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Abstract: Many bacterial pathogens utilize translocated virulence factors called effectors to suc-
cessfully infect their host. Within the host cell, effector proteins facilitate pathogen replication
through subversion of host cell targets and processes. Legionella pneumophila is a Gram-negative
intracellular bacterial pathogen that relies on hundreds of translocated effectors to replicate within
host phagocytes. Within this large arsenal of translocated effectors is a unique subset of effectors
called metaeffectors, which target and regulate other effectors. At least one dozen metaeffectors
are encoded by L. pneumophila; however, mechanisms by which they promote virulence are largely
unknown. This review details current knowledge of L pneumophila metaeffector function, challenges
associated with their identification, and potential avenues to reveal the contribution of metaeffectors
to bacterial pathogenesis.

Keywords: Legionella pneumophila; metaeffector; effector

1. Introduction

Bacterial pathogens use a myriad of virulence strategies to parasitize eukaryotic hosts.
A well-established virulence strategy is use of macromolecular secretion systems to translo-
cate bacterial protein virulence factors, termed effector proteins, directly into infected host
cells [1]. Legionella pneumophila is a natural intracellular pathogen of freshwater amoebae
and the etiological agent of Legionnaires’ Disease, a severe inflammatory pneumonia
resulting from bacterial replication within alveolar macrophages. To replicate intracellu-
larly, L. pneumophila employs a type IVB secretion system called Dot/Icm to translocate
a massive arsenal of over 300 individual effector proteins into the host [2,3]. Collectively,
L. pneumophila effectors facilitate biogenesis of the Legionella-containing vacuole (LCV), an
endoplasmic reticulum-derived compartment that evades lysosomal fusion and serves
as L. pneumophila’s intracellular replicative niche. The status quo pertaining to bacterial
effectors is that they specifically target host proteins and pathways. However, L. pneu-
mophila encodes a family of effectors, termed metaeffectors, which function as “effectors of
effectors” through targeting and regulating the function of other effectors. Metaeffectors
contribute to L. pneumophila virulence and provide an additional mechanism by which
bacteria regulate effector functions within host cells. Here, we discuss current knowledge
pertaining to L. pneumophila metaeffectors and conclude with the importance of future
investigation into these important virulence factors within both the Legionella genus and
other bacterial pathogens.

2. Identification and Function of L. pneumophila Metaeffectors

The term “metaeffector” was coined a decade ago when Kubori and colleagues dis-
covered that the effector LubX spatiotemporally regulates the effector SidH within L. pneu-
mophila-infected host cells [4]. LubX contains two regions with similarity to eukaryotic
U-box domains, and functions as E3 ubiquitin ligase within eukaryotic cells [5]. In con-
junction with UbcH5a or UbcH5c E2 enzymes, LubX polyubiquitinates the host kinase,
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Clk1 [4,6]. However, LubX additionally co-opts E2 enzymes to ubiquitinylate its cognate
effector, SidH, leading to its proteasomal degradation (Figure 1) [4]. Like the majority of
L. pneumophila effectors, genetic deletion of sidH has no discernable effect on intracellular
replication within macrophages, and the function of SidH within host cells has yet to be
elucidated [4,6]. However, SidH is a paralog of the L. pneumophila effector SdhA, which pro-
motes L. pneumophila intracellular replication through maintenance of LCV integrity [4,7,8].
Thus, SidH may contribute to maintaining the integrity of the LCV during early infection.
In a Drosophila melanogaster infection model, L. pneumophila ∆lubX mutants are hyper-lethal.
However, loss of lubX results in decreased bacterial burden in flies compared to wild-type,
∆sidH and ∆sidH∆lubX L. pneumophila strains [4]. However, loss of lubX has no discernable
effect on L. pneumophila replication within mouse bone marrow-derived macrophages, sug-
gesting that SidH may be detrimental in the absence of LubX specifically in vivo. It would
be valuable to reveal whether loss of LubX-mediated regulation of SidH is also deleterious
to L. pneumophila replication in a mouse model of Legionnaires’ Disease. Interestingly,
LubX expression peaks when the cells are nearing the stationary phase; much later than
the critical window for SidH degradation, suggesting that mediation of SidH toxicity may
not be the apogee of LubX activity [4].
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Figure 1. L. pneumophila metaeffectors exploit various modes of action against other effectors, many leading to the
deactivation or degradation of their target. L. pneumophila which relies on complex regulation of effector synthesis and
translocation to orchestrate successful host cell invasion, and it can be speculated that this intricacy applies to metaeffector
regulation as well. Metaeffectors likely prevent overactivity of their target effectors, which can be detrimental to the
L. pneumophila intracellular life cycle. While the activity of some effectors, such as the transglutamylation of SdeA by SidJ or
interactions of SidI with MesI prevent toxicity attributed to their target, others like SidP and Lem14 with MavQ have a more
complicated relationship with their target effector that has yet to be uncovered. Yellow, metaeffectors; Teal, effectors; Purple,
host proteins and structures; Red, ubiquitin; Green-yellow, L. pneumophila.
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Temporal regulation of effector translocation is likely important for other effector–
metaeffector pairs. The metaeffector SidJ regulates the SidE family of effectors (SidE/
SdeABC) to facilitate biogenesis of the LCV (Figure 1) [9,10]. SidJ is one of very few effectors
individually important for L. pneumophila intracellular replication [11]. While expression
and translocation of the SidE effectors peaks during early infection, SidJ translocation
increases gradually over the course of infection [10,11]. The SidE effectors are mono-
ADP-ribosyltransferases that ligate ubiquitin to Rab GTPases independently of E1 and
E2 enzymes [12–14]. SidJ is a calmodulin-dependent glutamylase that spatiotemporally
regulates the SidE effectors by breaking phosphodiester bonds between ubiquitin- and
SidE-modified substrates [14]. SidJ is a calmodulin-dependent glutamylase that temporally
regulates the function of the SidE effectors [14–17]. SidJ polyglutamylates Glu860 of the
SidE family effector SdeA, leading to its inactivation. In the absence of SidJ, SdeA fails
to depart from the LCV surface, but robustly ubiquitinates several Rab and Rag GTPases
(Figure 1) [10,14]. While SidE effectors are important at early stages of infection, their
prolonged activity is deleterious to L. pneumophila. Delayed translocation of SidJ relative to
the SidE family enables precise temporal regulation of SidE effector function [10]. Timing
of SidJ translocation is facilitated by an internal secretion signal, present in addition to
its canonical C-terminal secretion signal [10]. Deletion of SidJ’s internal secretion signal
impairs L. pneumophila intracellular replication to the same extent as a loss-of-function
mutation in sidJ [10]. The importance of temporal regulation of the SidE family of effectors
by SidJ within host cells demonstrates the critical role of metaeffectors in the establishment
of L. pneumophila’s intracellular replicative niche.

The metaeffector MesI (Lpg2505) was identified following high-throughput forward
genetic screening for effector virulence phenotypes using transposon insertion sequencing
(INSeq) [18]. L. pneumophila defective in mesI have a severe intracellular growth defect
in both a natural amoebal host and mouse models of infection [18]. However, the viru-
lence defect-associated absence of mesI is due solely to the activity of its cognate effector,
SidI, since loss-of-function mutation in sidI rescues the growth defect of the ∆mesI mu-
tant [18]. SidI is a cytotoxic effector that inhibits eukaryotic protein translation in vitro and
contributes to activation of the heat shock response in L. pneumophila-infected cells [19].
We recently discovered that SidI possesses GDP-mannose-dependent glycosyl hydrolase
activity and likely functions as a mannosyltransferase [20]. MesI is sufficient to abrogate
both SidI-mediated toxicity and protein translation inhibition [18,20]. MesI binds SidI
with nanomolar affinity and the interaction is characterized by a long half-life. MesI binds
SidI on both N- and C-termini and does not impair interaction between SidI and its estab-
lished binding partner, eEF1A (Figure 1) [20,21]. Despite almost complete abrogation of
SidI-mediated translation inhibition, MesI only mildly attenuates SidI glycosyl hydrolase
activity, suggesting that MesI does not function to inhibit SidI activity [20]. Although the
regions of MesI important for binding the termini of SidI have yet to be defined, the crystal
structure of MesI revealed a tetratricopeptide repeat (TPR) segment in MesI’s 6/7, 8/9,
and 10/11 alpha-helices that form grooves predicted to play a role in SidI binding [21].
Whether the terminal regions of SidI bind to MesI through a large unilateral interface, or if
multiple separate interaction sites exist on MesI is unknown. Whether MesI participates in
SidI-mediated activation of the heat shock response is also unknown (Figure 1).

Urbanus and colleagues recently executed the most comprehensive effector toxicity
suppression screen to date, resulting in the discovery of 17 effector-suppression pairs,
including nine putative metaeffectors [22]. The researchers used a high-throughput yeast
toxicity assay to screen over 108,000 pairwise effector-effector genetic interactions [22].
This study revealed the plasticity of metaeffector activity. In some cases, metaeffectors
directly inactivate their cognate effector. For example, LegL1 deactivates its cognate
effector through steric hindrance of its active site. Other metaeffectors, such as LupA
and LubX, enzymatically modify their cognate effectors LegC3 and SidH (see above),
respectively (Figure 1) [22]. LupA is a eukaryotic-like ubiquitin protease that catalyzes
removal ubiquitin from LegC3 [22]. LegC3 is one of three L. pneumophila effectors that
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mimic eukaryotic Q-SNAREs to recruit vesicles coated with VAMP4 to the LCV [23,24].
How ubiquitiniylation influences LegC3 activity and the contribution of its regulation by
its metaeffector LupA are both unknown.

This screen not only identified novel metaeffector pairs, but also unveiled diversity
in effector function and regulation. SidP is a phosphatidylinositol-3-phosphate (PI3P)
phosphatase [25]. However, SidP’s PI3P phosphatase activity is dispensable for binding
and suppressing the toxicity of its cognate effector MavQ. The phosphatase activity of SidP
resides within its N-terminal domain, and the C-terminal domain alone is sufficient for
binding and regulation of MavQ. MavQ is a predicted phosphoinositide (PI) kinase, and
together with SidP, likely regulates PI metabolism within host cells. Interestingly, SidP is
toxic to yeast when expressed together with the effector Lem14; however, the role of Lem14
in SidP metaeffector activity and PIP metabolism has not been fully elucidated [22]. The
putative role of MavQ as a PIP kinase, and the synergistic effects of SidP and Lem14 reveal
a complex picture of effector regulation of host PIPs (Figure 1) [22].

LegA11 is a metaeffector of unknown function that binds and suppresses the toxicity
of SidL. The N-terminal region of LegA11 contains ankyrin-repeats (PDB:4ZHB), which are
canonically involved in protein-protein interactions [26,27]. Like SidI, SidL inhibits eukary-
otic protein translation; however, SidL also inhibits actin polymerization when ectopically
expressed in eukaryotic cells [28,29]. Aberrant organization of the actin cytoskeleton at-
tenuates protein translation [30], but whether SidL-mediated translation inhibition is a
consequence of impaired actin polymerization is unknown (Figure 1) [29,31]. The role of
LegA11 in regulation of SidL function is unknown. Elucidating the mechanism by which
LegA11 regulates SidL will likely shed light on SidL’s function and the importance of its
spatiotemporal regulation.

The effector deamidases MavC and MvcA are both regulated by a single metaef-
fector, Lpg2149 (Figure 1). MavC and MvcA are functional antagonists that temporally
regulate the activity of the host E2 enzyme, Ube2N. MavC catalyzes E1-independent
monoubiquitination and inhibition of Ube2N [32]. However, prolonged inhibition of
Ube2N is detrimental to L. pneumophila and is reversed through MvcA deubiquitination
(Figure 1) [33]. Lpg2149 binds and inhibits the deamidase activity of both MavC and MvcA;
however, the biological significance of this inhibition and influence on temporal regulation
of Ube2N ubiquitination are unknown. Further investigation is required to uncover the role
of Lpg2149 in L. pneumophila virulence. Collectively, these studies underlie the importance
of metaeffectors in spatiotemporal regulation of L. pneumophila effector function.

3. What Makes a Metaeffector?

Classification of an effector as a metaeffector is based on two criteria, (1) binding; and
(2) regulation of a cognate effector(s). Several metaeffectors, including LubX and SidJ, co-
opt host proteins to regulate their cognate effectors. Moreover, LubX does not exclusively
catalyze ubiquitination of SidH (see above), demonstrating the functional versatility of
metaeffectors. Other metaeffectors, such as MesI, are able to regulate their cognate effectors
in the absence of host components, but this does not preclude the involvement of host
factors. A defining feature of metaeffectors is direct interaction with cognate effector
proteins. However, other characteristics are shared amongst effector–metaeffector pairs.

3.1. Structure

In general, metaeffectors are smaller than their cognate effectors. This is a trend
and not a rule, as several metaeffectors such as LegL1, LupA, and SidP are comparable
in size to their targets (Table 1). It is also not uncommon for metaeffectors to contain
interaction domains, such as the tetratricopeptide repeats (TPR) of MesI, ankyrin repeats of
LegA11, or the leucine-rich repeats (LRR) of LegL1 [21,27]. These interaction domains are
likely important for the interaction of effectors with their cognate effector. For example,
the LRR of LegL1 forms a canonical horseshoe shape over RavJ’s active site, causing
steric hindrance [22]. The ankyrin repeats in LegA11 likely facilitates protein–protein
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interactions (see above) [26,27]. Thus, several metaeffectors possess canonical protein–
protein interaction motifs that are likely used to bind their cognate effector(s).

Table 1. Known L. pneumophila effector-metaeffector pairs and their activities.

Metaeffector Gene ID Activity Size a Effector Gene ID Activity b Size a Refs.

LegA11/AnkJ Lpg0436 Unknown 269 SidL/Ceg14 Lpg0437 Translation inhibitor 666 [23]

LegL1 Lpg0945 Competitive
inhibition 296 RavJ Lpg0944 Putative

transglutaminase 391 [23]

Lem14 Lpg1851 Synergistic
with SidP 220 MavQ Lpg2975 Putative kinase 871 [23]

Lpg2149 Lpg2149 Unknown 119
MavC Lpg2147 Ubiquitin-ase 482

[34]MvcA Lpg2148 Deubiquitinase 426

LubX Lpg2830 E3 Ubiquitin
Ligase 246 SidH Lpg2829 SdhA homolog 2225 [4]

LupA Lpg1148 Deubiquitinase 503 LegC3 Lpg1701
Glutamine

(Q)-SNARE-like
protein

506 [23,25]

MavE Lpg2344 Unknown 208 YlfA/LegC7 Lpg2298 SNARE-like Protein 425 [23]

MesI Lpg2505 Unknown 295 SidI/Ceg32 Lpg2504 Putative mannosyl-
transferase 942 [19,21,22]

SdbC Lpg2391 Putative Lipase 434 SdbB Lpg2482 Putative Lipase 448 [23]

SidJ Lpg2155

Calmodulin-
dependent

transglutamy-
lase

873 SidE Lpg0234

Ubiquitin Ligases

1575
[9–12,15–

18,23]
SdeA Lpg2157 1506
SdeB Lpg2156 1926
SdeC Lpg2153 1533

SidP Lpg0130 PI3P
Phosphatase 822 MavQ Lpg2975 Putative PIP Kinase 871 [23]

a Protein size shown as number of amino acid residues; b Predicted activity determined using HHPred [34].

3.2. Proximity

Metaeffectors are typically encoded in close proximity to their cognate effector within
the genome [22]. However, some exceptions exist, since mavQ is not encoded in the
vicinity of either sidP or lem14 [22]. Genomic analysis of 38 Legionella species revealed 143
effector pairs encoded in close proximity in at least two Legionella genomes. Nineteen of
these effector pairs—including SidL-LegA11 and SidI-MesI—appear to have co-evolved;
however, this number may be higher, as it only captures pairs found in multiple species and
does not consider those unique to a single species [35]. Some effector pairs, such as SidL and
LegA11, are always found in conjunction, while others, such as SidI and MesI, occasionally
occur in solidarity [35]. sidL and legA11 represent the most highly co-evolved effector pair
in the Legionella genus [35]. Relatively little is known about transcriptional regulation of
effector–metaeffector gene expression. Interestingly, legA11 and sidL are encoded adjacent
to each other, but on different strands of the chromosome and initiate in opposite directions.
Elucidating the timing and quantity of effector and metaeffector gene expression can
provide additional spatiotemporal insights into mechanisms of metaeffector-mediated
regulation of effectors. While effector pairs are present across the Legionella genus [3],
only L. pneumophila metaeffectors have been studied to date. Although all Legionella
species studied to date replicate within an endoplasmic reticulum-derived LCV, whether
species-specific differences affect metaeffector-effector regulation and function exist has
yet to be elucidated.
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4. Concluding Remarks

Although effectors are critical virulence factors for many Gram-negative bacterial
pathogens, mechanisms by which effectors are regulated within host cells are poorly un-
derstood. Metaeffectors provide an additional layer of regulation and spatiotemporal
fine-tuning of effector function. Although metaeffectors are currently unique to the Le-
gionella genus, it is tempting to speculate that other pathogen virulence strategies involve
metaeffectors. However, identification of metaeffectors is challenging, and relies on robust
phenotypes resulting from effector dysregulation. Urbanus and colleagues conducted
the most extensive effector-pair screen to date using a yeast expression model. However,
other metaeffector–effector pairs may be incognito within this unnatural expression in the
absence of a toxic effector phenotype [22]. Extreme functional redundancy within L. pneu-
mophila’s effector repertoire creates challenges, as deletion of a single effector rarely leads to
a discernable phenotype [6,18]. MesI and SidJ are two of less than a dozen effectors that are
individually important for L. pneumophila intracellular replication. Thus, metaeffectors play
a major role in the virulence strategy of L. pneumophila, which emphasizes the importance
of both effector interplay and functional regulation. Metaeffectors represent a noncanonical
effector regulatory system that is likely not unique to L. pneumophila. Identification of meta-
effector and metaeffector-like functions has been contingent on observable phenotypes,
such as toxicity or intracellular replication; however, scrutiny of genomic organization
of effector genes may lead to identification of additional metaeffectors encoded by other
Legionella species and other bacterial pathogens. Further investigation will undoubtedly re-
veal additional mechanisms of effector regulation arising from host-pathogen co-evolution,
and could provide a foundation for development of anti-virulence therapeutics.
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