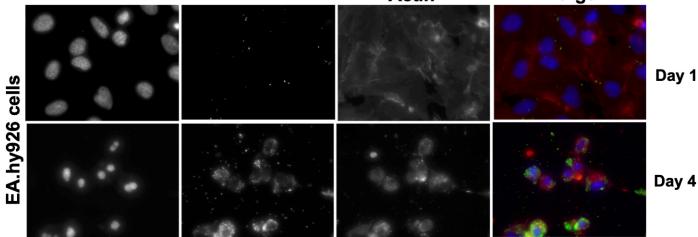

Supplemental Figure 2: *R. africae* proliferates within endothelial cells (EA.hy926) and human derived macrophage cells (THP-1). (A,B) EA.hy926 cells and PMAdifferentiated THP-1 cells were infected with *R. africae* (MOI=2.5), and genomic DNA was extracted at each time point post-infection. Each time point represents the ratio of *R. africae sca1* to host cell *actin* genes amplified from genomic DNA and determined by quantitative PCR (qPCR). A logistic regression test was used to measure significance (p<0.05) in growth over time in both mammalian cell lines in **A** and **B**. Immunofluorescence microscopy growth analyses in EA.hy926 cells at days 1 and 5 post-infection (**C**) and in PMA-differentiated THP-1 cells at days 4 and 6 post-infection demonstrate significant intracellular proliferation. DAPI (blue) was used to visualize host cell nuclei, anti-*Rickettsia* antibody (RcPFA) followed by Alexa Fluor 488 (green) was utilized to reveal *R. africae*, and Alexa Fluor 546 Phalloidin (red) was used to indicate the host actin cytoskeleton in **C** and **D**. Scale bar= 10  $\mu$ m.


# Supplemental Figure 3: *R. rickettsii* strain lowa exhibits significant intracellular replication within endothelial cells (EA.hy926) but not in human derived macrophage cells (THP-1). (A,B) EA.hy926 cells and PMA-differentiated THP-1 cells

were infected with *R. rickettsii* st. Iowa (MOI=2.5), genomic DNA was extracted at each indicated time point post-infection and then growth was determined by qPCR. A logistic regression test was used to measure significance (p<0.05) in growth over time and indicated growth in EA.hy926 cells (A), but not in THP-1 cells (B). Immunofluorescence microscopy growth analyses in EA.hy926 cells at days 1 and 4 post-infection **(C)** and in PMA-differentiated THP-1 cells at days 1 and 4 post-infection confirms results from the qPCR analyses. DAPI (blue) was used to visualize host cell nuclei, anti-*Rickettsia* antibody (RcPFA) followed by Alexa Fluor 488 (green) was utilized to reveal *R. rickettsii*, and Alexa Fluor 546 Phalloidin (red) was used to indicate the host actin cytoskeleton in **C** and **D**.

## Supplemental Figure 4. TIyC and Pld protein sequence conservation in pathogenic and non-pathogenic *Rickettsia* species. Percent identities of TlyC (A) and Pld (B) protein homologues were generated from protein sequences (RefSeq) for each indicated *Rickettsia* species when compared to *R. rickettsii* "Sheila Smith" proteins using the NCBI Blastp algorithm.






DAPIAnti-RickettsiaActinMergeImage: Image: ImageImage: Image: I

**THP-1 Cells** 





D. Anti-Rickettsia DAPI Actin Merge THP-1 cells Day 4

Day 1

### Α

| Species                                | RefSeq number       | Amino<br>acids | % identity |
|----------------------------------------|---------------------|----------------|------------|
| <i>R. rickettsii</i><br>"Sheila Smith" | WP_012151259.1      | 299            |            |
| <i>R. rickettsii</i><br>"Iowa"         | WP_0121511259.<br>1 | 299            | 100        |
| R. conorii                             | WP_010977712.1      | 299            | 99.7       |
| R. africae                             | WP_012719992.1      | 299            | 99.7       |
| R. parkeri                             | WP_014411035.1      | 299            | 99.0       |
| R. akari                               | WP_012150023.1      | 301            | 96.6       |
| R. bellii                              | WP_011477962.1      | 301            | 82.4       |

## Β

| Species                                | RefSeq number  | Amino<br>acids | % identity |
|----------------------------------------|----------------|----------------|------------|
| <i>R. rickettsii</i><br>"Sheila Smith" | WP_012151375.1 | 200            |            |
| <i>R. rickettsii</i><br>"Iowa"         | WP_012151375.1 | 200            | 100        |
| R. conorii                             | WP_010977832.1 | 200            | 98         |
| R. parkeri                             | WP_014411111.1 | 200            | 97.5       |
| R. africae                             | WP_012720066.1 | 200            | 96.5       |
| R. akari                               | WP_012150121.1 | 200            | 92         |
| R. bellii                              | WP_011476870.1 | 201            | 79.1       |