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Abstract: Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningi-

tis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-

typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, 

conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as 

meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can 

act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degrada-

tion of components of the extracellular matrix, favoring host tissue invasion. In this study, using 

molecular docking, three important residues involved in plasminogen interaction through the plas-

minogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae eno-

lase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally 

stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), 

enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, 

in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-bind-

ing protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was sig-

nificant. With these results, we can propose that NTHiENO–plasminogen interaction could be one 

of the mechanisms used by H. influenzae to adhere to and invade host cells. 

Keywords: Haemophilus influenzae; enolase; plasminogen-binding protein; interaction;  

virulence factor 

 

1. Introduction 

Haemophilus influenzae is a Gram-negative bacterium that normally colonizes the res-

piratory tract in humans. H. influenzae is subdivided into seven groups, including six that 

express distinct serotypes of capsular polysaccharide (a–f) which are referred to as type-

able, and uncapsulated bacteria which have been termed non-typeable H. influenzae 

(NTHi). These bacteria cause both invasive and non-invasive infections [1,2]. 
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H. influenzae type b (Hib) causes many severe infections, including sepsis, epiglottitis, 

pneumonia, and meningitis [3]; in contrast, NTHi is a major cause of mucosal infections, 

such as otitis media, sinusitis, conjunctivitis, and exacerbations of chronic obstructive pul-

monary disease [4]. 

The initial step in the pathogenesis of disease due to NTHi involves the establishment 

of bacteria on the respiratory mucosa, and several studies suggest that NTHi can cross 

between cells and invade the subepithelial space [5]. This process can be favored by the 

degradation of components of the extracellular matrix (ECM).  

On the other hand, enolase (2-phospho-D-glycerate hydrolase) is an enzyme that cat-

alyzes the reversible interconversion of 2-phosphoglycerate (2-PGA) to phosphoenolpy-

ruvate (PEP) [6]; however, enolase is considered as a moonlighting protein [7], and with 

this multifunctionality, it has been shown that it can be exported to the cell surface of a 

variety of prokaryotic and eukaryotic cells [8]. The precise mechanism by which enolase 

is exported to the cell surface is unknown at present; the enolase sequence does not pre-

sent a signal peptide, therefore it is described as a protein with nonclassical export [9]. 

Some authors have speculated that a hydrophobic domain within enolase might serve as 

an internal signal sequence, while others suggest that posttranslational acetylation or 

phosphorylation may control membrane association [10]. A study carried out by Boël in 

2004 reported that a small fraction of Escherichia coli enolase, as well as other enolases, are 

covalently modified by their substrate (2-PG), specifically, the amino acid Lys341, which 

is in the active site of enolase in E. coli. This modification inhibits the activity of the enzyme 

but is essential for its export to the extracellular medium [11]. Moreover, when enolase is 

exposed on the cell surface, it can act as a plasminogen (Plg) receptor; this interaction is 

important to mediate the activation of Plg into plasmin (Plm) [12], a serine protease that 

promotes the degradation of the extracellular matrix (ECM). Some pathogens have used 

this protease system, Plg/Plm, to infect and invade host cells [13]. 

Plasminogen contains five kringle domains (K1–K5) which mediate its binding to 

enolase with accessible carboxyl-terminal or internal lysine residues [14]. Moreover, eno-

lase has an internal motif (248FYDKERKVY256) responsible for plasminogen binding, which 

has been characterized in enolases from Streptococcus pneumonia [15,16], as well as from 

other microorganisms, such as Streptococcus iniae [8], Leishmania mexicana [17], Bartonella 

henselae [6], Plasmodium [18], and Theileria annulata [19]. 

To date, there have been no reports on H. influenzae enolase–human plasminogen 

interactions. However, a putative internal binding site has been identified in the enolase 

sequence of NTHi (252FYNKENGMY260) [20]. 

The aim of this study was to investigate the role of non-typeable H. influenzae enolase 

(NTHiENO) as a plasminogen-binding protein by in silico and in vitro assays. Both stud-

ies show that NTHiENO can establish interactions with human plasminogens. 

2. Results 

2.1. Modeling H. influenzae Enolase Structure 

A structural description of the enolase of NTHi was obtained through homology 

modeling performed by Phyre2 [21], and the best-resolved structure obtained was visual-

ized with the Chimera program [22] (Figure 1A). E. coli enolase was used as a template 

(Protein data bank: ID 2FYM) and has a resolution value of 1.60 Å [23]. This enolase se-

quence showed 85% of homology with NTHiENO. Due to the high identity of the tem-

plate with NTHiENO, it provides a suitable template for modeling. The evaluation of the 

model by PROCHECK shows Ramachandran plot values of 99.7% (Figure 1B), indicating 

that the conformations of the amino acid residues are within the most favored or allowed 

regions. The Ramachandran diagram indicates that the stereochemical parameter Phi–Psi 

is ideal for the proposed model. The QMEAN value was -0.10, and the set of Z-

values for different parameters, such as C beta interactions (-0.57), interactions 

between all atoms (-1.39), solvation (0.77), and torsion (-0.16), were very close 
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to the value of 0, and this shows the fine quality of the model . The ProSA result 

obtained a model z-score of −8.74, which sits within the range of scores typically found for 

native proteins of a similar size—structures obtained by X-ray and NMR. (Figure 1D). 

The result set suggests that this model can be considered valid for the molecular docking 

assay. 

 

 

 

 

Figure 1. (A) Structural representation of NTHiENO model obtained by homology using Phyre2 and visualized by Chi-

mera. Secondary structure, alpha helices, and beta strands are shown in blue; the putative plasminogen-binding site motif 

is shown in pink. (B) Ramachandran plot analysis of the theoretical model of NTHiENO. All residues except Gly and Pro 

are shown as square dots located in the most favored regions (89.5% in the red area), additional allowed regions (9.4% in 

the dark yellow area), generously allowed regions (0.8% in the light-yellow area), and disallowed regions (0.3% in the 

white area). (C) Normalized QMEAN score graphic showing the z-score value, and the position of the model of non-

typeable H. influenzae enolase (red star) in the set of PDB structures used for evaluation. The Global Quality Scores are 

shown below: red (worse) and blue (better). (D) ProSA analysis (the black dot represents the model z-score for the protein 

of non-typeable H. influenzae enolase). 

  

A) 
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2.2. Molecular Docking between NTHiENO and Plg 

The result obtained with PatchDock for protein–protein docking indicated that 

NTHiENO and Plg (4A5T) exhibited surface complementarity and that the putative plas-

minogen-binding motif is present in the interface area, suggesting that it could participate 

in the interaction (Figure 2). The ACE value of the model was -101.53 binding affinity 

(kcal/mol) of -21.3 and Kd (M) at 37.0 ℃ of 1.0 × 10-15. 

 

Figure 2. Visualization of protein–protein docking of NTHiENO and human Plg by PatchDock. 

Binding proteins are shown as surface representations. NTHiENO is shown in blue, the internal 

putative plasminogen-binding motif is shown in pink, and human Plg (4A5T) is shown in green. 

2.3. Identification of Putative Plasminogen-Binding Domain in NTHiENO 

The alignment by CLUSTAL O, realized with enolases sequences, has characterized 

the plasminogen-binding motif and the putative motif present in NTHiENO correspond-

ing to (252FYNKENGMY260), showing a high percentage of homology with the plasmino-

gen-binding motif of S. pneumoniae (53.85%), followed by L. mexicana (46.15%) and a lower 

percentage of homology with B. henselae (38.36%). Although the plasminogen-binding mo-

tif presents some differences in the amino acid sequences, the main residues responsible 

for the interaction with enolase contain both positive and negative charges (Figure 3A). 

Only the region corresponding to the plasminogen-binding motif is shown in all aligned 

enolases.  

2.4. Obtention of pbmHiENO Peptide  

The plasminogen-binding site in enolases studied in the majority of pathogenic or-

ganisms is the C-terminal lysine [17]. It was observed that typeable and non-typeable H. 

influenzae enolase lacks C-terminal lysine [20]; however, it has the putative motif for plas-

minogen binding. Furthermore, this motif is exposed, so it could act as a plasminogen-

binding site, as observed in the interface region of the protein–protein interaction carried 

out by PatchDock. For this reason, and to make the analysis more sensitive and specific, 

we performed an analysis by molecular docking (protein–ligand) to see if this motif 

(252FYNKENGMY260) has a role in the interaction with human plasminogen and to identify 

the important residues for this interaction.  

Thus, the secondary structure of NTHiENO was worked using Gauss View 5.0 soft-

ware, and an 11 amino acid peptide was obtained: 1EFYNKENGMYE11 (pbmHiENO). 

Equivalent to position 251–261 in the H. influenzae enolase sequence, this peptide contains 

an amino acid at both the carboxyl and amino-terminal ends to maintain the wild three-

dimensional structure (Figure 3B). It was used as a ligand to perform blind docking as-

says.  
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Figure 3. The region corresponding to the plasminogen-binding motif in different enolases. (A) 

Alignment of the internal plasminogen-binding motif described in S. pneumonia, L. mexicana, B. hen-

selae, and the putative plasminogen-binding motif in non-typeable H. influenzae enolase, using 

CLUSTAL O (1.2.4) (highlighted in gray). The alignment showed 53.85, 46.15, and 38.46% of iden-

tity, respectively. The conserved amino acids in all sequences are labeled with asterisks; the con-

servative and semi-conservative substitutions are labeled with two points or one, respectively; pbm-

HiENO (purple box) and the proposed Plg binding residues are underlined. (B) shows the peptide 

of 11 amino acids (1EFYNKENGMYE11) (pbmHiENO) obtained with Gauss View 5.0 software, vis-

ualized by Chimera. Plg-binding residues are highlighted in cyan (GLU251, TYR253, and LYS255). 

2.5. pbmHiENO–Plasminogen Interaction  

Plasminogen-binding sites with pbmHiENO were evaluated by blind docking, for 

which the crystal structure of human plasminogen that has already been determined and 

is available in PDB (4A5T) was used. The searches for conserved kringle domains in hu-

man plasminogen provided the following data: K1 (82–164), K2 (166–243), K3 (256–333), 

K4 (356–437), and K5 (460–541). These regions were used as a target for pbmHiENO by 

means of blind docking using the AutoDock Vina program. 

Results for protein–ligand docking showed that pbmHiENO and human plasmino-

gen had surface complementarity in the domains K2, K3, and K5 (Figure 4A–C). Multiple 

models were obtained; however, only the models that showed the best poses with the best 

binding affinity (kcal/mol) were chosen, as were the models with interactions character-

ized by the formation of hydrogen bonds. 

According to molecular docking results, pbmHiENO showed greater affinity to K2, 

K3, and K5 domains, having a binding affinity kcal/mol of -3.9, -4.4 and -4.8, respectively. 

The pbmHiENO–Plg interaction presented conformational stability generated by hydro-

gen bonds and other intermolecular forces exerted by multiple residues of plasminogen 

(Figure 4D–F).  

In these analyses three important residues in NTHiENO were identified, essential for 

interaction with Plg through the formation of four hydrogen bonds corresponding to 

enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/eno-

GLU251-plgLYS468 (K5), equivalents to TYR3, LYS5, and GLU1 in the pbmHiENO (Figure 

4G–I). The summary of the data is shown in Table 1, and the rest of the amino acids of 

plasminogen that participate in the interaction are shown in Table 2. The molecular dock-

ing in the case of the interaction with the K5 domain was carried out before and after 

adding the caps, where we observed that the GLU1 and LYS5 residues are maintained in 

the formation of hydrogen bonds. 
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Figure 4. Plasminogen-binding sites with pbmHiENO using AutoDock Vina. (A–C) The protein–ligand interaction is shown in a 

surface representation, with pbmHiENO (shown in pink; the blue, red and yellow spheres corresponding to N, O and S atoms, 

respectively).) bound to kringle domains K2, K3, and K5 of plasminogen (4A5T) (shown in grey). (D–F) The interaction of pbmHiENO 

(dotted chain) with the kringle domains of Plg is shown by the formation of four hydrogen bonds (small green spheres in a square), 

along with other plasminogen residues involved in the interaction (grid spheres). (G–I) The important residues for the interaction 

correspond to K2: enoTYR253-plgGLU1, K3: enoTYR253-plgGLY310, and K5: enoLYS255-plgARG471/enoGLU251-plgLYS468. 

(These residues are equivalents to TYR3, LYS5, and GLU1 in pbmHiENO.) 

Table 1. Blind docking results for NTHiENO residues binding to kringle domains of plasminogen. 

Target Kringle Plg 

Domain 

Residue in 

NTHiENO 

Residue in 

pbmHiENO 
Residue Plg 

Hydrogen Bonding 

Interactions 

Binding Energy 

(kcal/mol) 

K2 TYR253 TYR3 GLU1 1 -3.9 

K3 TYR253 TYR3 GLY310 1 -4.4 

K5 
LYS255 

GLU251 

LYS5 

GLU1 

ARG471 

LYS468 
2 -4.8 
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Table 2. Plasminogen amino acids participating in the pbmHiENO–Plg interaction. 

Kringle Domain Plasminogen Amino Acid Residue 

K2 GLU1, ILE178, SER179, LYS180, ASP239, and PRO241 

K3 VAL272, GLY310, LYS311, ARG324, TRP325, GLU326, TYR327, TYR713, GLU714, PHE715, LEU730, and ASN769 

K5 LYS468, Gly469, ARG471, LYS473, PRO503, ARG504, ALA505, GLY506, GLU508, and LYS509 

2.6. Docking Analysis in Positive Controls 

In the Docking experiments with positive controls, the performance of the assays was 

measured by calculating the root mean square deviation (RMSD) between the coordinates 

of the atoms of the crystallized ligand structure and the docked pose using SPDV soft-

ware. AutoDock Vina docked the complexes successfully. The docked conformation with 

values of the best-scored poses showed an RMSD to 89M/docked pose (0.61 Å), 

0E7/docked pose (0.65 Å), and IMA/docked pose (0.68 Å). These low values of RMSD <2.0 

Å, as well as the binding affinity presented by the positive controls (Table 3), provide 

information on the reliability of the software in the prediction of interactions observed for 

pbmHiENO and human plasminogen. 

Table 3. Summary results of docking positive controls. 

Receptor (ID PDB) Crystalized Ligand (ID PDB) Binding Energy (kcal/mol) 
RMSD Crystallized 

Ligand/Docked Pose 

Plasmin (5UGG) 89M -7.8 0.61 Å 

Alpha-thrombin (1HDT) 0E7 -7.2 0.65 Å 

Factor Xa (1LPG) IMA -9.1 0.68 Å 

2.7. Experimental Detection of Non-Typeable H. influenzae Enolase–Plasminogen Interaction  

Once the interaction in silico and the probable residues involved in the interaction 

had been identified, the next objective was to demonstrate the protein–protein interaction 

in vitro. Far-western blot analysis was used to study the binding ability of NTHiENO to 

human plasminogen. Commercial human Plg or recombinant enolase of non-typeable H. 

influenzae (rNTHiENO) were migrated in 10% SDS-PAGE (Figure 5A) and electrotrans-

ferred to a nitrocellulose membrane. The membrane was blocked and subsequently incu-

bated with rNTHiENO to continue with traditional western blotting assays. The 

rNTHiENO–Plg interaction was identified with mouse polyclonal antibodies. Anti-

rNTHiENO was a signal corresponding to the plasminogen weight observed, as well as a 

signal corresponding to rNTHiENO weight as a positive control (Figure 5B). No positive 

signal was detected when the membrane was incubated with BSA as a negative control 

(Figure 5C). 

  



Pathogens 2021, 10, 1614 8 of 16 
 

 

Figure 5. Identification of the binding of rNTHiENO to plasminogen by means of far western blotting. (A) Protein migra-

tion in SDS-PAGE: 10%. M: weight marker; Lane 1: Plg (5 μg); Lane 2: Plg (10 μg); Lane 3: rNTHiENO (3 μg). (B) Immu-

nodetection of rNTHiENO–Plg interaction using polyclonal anti-rNTHiENO antibodies as the first antibody type, fol-

lowed by incubation with IgG anti-mouse accoupled to alkaline phosphatase as the second antibody. After migration and 

electrotransference of proteins, and prior to the use of the antibodies, the blot was incubated with rNTHiENO. M: pres-

tained protein marker; Lanes 1,2: rNTHiENO–Plg interaction; Lane 3: rNTHiENO. (C) A procedure like (B), but using only 

incubation with BSA as a negative control. Lane 1: Plg (5 μg), no signal was observed; Lane 2: rNTHiENO. The band 

corresponding to rNTHiENO (52.0 kDa) is indicated. 

The results observed in the far western-blot assays are consistent with the results 

obtained in the ELISA assays, in which rNTHiENO was significantly bound in a dose-

dependent manner compared to the negative control (BSA) (Figure 6A). Furthermore, 

when conducting experiments to inhibit the interaction between rNTHiENO and human 

plasminogen by adding different dilutions of anti-rNTHiENO polyclonal antibodies 

(1/100–1/40,000), the results showed that the addition of increasing concentrations of anti-

rNTHiENO antibody led to a dose-dependent decrease in the binding of rNTHiENO to 

Plg, evidencing a significant difference with the negative control (preimmune serum) (Fig-

ure 6B). 

  

Figure 6. Identification of the binding of rNTHiENO to plasminogen by means of ELISA. (A) Plasminogen-binding assays. 

ELISA assays showed that the interaction between rNTHiENO and plasminogen (Plg) is concentration-dependent. In-

creasing amounts in concentrations (0.01–10 µg/well) of plasminogen or BSA were used as indicated in the plot. BSA was 

used as a negative control. Data represent the mean ± SD standard deviation of three independent experiments. (B) De-

tection by ELISA of the inhibition of the rNTHiENO–Plg interaction, using polyclonal anti-rNTHiENO antibodies at dif-

ferent dilutions (1/100 to 1/40,000). Pre: Preimmune serum (negative control). Data represent the mean ± SD standard 

deviation of three independent experiments. (*** p < 0.001): preimmune serum VS 1/100; (** p < 0.01): preimmune serum 

VS 1/1000. 

3. Discussion 

H. influenzae exclusively colonizes the human nasopharynx [24]. The bacterium is 

classified into six capsular serotypes (a–f) and non-typeable (NT) strains. H. influenzae is a 

major pathogenic bacterium causing invasive disease [25] and remains a common cause 

of illness in children worldwide [26].  

In developed countries, the annual incidence of meningitis caused by bacteria is ap-

proximately 5–10 cases per population of 100,000 [3].  

The principal pathogen is capsulated H. influenzae type b (Hib). This bacterium causes 

many severe infections, including sepsis, epiglottitis, pneumonia, and meningitis [27]. Oc-

casionally, capsulated strains of H. influenzae non-type b, mostly type a, can produce in-

vasive infections; for instance, Hib infections [3]. 

In contrast, NTHi bacteria are one of the major causes of respiratory tract infections, 

including acute otitis media (AOM), cystic fibrosis, and community-acquired pneumonia 

among children, especially in developing countries. The bacteria are also known to cause 



Pathogens 2021, 10, 1614 9 of 16 
 

 

chronic bronchitis and chronic obstructive pulmonary disease (COPD) in the adult lower 

respiratory tract [28]. Other serotypes are uncommon pathogens and are thought to have 

low virulence; nevertheless, some have hypothesized that with the virtual elimination of 

H. influenzae type b, other serotypes might acquire virulence traits and emerge as im-

portant pathogens [29]. 

In multiple studies, it has been reported that the enolase of many pathogens can fa-

cilitate their invasion and dissemination in hosts through the binding and activation of 

plasminogen and its subsequent conversion to active plasmin [15,30,31]. 

Previous studies have shown that H. influenzae enolase is associated with the outer 

membrane of the bacteria and that the enolases of typeable and non-typeable strains have 

a 99.54% identity. This indicates that the change between the amino acid sequence is not 

significant. Moreover, a putative motif for plasminogen binding (252FYNKENGMY260) was 

identified and found to be present in the enolases of all H. influenzae strains [20]. In the 

alignment analysis, it was observed that this motif is similar to an internal motif respon-

sible for plasminogen binding. This motif has been well-characterized in the enolase from 

S. pneumoniae (248FYDKERKVY256) [15], and other organisms, such as L. mexicana [17] and 

B. henselae [6], with percentages of homology of 53.8%, 46.15%, and 38.36%, respectively. 

In this study, molecular interactions of NTHi enolase with host plasminogen, simulated 

by PatchDock, showed that both proteins present complementary forms, the motif 

(252FYNKENGMY260) being found in the interface region. Similar results were observed in 

the case of B. henselae and Trichinella spiralis [6,12]. The structure of NTHiENO was sub-

jected to quality evaluation by means of the PROCHECK Ramachandran plot analysis, 

which shows that the main-chain conformations for 99.7% of amino acid residues are 

within the most favored or allowed regions. The normalized QMEAN value for the model 

was of -0.10. Z-scores of around 0.0 reflect a native-like structure and, as a rule of thumb, 

a QMEAN z-score below -4.0 indicates a model with low quality [32]; therefore, our model 

was within the typical standard deviation value. Additionally, the ProSA predicted value 

of the z-score -8.47 is within the range of scores typically found for native proteins, these 

results supporting the quality of the model. 
On the other hand, the lower ACE value of -101.54, the high binding affinity 

(kcal/mol) of -21.3, and the low value of Kd (M) of 1.0 × 10-15 are results that show a good 

model of interaction predicted by Patchdok, and these results confirm the quality of the 

predicted model. Therefore, we hypothesize that both structures, enolase as well as Plg, 

present this complementary form and that pbmHiENO is present in the interface region, 

suggesting that this region of NTHiENO could be one of the main sites of binding with 

respect to human plasminogen. 

The N-terminal region of plasminogen contains five kringle domains of 80 amino 

acids (K1–K5), which contain lysine binding sites [33]. Interaction with lysine leads to a 

conformational change, which makes it more susceptible to cleavage by plasminogen ac-

tivators (Pas) [34] and so pass to its active form of plasmin. 

Almost all kringle domains bind to lysine or lysine-like ligands. Interactions of the 

host’s Plg or its isolated kringle domains with lysine residues occur in K1, 2, 4, and 5; K1 

and K4 exhibit the strongest ligand affinities, while K2 possesses the weakest affinity [35–

38]. In T. spiralis enolase (TsENO), four lysine residues were identified, which play an 

important role in PLG binding, and the quadruple mutant of TsENO 

(Lys90Ala + Lys289Ala + Lys291Ala + Lys300Ala), in which the key lysine residues were 

substituted with alanine (Ala) residues, exhibited a reduction in PLG binding of nearly 

50% (45.37%) [12].  

On the other hand, one of the principal binding sites to plasminogen kringle domains 

on enolases studied in most of the pathogenic organisms is the C-terminal lysine [17], as 

was observed in the case of S. pyogenes, S. pneumoniae, [33] and Mycobacterium tuberculosis 

[39]. However, while in the case of S. pyogenes the C-terminal lysines are important for Plg 

binding, for pneumococcal enolase, Plg binding mainly depends on the internal Plg-bind-

ing site BS2 (residues 248–256), and the C-terminal lysine residue(s) is either not or only 
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marginally involved [16,40]. H. influenzae enolase lacks C-terminal lysines [20]; however, 

it does have the internal Plg-binding site (252FYNKENGMY260). Thus, we decided to focus 

on this motif and submit it to blind docking using AutoDock Vina [41] in order to identify 

which amino acids are key to binding kringle plasminogen domains. 

According to molecular docking results, the best poses with the lowest binding ener-

gies and hydrogen bonding showed that pbmHiENO (1EFYNKENGMYE11) has an affinity 

to K2, K3, and K5 plasminogen domains, having a binding affinity kcal/mol of -3.9, -4.4, 

and -4.8, respectively. We identified three key residues for plasminogen binding: one of 

the key amino acid residues was enoTYR253, which binds to plgGLU1 by forming hydrogen 

bonds. Although GLU1 is not found within K2, other intermolecular forces are exerted by 

multiple residues of plasminogen located in the K2 domain. TYR253 is also involved in hy-

drogen bonding, but in this case, with plgGLY310, located in K3 of Plg. The other two key 

residues binding to Plg were enoGLU251 and enoLYS255, binding to plgLYS468 and 

plgARG471, respectively, both located in the K5 domain. In addition, other residues of plas-

minogen located in these domains (Table 2) that participate in the interaction were also 

identified. On the other hand, the docking test of positive controls showed that the differ-

ence in the spatial location of the atoms of the docked pose with respect to the crystallized 

ligand presented an RMSD <2.0 Å. Therefore, AutoDock Vina successfully predicted the 

coordinates of the crystallized ligands. These results provide information of the reliability 

of the software; hence, it can be assumed that the results obtained with blind docking are 

reliable. 

As already mentioned above, the role of an internal Plg-binding motif in enolases 

(248FYDKERKVY256) was proposed for many organisms, including parasites, yeast, and 

bacteria. For species such as S. pneumoniae, L. mexicana, Bifidobacterial and Candida, the 

role of this internal enolase motif was experimentally supported by a competitive inhibi-

tion assay with synthetic peptides and/or also by site-directed mutagenesis of the binding 

motif [15,17,42,43]. In the case of S. pneumoniae, it has been shown that LYS251, GLU252, and 

LYS254 are essential for the interaction with plasminogen. The replacement of three amino 

acid residues in the selected fragment of the bacterial enolase (Lys251Leu, Glu252Gly, and 

Lys254Leu substitutions) reduced plasminogen binding to 44% of the wild-type level [15]. 

These results have also been seen in Bifidobacterial enolase. By site-direct mutagenesis of 

LYS251, GLU252, and LYS255 within the BS2 homologue of B. lactis, BI07 enolase impaired its 

Plg-binding activity, suggesting that the positively charged residues Lys251, Lys255, and the 

negatively charged Glu252 are vital for Plg interaction [40]. These charges are preserved in 

pbmHiENO, equivalent to enoGLU251, enoTYR253 and enoLYS255. GLU251 is outside the 

classic characteristic plasminogen-binding motif (252FYNKENGMY260); however, it was 

observed that it can interact with the K5 domain. Although TYR253 participates in the in-

teraction with two kringle domains (K2 and K3), we consider it important that LYS255 has 

a high probability of binding with the K5 domain due to its strategic position being ex-

posed in the NTHiENO structure. Similar results were reported in a molecular docking of 

G. intestinalis GiENO, where LYS266 was shown to preferentially bind to the K5 domain of 

Plg [44]. With these antecedents, and the results obtained in this work, we propose that 

enoGLU251, enoTYR253, and enoLYS255 constitute the main plasminogen binding sites; how-

ever, there could be amino acids outside of pbmHiENO participating in the interaction 

with plasminogen or maintaining a protein folding that is favorable to their interaction 

with plasminogen, but this hypothesis will have to be confirmed in further studies. Mean-

while, we propose that H. influenzae enolase can bind to K2 and K3 but mainly K5 domains 

of Plg through pbmHiENO, due to the formation of two hydrogen bonds, and also be-

cause it presented the best binding affinity (kcal/mol -4.8).  

The ability of rNTHiENO to bind Plg was examined using far-western blot and 

ELISA assays, and the results clearly show that rNTHiENO is a Plg-binding protein in a 

concentration-dependent manner. This result has been reported with respect to multiple 

enolases in different models, such as S. iniae [8], S. pyogenes [45], M. tuberculosis [39], 

Trichomonas vaginalis [46], L. mexicana [17], and B. henselae [6].  
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In other studies, the interaction between plasminogen and enolase has been sug-

gested to play a key role in the degradation of extracellular matrix proteins, in which the 

microbial enolase is captured by human plasminogen, and its subsequent conversion to 

plasmin serves as a mechanism to increase their virulence, favoring host tissue invasion 

[47]. Even without activation, the recruitment of plasminogen to the bacterial surface has 

been reported as a pivotal pathogenicity mechanism, promoting bacterial attachment to 

cell surfaces. A study using mice infected by the intranasal route demonstrated that plas-

minogen recruitment to pneumococci significantly contributes to their virulence in mice. 

In other studies, surface-exposed enolase was identified as a mediator for plasminogen-

dependent bacterial attachment [15,48,49]. 

Taking into consideration previously reported studies and the results obtained from 

molecular docking, as well as in vitro assays in this work, it is proposed that NTHiENO–

plasminogen interaction could be one of the mechanisms used by H. influenzae to infect 

and invade host cell—a mechanism for H. influenzae that has not been described until now. 

Moreover, the inhibition of rNTHiENO–Plg interactions using polyclonal anti-

rNTHiENO antibodies prove to be specific. Comparison with preimmune serum (free of 

anti-rNTHiENO antibodies) was used to prove that the interaction of both proteins was 

not affected. Therefore, it is proposed that H. influenzae enolase could be an important 

therapeutic target for the development of a vaccine. 

4. Materials and Methods 

4.1. Enolase Sequences and Alignments 

The amino acid sequence of NTHiENO (GenBank: MF405339.1) and the enolase se-

quences of several microorganisms in which it has already been shown that the enzyme 

has an internal motif involved in plasminogen (Plg)-binding were used. These microor-

ganisms were: Streptococcus pneumoniae (GenBank: VDG78305.1), Leishmania mexicana 

(GenBank: ABA64522.1), and Bartonella henselae (GenBank: ATP12173.1). The sequences 

were aligned using multiple sequence alignment with CLUSTAL O (1.2.4) 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ , accessed on 1 October 2021). 

4.2. Analyses of Protein–Protein Docking 

The three-dimensional model of NTHiENO homology was obtained by Phyre2 [21]. 

Once the model was obtained, quality and stereochemistry were evaluated using the 

PROCHECK program [50]. The QMEAN (Qualitative Model Energy Analysis) program 

of the SWISS-MODEL was used for the estimation of the best reliable model quality [32], 

and the ProSA (Protein Structure Assessment) tool was used to check the overall quality 

of the model [51].  

The crystallized structure of human plasminogen was obtained from the Protein Data 

Bank (ID 4A5T). Molecular docking of protein–protein interactions between NTHiENO 

and human plasminogen was analyzed using PatchDock [52,53]. The first 10 best coupling 

results were considered, based on the best score and the lowest atomic contact energy 

(ACE). The selection of the best model, based on the calculation of the lowest ACE value, 

presented the putative plasminogen-bind motif in the interface region. The binding mode 

was visualized by Chimera [22]. Moreover, the select model was submitted to analysis to 

evaluate the binding affinity (ΔG) and dissociation constant (Kd) by the PRODIGY server 

[54].  

4.3. Obtaining the Internal Binding Motif to Plg (pbmHiENO) 

From the three-dimensional model of NTHiENO described above, the putative inter-

nal binding motif to Plg, 251EFYNKENGMYE261 (pbmHiENO), was cut with the 

GaussView 5.0 program [55], adding an amino acid in both ends. To neutralize the charges 

of amino acids from the ends that were cut off, the caps CT3 (N-methyl) and ACE (acetyl) 
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to the N- and C-terminal regions were added, respectively, by VMD software [56]. This 

peptide was used as a ligand to perform the blind docking assays.  

4.4. Blind Docking pbmHiENO–Plg 

Both the plasminogen molecule (protein) and pbmHiENO (ligand) were prepared 

first with the Chimera program [22] and later with AutoDock tools. The blind docking 

was executed in the AutoDock Vina program [41], using as a target each region of the five 

kringle domains (K1–K5) of the human plasminogen. The search for conserved domains 

was carried out through the NCBI conserved domain search platform 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi , accessed on 1 October 2021). 

Several couplings were performed, and the best models were selected based on better 

binding affinity (kcal/mol) and hydrogen bond formation. 

4.5. Docking Positive Controls 

To validate the reliability of the AutoDock Vina program [41] in relation to the pre-

diction of interactions, selected co-crystallized molecules with experimental ligands were 

selected. Plasmin (the active form of plasminogen) and two other molecules with similar 

characteristics to plasminogen in terms of biological function and to the chemical nature 

of the ligand (pbmHiENO) were used. All molecules were prepared using Chimera [22]. 

The selected molecules that served as positive controls were plasmin EC 3.4.21.7 (Protein 

Data Bank: ID 5UGG) with its ligand (Protein Data Bank: ID 89M) [57], alpha-thrombin 

EC 3.4.21.5 (Protein Data Bank: ID 1HDT) with its ligand (Protein Data Bank: ID 0E7) [58], 

and blood coagulation factor Xa EC 3.4. 21.5 (Protein Data Bank: ID 1LPG) with its ligand 

(Protein Data Bank: ID IMA) [59]. Better binding affinity kcal/mol was evaluated, and, 

finally, the root mean square deviation (RMSD) of the docked pose was obtained with 

respect to the original ligand, calculated using SPDV software [60]. 

4.6. Plasminogen-Binding Assay by Far-Western Blot 

To detect enolase–plasminogen interactions, far-western blot assays were performed 

as described in Hall [61]. Briefly, the human plasminogen (Sigma-Aldrich, Saint Louis, 

MO, USA) (5 and 10 μg) and rNTHiENO (3 μg), obtained according to [20], were migrated 

in an SDS-PAGE (10%) and later electrotransferred to a nitrocellulose membrane (Bio-Rad, 

Inc, Hercules, CA, USA). The membrane was blocked with blocking buffer (2% non-fat 

powdered milk, 0.1% Tween-20 in PBS) by 1 h/RT, after which it was incubated with 10 

μg/ml of rNTHiENO or 10 μg/ml of BSA as a negative control in blocking buffer, over-

night at 4 °C, followed by three washes with blocking buffer. rNTHiENO binding was 

detected by incubating the membrane with polyclonal anti-rNTHiENO antibodies as the 

first antibody type and with goat anti-mouse IgG alkaline phosphatase-conjugated 

(Novex® by Life Technologies, Van Allen Way Carlsbad, CA, USA) as the secondary anti-

body. The bound antibodies were revealed using NBT (nitro blue tetrazolium) and BCIP 

(5-bromo-4-chloro-3-indolyl-phosphate) (Thermo Fisher Scientific, Waltham, MA, USA).  

4.7. Detection of Interactions of rNTHiENO with Plasminogen by ELISA 

Briefly, a 96-well plate was coated with 1.0 μg/well of rNTHiENO diluted in 100 μL 

of PBS (phosphate-buffered saline) and incubated overnight at 4 °C. After that, three 

washes with PBS-Tween (PBST) 0.5% were performed, and the wells were blocked with 

2% BSA for 2 h at 37 °C. The plate was washed three times again and incubated with 0.01–

10 μg/well of human plasminogen (Sigma-Aldrich, USA) diluted in 100 μl of PBS or with 

BSA as a negative control at the same concentrations for 2 h at 37 °C. Binding protein was 

detected with polyclonal anti-Plg antibodies as first antibody and goat anti-mouse IgG-

HRP-conjugated as the secondary antibody.  

Inhibition experiments were performed by adding polyclonal anti-rNTHiENO anti-

bodies (serial dilutions from 1/100 to 1/40,000) prior to the addition of Plg (1.0 μg/well). 
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These antibodies were obtained in a previous work [20]. The interaction was visualized 

using 3,3’,5,5’-Tetramethylbenzidine (TMB; Sigma-Aldrich), and the reaction was stopped 

with the addition of 50 μl of 0.5 M sulfuric acid, and, finally, the OD was read at 450 nm. 

All experiments were repeated three times. 

4.8. Generation of Anti-Plg Polyclonal Antibodies 

For the immunization scheme, four mice BALB/C, were bled at the tail to collect pre-

immune serum; later, they were immunized with 20 μg of human plasminogen (Sigma-

Aldrich, USA) with TiterMax® Gold Adjuvant (Sigma-Aldrich) by intramuscular route, 

followed by three boosters with the same concentrations, a period of eight days between 

each one. At the end of the immunization scheme, the mice were bled to obtain the hy-

perimmune serum. The polyclonal antibodies were tested by western blot, where they 

showed recognition by purified human plasminogen. The experimental procedure (Pro-

tocol Code: 100522577-UALVIEP-18/1, 30 October 2018) was approved by the Claude Ber-

nal Animal Care and Use Committee of the Benemerita Universidad Autonoma de Pue-

bla. The mice were housed in a controlled environment and managed according to the 

National Institutes of Health Guide to the Care and Use of Experimental Animals and 

following the guidelines of the Norma Oficial Mexicana: Guide for the Care and Use of 

Laboratory Animals (NOM-062-ZOO-1999).  

5. Conclusions 

The results obtained in this work revealed that recombinant enolase of H. influenzae 

is capable of binding human plasminogen. Moreover, three residues identified in the pre-

dicted plasminogen-binding domain in NTHiENO showed a high probability of interac-

tion with the K2, K3, and K5 domains of Plg. The importance of demonstrating the inter-

action between both proteins, in addition to describing what could be the key amino acids 

that carry out the interaction between both proteins, are important results that allow us to 

propose enolase as one mechanism that could be used by H. influenzae to infect and invade 

host cells. Therefore, the enolase of H. influenzae could be considered as a virulence factor 

that allows this bacterium to increase its repertoire of pathogenicity mechanisms.  

In summary, to our knowledge, this is the first work that describes the H. influenzae 

enolase–human plasminogen interaction by computational methods and experimental as-

says.  
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