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Abstract: (1) Background: The human brain is of interest in viral research because it is often the target
of viruses. Neurological infections can result in consequences in the CNS, which can result in death
or lifelong sequelae. Organoids modeling the CNS are notable because they are derived from stem
cells that differentiate into specific brain cells such as neural progenitors, neurons, astrocytes, and
glial cells. Numerous protocols have been developed for the generation of CNS organoids, and our
goal was to describe the various CNS organoid models available for viral pathogenesis research to
serve as a guide to determine which protocol might be appropriate based on research goal, timeframe,
and budget. (2) Methods: Articles for this review were found in Pubmed, Scopus and EMBASE.
The search terms used were “brain + organoid” and “CNS + organoid” (3) Results: There are two
main methods for organoid generation, and the length of time for organoid generation varied from
28 days to over 2 months. The costs for generating a population of organoids ranged from USD
1000 to 5000. (4) Conclusions: There are numerous methods for generating organoids representing
multiple regions of the brain, with several types of modifications for fine-tuning the model to a
researcher’s specifications. Organoid models of the CNS can serve as a platform for characterization
and mechanistic studies that can reduce or eliminate the use of animals, especially for viruses that
only cause disease in the human CNS.
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1. Introduction

The human brain is of interest in viral research because it is often the direct or indirect
target of viruses, and many viral families have neurotropic viruses [1,2]. Neurological
infections can result in consequences to the CNS such as inflammation (encephalitis and
myelitis), neurologic disorders such as Guillain-Barré syndrome, Bell’s palsy and parkin-
sonism, all of which can result in death or lifelong sequelae [3-8]. This is of particular
concern because COVID-19 and many other emerging viruses are neurotropic, with the
potential to affect much of the human population, and appropriate study models, such as
stem cell based models, are still being developed [7,9-11].

There are a variety of ways to model and study viral disease in the CNS. In vitro
assays utilizing immortalized or primary cell lines are useful for mechanistic assays but
do not reflect the contributions of other cell types present in the organ, which can limit
findings. Animal models used for viral pathogenesis research in the CNS include rodent,
non-human primates, rabbit, goats and sheep [12-17]. One drawback of using an animal
model is the host-range restrictions of viruses such that many animal models lack the
necessary receptors for viral entry and attachment [17,18]. Another limitation of using
animal models to study viruses is the difference in immunopathology, which has been
noted in models such as knockout and transgenic mice [17]. Other limitations of using
animal models are the husbandry, time involved, cost, and ethics [17,19,20].

An emerging alternative to animal models is 3D cell culture and organoids derived
from human stem cells. Brain organoids are three-dimensional cellular structures that
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self-organize into a structure similar to the human fetal brain and are typically derived
from either human embryonic stem cells (hESCs) or human induced pluripotent stem
cells (hiPSCs), broadly known as human pluripotent stem cells (hPSCs) [21]. Two research
groups developed the earliest methodologies for generating CNS organoids. The Knoblich
research group based their method for creating brain organoids on protocols for other
types of organoids such as gut and optic cup 3D culture [22-25]. This method, commonly
referred to as the Lancaster method, for generating cerebral organoids (COs), is highly
reproducible and has become the basis for the majority of CO generation protocols for
disease modeling. The Sasai group led the way for guided brain organoid methodologies
by using small molecules to dictate cell fate [26].

Organoids can be used to model organogenesis, developmental disorders, and the
pathogenesis of viruses in organ systems of diseases difficult to model in animals [21].
The advantages of using an organoid model are that they better reflect human gene
expression and development, are more accessible and accurately reflect human biology than
animals or immortalized cells [27]. Some drawbacks of using organoids are the isolated
nature of organoids, as they lack a functional immune system and vascularization [27].
However, the field is still developing, and more complex models are continuously being
engineered [11,27].

Organoids modeling the CNS are notable because they are derived from stem cells that
differentiate into specific brain cell types such as neural progenitors, neurons, astrocytes
and glial cells [21]. They are different from other three-dimensional cultures, because stem
cells self-organize and differentiate into the appropriate cell types to accurately model the
human fetal brain [21,28,29]. As a result of this, organoids are also a model for studying
gliogenesis and neuronal formation and networking [29]. Brain organoids can be cultured
for more than 1 year and can model the post-natal brain when in culture for greater than
250 days [29,30].

The typical process of generating a brain organoid starts with hiPSCs or hESC colonies
that are separated into single cells, and then are aggregated to form embryoid bodies (EBs),
which are typically embedded in Matrigel to provide a scaffold for the growing organoid.
EBs are three-dimensional pluripotent stem cell (PSC) aggregates to which growth factors
are then added to their media to promote the growth of neuroectoderm, which matures
into neuroepithelium and then into cerebral tissue [31].

Numerous protocols have been developed for the generation of CNS organoids,
and most protocols start with iPSCs that are aggregated into EBs (Figure 1). EBs are
induced to form neural stem cells by the addition of neural induction media, which
contains factors to inhibit the BMP/TGF-f signaling pathway [29]. Common strategies
include SMAD (Suppressor of Mothers Against Decapentaplegic) inhibition and Wnt
pathway activation [32-36]. SMADs are a family of proteins that are involved with TGFf3
signaling [37]. In iPSCs, SMAD inhibition can be achieved through the use of inhibitors
such as Noggin and SB431542 [38]. Neural stem cells are self-renewing and generate glia
and neurons during embryonic development [39].

There are two main methods for brain organoid generation. The first is to create
unguided organoids that utilize iPSC propensity for spontaneous morphogenesis and
intrinsic cell signaling [24,29,40,41]. These cells can potentially develop into dorsal fore-
brain, ventral forebrain, midbrain, choroid plexus, hippocampus, retina, and hindbrain cell
lineages [24,29,40,41]. These models are advantageous since they create a heterogeneous
population of cells within the organoids [21,29]. These types of organoids, specifically COs,
are sometimes called whole brain organoids since they spontaneously model the diverse
neural population of the developing brain [25,29]. The main and immediate drawback of
utilizing this method is that spontaneous differentiation can lead to unpredictable propor-
tions and arrangements of cells within the organoid, which can be counterproductive for
researchers trying to model specific regions of the brain [21,29,40,42].
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Figure 1. Overview of generating CNS organoids and the differences between guided and unguided methodologies. Figure

was created with BioRender.com (accessed on 29 October 2021).

The second method for brain organoid generation is a guided approach in which
patterning factors are used to induce specific cell lineages at specific locations within the
organoid [21,29]. In guided models, growth factors are applied to developing organoids,
and these vary according to the goal of organoid generation according to a specific pat-
tern [21,29]. These patterns can recreate regions similar in structure and cell composition
to the cerebral cortex, midbrain, optic cup, choroid plexus, hypothalamus, cerebellum,
ganglionic eminences, thalamus, and hippocampus [22,29,34,35,43-53].

Both guided and unguided protocols vary greatly in length of time for brain organoid
generation, with the shortest protocol in the literature review being 28 days, and the longest
protocols being nearly 2 months [24,25,32,54]. The length of time required is influenced
by factors such as brain cell types desired and methodology. The costs for generating a
population of brain organoids ranged from just over USD 1000 to about 5000. Costs were
calculated by summing the costs of 1 unit of each reagent listed in the protocol.

Here, we describe the various CNS organoid models available for viral pathogenesis
research to serve as a guide to determine which protocol might be appropriate based on
research goal, timeframe, experience, and budget. The literature for this review was originally
sourced from Pubmed, Scopus, and EMBASE using the search terms “brain + organoids,” and
“CNS + organoids.” Protocols were included if they generated a CNS organoid through a
novel technique. A second search was performed to identify viral pathogenesis studies
using CNS organoids; Pubmed, Scopus, and EMBASE were searched using the terms
“brain + virus + organoid” and “CNS + organoid + virus.” Manuscripts describing virus
infection of CNS/brain organoids were included and paired with the organoid model type.

2. Spheroids vs. Organoids

We found, through the course of writing this review, that several manuscripts in-
correctly described their models as brain organoids when they were actually spheroid
aggregates of specific cell types [55,56]. Further, there were manuscripts incorrectly de-
scribed as spheroids when they were actually brain organoids [45,57]. A spheroid culture
is a 3D cell culture product where a single type of cell is grown in aggregates in a scaffold-
free environment [58]. Multicellular spheroids can be made of two or more cell types
grown together in aggregates or they can be derived through guided differentiation of
PSCs [58]. Spheroids usually lack polarity and are unable to mimic the composition and
functionality of tissues or organs [58]. While there are methods of generating specific
cell types from pluripotent stem cells via guided differentiation, these models produce
one or more cell types grown without a basement membrane and do not contain cells of
multiple lineages [21]. Organoids are also sphere-shaped; however, they are 3D structures
generated from PSCs or organ progenitor cells and are typically grown on a scaffold or
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basement membrane such as Matrigel [58]. Organoids, unlike spheroids, represent the
cellular heterogeneity and physiology of organs and differentiate into cells of endo-, meso-,
and ectodermal lineage whereas spheroids do not [58]. Recent work has defined organoids
derived from guided differentiation as spheroids when they should be referred to as
region-specific organoids since the resultant product differentiated into cells of multiple
lineages [45,57]. Studies performing guided differentiation of pluripotent stem cells to
produce spheroids should present data indicating that multiple cell lineages are absent.

3. Cell Lines Used for Organoid Generation

Choice of cell line used for generation of any organoid is integral for ensuring that
the end product meets the requirements for generating or testing a hypothesis. hiPSCs are
derived from primary blood monocyte cells, fibroblasts, epithelial cells and a variety of
other cell types and can form all germ layers but cannot form extra-embryonic structures
such as the placenta [59]. hESCs are derived from the inner cell mass of preimplantation
embryos and can have restrictions for use to some researchers [59]. Regardless of source,
stem cells should have a record of quality control and authentication to ensure pluripotency
and genetics. hiPSCs should be chosen from lines that have been generated via the use
of a non-integrating vectors such as Sendai virus or other episomal-type vector such that
reprogramming vectors do not integrate with the host genome [60]. Cells should have a
validated normal karyotype since reprogramming and passaging can compromise genetic
integrity [60]. Finally, cell lines should have their pluripotency validated via phenotypic
assays [60]. Usually, these quality control measures are performed by the vendor but should
be repeated after gene editing, before cell banking, or when cultures exhibit unusual properties.

Researchers have used a variety of hESCs and hiPSCs to generate brain organoids. The
most widely used source for hiPSCs is WiCell, with the WA09 cells being popular for CO
generation (Table 1). WiCell lines WA01, WA07, iPS (IMR90)-2, and ES03 are also commonly
used (Table 1). hiPSC cell line cost varied from USD 495 to 1623 (Table 1). Many other
cell lines were mentioned in the literature, but they were from research group biobanks
and are not widely available to the public. While the purchase of stem cells can seem
cost prohibitive, they can be passaged as long as they maintain a normal karyotype and
pluripotency markers. While it is possible to use neural progenitor cells as a starting point
for organoid generation, neural progenitor cells are not widely available from sufficient
numbers of donors to make disease modeling possible.

Virus researchers typically present data from brain organoids derived from a single
cell line, although some recent studies have derived brain organoids from two unique cell
lines [55,61-66]. While dozens of organoids can be produced through a single generation
protocol, the resultant organoids are basically clones of each other and donor-specific
characteristics persist in unique cell lines. Thus, when designing an experiment, organoids
should be derived from multiple cell lines. A recently published report showed that neu-
ronal cell studies focused on disease modeling used five cell lines per study (three diseased,
two control) or at least three cell lines for nondisease modeling [67]. However, in depth
analysis of preliminary concepts requires substantial resources and time that is not justifi-
able for pilot studies, especially when generating organoids. Thus, preliminary data are
often limited to two cell lines (control and diseased) [68-70].
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Table 1. Commonly used cell types for CNS organoid generation. * price is for academic or non-profit institutions.

Cell Line Cost USD Organoids Generated Company
(Hl)v[\gg,o?)lSJl] USD 1250 Cerebral, Midbrain, Cortical, Fused MGE-cortical organoids WiCell
WAQD9 USD 1250 Cerebral/ChP, Midbrain, Fused Dorsal-Ventral Cerebral, Vascularized Brain Organoid WiCell
(H9) [28,35,37,51,53,67,69,71-76]
WAO07 (H?) [77] USD 1250 Neocortex WiCell
Human ((:g;f 388_3&33“ Cells USD 634 Cerebral/ChP STEMCELL Technologies
U87-MG [65] USD 495 Cerebral ATCC
GM00942,
GMO08330, USD 650 Whole Brain organoids, Cerebral, Dorsally Patterned Forebrain Organoids Coriell Institute *
GMO00969 [78-81]
BJ [82] USD 495 Cerebral ATCC
Hiri(a)fﬂ?sxgglll(s)g[g?a] USD 1623 Cerebral ATCC
KhES-1 [34,48] USD 244 Cerebral, Neocortex RIKEN BioResource Research Center *
iPS(IMR90)-2 [84] USD 1250 Whole Brain Organoid WiCell
ES03 (HES-3) [32] USD 1250 Fused Organoid WiCell
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4. Unguided Organoid Models

Several protocols for the generation of unguided brain organoids were found in
Pubmed, Scopus and EMBASE. The most frequently mentioned protocol to create unguided
brain organoids was by Lancaster et al. to create COs [21,24,25]. Most unguided brain
organoids mature at about 2 months and can be kept for a year or more [30]. The longer
that organoids are kept in culture, the later in fetal development they can represent, and
organoids cultured after 250 days mimic post-natal brain development [30]. The unguided,
Lancaster-based protocol has been performed with hePSCs, hiPSCs, and hiPSCs grown on
mouse embryotic fibroblasts (MEFs) (Table 2) [85]. Stemcell Technologies offers a kit based
on the Lancaster protocol that produces COs in roughly 54 days, which can be cultured for
at least a year post maturation [30]. The estimated cost for the reagents used in the typical
Lancaster-based protocol is about USD 5200, not including cells (Table 2). The kit available
from Stemcell Technologies costs USD 359.00 with an additional USD 750 in plates and
additives needed. Our search of the literature identified several manuscripts that used a
modified version of the Lancaster method, although no acknowledgement to Lancaster et al.
was made. We also found a manuscript that generated organoids from hiPSC derived from
urine epithelial cells, which did not acknowledge Stemcell Technologies, who published
this method of hiPSC generation in 2018 [86,87].
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Table 2. Guided and unguided brain organoid models. Expense was calculated by summing the costs of one unit of all the reagents listed in the protocols in USD. The time column

specifies the number of days to generate and organoid starting with hiPSC.

Organoid Type Protocol Cost USD Modifications Time Virus Kit
Unguided
I ZIKV, DENV,
Co-culture with iMGL; feeder cells can be used [85,91]; ’ ’
CO [23,27,28,54-71,88-90] Lancaster et al., 2014 [24,25] KlljtS:DUSSZéglzl?())O Co-cultured neurons with astrocytes [92]; Co-cultured 2+ months ngﬁ%gﬁ}g\’/}gg&v’ TSe Eﬁrl\é)(ljfg%gs
with CNS tumor cells [93] MeV
co Bodnar et al., 2021 [79] USD 3611.57 NR 35-80 days NR —
. STEMCELL
CO/Chp Pellegrini et al., 2020 [72] USD 1127.15 NR 54 days NR Technologies
MG-hBORGs dos Reis et al., 2020 [94] USD 2142.67 Co-culture with HIV-1 infected microglia [94] 99-265 days HIV-1 -
Guided
. s Jo et al., 2016, Monzel et al., 2017 SMAD inhibition [35] and Wnt pathway activation B _
Midbrain-like (hMLO) [35,36] USD 5731.23 [35,36], SHH pathway activation [36] 1-2 months NR
Rho kinase [34,95], Wnt and TGF inhibitors
CO/Neocortex/Cortical/Dorsally . ., [34,48,81,95]; Co-cultured cerebral organoids with g _
Patterned [48,81,95,96] Kadoshima et al., 2013 [34] USD 231418 human cortical tissue [95]; FGF19 [48]; Co-cultured with 3 months SARS-CoV2, ZIKV
pericyte-like cells [97]

Telencephalic Organoids Mariani et al., 2015 [22,49,98] KES:DU?)SSI%%SI%O NR 115 days NR —
F"reﬁ%“;ftxiggj;“' & Qian et al., 2018 [50,99] USD 4413.81 SMAD inhibition [50] 71-80 days ZIKV -
Telencephalon Cortical Zhang et al., 2018 [89] USD 3038.49 NR 24-91 days JEV, ZIKV -

cO Lindborg et al., 2016 [54] USD 3234.65 Can use feeder cells [54] 28 days NR -
Co-culture of neural progenitor cells (NPCS) with
cOo Xu et al., 2021 [33] USD 5460.08 primitive macrophage progenitors (PMP); dual SMAD 35 days ZIKV -
inhibition [33]
hCO Cakir et al., 2020 [71] USD 3767.62 NR 1-3 months NR -
1 Dorsal F i . R R . TEMCELL
Ventra a“grg;’;f)? ! Forebrain Birey et al., 2017 [100] USD 3844.56 SMAD inhibition, Wit inhibition, SHH agonist [100] 43 days SARS-CoV2 STEMCE ics
Ventral drug treatment (IWP2 + SAG) and dorsal
Fused dorsal-ventral CO Bagley et al., 2017 [101] USD 4622.15 treatment (CycA) EBs that were embedded together 100 days NR -
and eventually fused; feeder cells can be used [101]
Human Cortical Spheroids in SMAD and Wnt inhibition, EGF and FGF2 growth
Feeder Free Conditions (hCS-FF)/ Yoon et al., 2019 [45] USD 3825.68 factors; can modify patterning molecules used to create 100+ days ZIKV [102,103] —
Forebrain Organoid forebrain organoids
Fused MGE-hfMCO and Fused Xiang et al., 2017 [32] USD 2573.77 Fused; SMAD inhibition and SHH activation, Wnt 2+ months NR _

hMGEO and hCO

signaling [32]
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Several viral pathogenesis studies have been published using the unguided protocol,
most likely due to the reproducibility of the Lancaster method and the numerous modifica-
tions available to it (Table 2) [25]. This protocol has been used to generate brain organoids
to study Zika virus (ZIKV), Dengue virus (DENV), SARS-CoV-2, La Crosse encephalitis
virus (LACV), measles virus (MeV), human cytomegalovirus (HCMV), and herpes simplex
virus 1 (HSV-1). Two papers utilized COs to model ZIKV infection in vitro and were able
to demonstrate that COs can exhibit characteristics of microcephaly [104,105]. This was
a major advancement since ZIKV-related microcephaly can only be produced in mice by
knocking out Type 1 interferon [102]. Dang et al. was also able to show that TLR3 was
upregulated in ZIKV infected COs, which followed data obtained from human patients
with acute ZIKV infection [103,105]. Numerous other papers also used COs to study ZIKV.
Long et al. used COs to study how a ZIKV infection affects tubular matrices in the cen-
tral endoplasmic reticulum, which validated other in vitro and animal research of ZIKV
infection of endothelial cells [106-109]. Cavalcante et al. showed that ZIKV infected COs’
neuronal cells had reduced SOX?* and increased Casp>* expression which was also found
in ZIKV infected chicken embryos [110,111]. Additionally, ZIKV infected COs exhibited
irregular borders and cavities [110]. Cavalcante et al. were also able to show that betulinic
acid (BA) can protect against ZIKV in COs [110].

Another group studied ZIKV oncolytic activity in COs co-cultured with CNS tumor
cells and were able to showed that ZIKV diminished tumor growth, which was also
found in mouse models and other organoid studies [93,112]. Another paper looked at
saxitoxin (STX), which is produced by the cyanobacteria, Raphidiopsis raciborskii, and is
common in Brazil [78]. This neurotoxin was shown to be harmful and doubled cell death
in ZIKV infected brain organoids [78]. These findings have spurred further research into
cyanobacterial and ZIKV infection [113,114]. Janssens et al. were able to show that ZIKV
changes DNA methylation at particular loci in COs, which was also found in infants born
with microcephaly [115-117]. Sacramento et al. used human brain organoids to reveal that
sofosbuvir inhibits ZIKV replication [118]. These findings were also found in non-human
primates and mice [119,120]. Lastly, Li et al. studied cortical organoid folding and growth
in ZIKV and DENYV infected organoids [74]. ZIKV infected organoids had major defects,
while DENV infected organoids did not [74]. These findings support current knowledge
that ZIKA causes fetal brain malformations in humans while dengue does not.

In addition to ZIKV, COs were used to study other viruses. Pellegrini et al. developed
human brain organoids to show that SARS-CoV-2 can injure the choroid plexus [75].
Later reports in mice and human postmortem tissues validated their findings [64]. LACV,
according to Winkler et al., diminished CO cell viability and that committed neurons
were much more susceptible to LACV apoptosis than neural progenitors, which replicate
data from humans, primates and rodents [83,121]. Using COs, Schultz et al. found that
organoids derived from patients with Parkinson’s disease had increased pathology from
Chikungunya virus (CHIKV) than organoids derived from normal patients [62]. This
is intriguing since recent reports indicate a link between SARS CoV-2 and exacerbated
Parkinson’s disease [122-124]. Qiao et al. used COs to study microglial activation by HSV-1
and was able to show that inflammatory factors were induced via infection which has also
been shown in mice [125,126]. Wang et al. successfully infected COs with SARS-CoV-2
and were able to show that neurons that were co-cultured with astrocytes were infected
at higher rates [92]. Brown et al. utilized COs to study HCMV and were able to see
virus-induced alterations in morphology and saw hindered development of the organoids
as a result of infection [127]. This mirrored changes that can occur during HCMV infection
during pregnancy in humans [128]. Mathieu et al. studied MeV in COs and showed that
MeV F mutations were linked with greater neuropathogenicity [76].

Other unguided approaches include the protocols by dos Reis et al. and Bodnar et al.
Dos Reis et al. generated human brain organoids with microglia (MG-hBORGs) [94].
These researchers used neural progenitor cells (NPCs) to generate their organoids and co-
cultured them with both primary and immortalized HIV-1 infected microglia [94]. This was
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important, as they tested a theorized mechanism for HIV to cause neuropathogenesis [129].
Bodnar et al. modified the protocol by Lancaster et al. and is notable because the researchers
were able to control the ratio of microglia in the microglia-containing CO (MCO) because they
kept the embryoid bodies in the same six well plates they used to generate the 3D spheres [79].

5. Guided Organoid Models

The majority of brain organoid generation methods found in the literature are guided
methodologies. The main advantage of a guided methodology is control over region
specificity through the use of inhibitors and patterning molecules [21]. There are guided
methods for creating midbrain, dorsal and ventral cerebral, neocortex, forebrain, telen-
cephalic, midbrain, and hypothalamus organoids (Table 1). Additionally, there are protocols
for a fused dorsal-ventral CO and another for a fused human cortical (hCO) and human
medial ganglionic eminence (MGE) organoid (hCO-hMGEO) [32,101].

Viral studies performed on these organoids were with SARS-CoV-2, ZIKV, and
Japanese Encephalitis Virus (JEV) (Table 2). SARS-CoV-2 was modeled using dorsal fore-
brain organoids infected with pseudovirus [77]. The researchers were able to show that the
SARS-CoV-2 pseudovirus was significantly co-localized with ACE2 compared to the con-
trol, which suggests that the virus was infecting the organoids via that receptor [77]. These
findings were later validated in human postmortem tissues and mice [129]. Wang et al.
cocultured pericyte-like cells (PLCs) with cortical organoids to create PLC-containing
organoids (PCCOs) and were able to infect them with SARS-CoV-2. They were able to show
that PCCOs are an acceptable model for studying SARS-CoV-2 in the human CNS [97].
McMahon et al. illustrated that SARS-CoV-2 targets glial and choroid plexus cells in cortical
organoids which has also been shown for human and rodent models [64,130]. Another
protocol looked at the effects of JEV on telencephalon organoids and demonstrated that
JEV causes cell death in organoids but also that organoids can develop immunity to JEV,
and in more mature organoids, there was an interferon response to JEV infection [89].
These findings validated rodent research, and were important since the mechanisms be-
hind human neuroinflammation are not understood and limited data exist due to lack of
human specimens [131].

Seven papers used guided brain organoids to model ZIKV infection. Three of these
papers showed that CNS organoids are appropriate models for ZIKV microcephaly as they
reflected pathology in humans and mice [50,66,96]. Watanabe et al. showed that ZIKV does
infect NPCs and stunts organoid development [96]. Qian et al. used a patented spinning
bioreactor (Spin(2) to generate consistent forebrain organoids that were infected with ZIKV,
which caused reduced organoid growth and size [50]. Xu et al. showed that ZIKV infected
brain organoids modeled microcephaly since the virus caused the ventricular zone (VZ)
layer to thin [66]. More mature organoids in this study experienced VZ and sub-ventricular
zone disorganization, damage to the lumen and catastrophic cell death when infected with
ZIKV [66]. The researchers were also able to prevent ZIKV damage in organoids through
treatment with enoxactin [66]. Xu et al. used guided organoids to study ZIKV infection
by co-culturing neural progenitor cells and primitive macrophage progenitors to create
COs with precise concentrations of microglia [33]. This was useful in studying ZIKV in
the brain because they were able to show that microglia prune synapses and phagocytize
and respond to viral infection [33]. Xu et al. was able to use forebrain organoids to
study how ZIKV is affected by small molecule inhibitors through screening [132]. Li et al.
studied the how the niclosamide compound JMX0207 inhibits ZIKV infection in “mini-brain
organoids” [133]. Another paper by the same research group also showed that methylene
blue suppresses ZIKV infection in brain organoids [134].

6. Organoid Co-Culture to Address Model Limitations

CNS organoids lack sufficient microglia, monocytes, and vasculature which can make
disease modeling difficult [29]. A recent advancement in brain organoid models was
the co-culture with other cell types [29]. Brain organoids and cells have strict individual
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culture requirements; however, as long as the necessary components for each cell type are
present, co-culture is a viable option for adding cell types to organoids to better replicate a
whole system.

Neuroinflammation is caused by activated microglia and invasion of CD4* and CD8*
T-cells [135]. This occurs in response to injuries, infections, and genetic conditions. Brain
organoids do not typically contain microglia sufficient for research, although a homemade
microglia-containing cerebral model has been published [33]. Methodologies for microglia
co-culture are used to model neuroinflammation on the brain. Methods include homemade
organoid generation based on the Lancaster method and commercial kits [136,137]. These
models show that microglia morphologies change in response to organoid injury, and they
can migrate from the culture media into the organoid [33,136,137]. CD4" T cells have been
co-cultured with brain organoids to study the effects of necrotizing enterocolitis in the
brain [138]. Using this model, Zhou et al. showed that gut derived CD4* lymphocytes
produced brain injury [138].

A major limitation for brain organoids is lack of vasculature, which results in cen-
tral hypoxia and malnutrition when cultured over long periods of time, giving rise to a
“necrotic core” [58]. Pham et al. devised a method to promote vascularization of COs by
embedding organoids in Matrigel containing endothelial cells [139]. Song et al. achieved
vascularization via tri-culture of neural progenitor cells, mesenchymal stem cells and en-
dothelial cells [140]. With this method, organoids expressed several markers of the blood
brain barrier (BBB) including ZO-1, GLUT1, BCRP and PGP [140]. Recent developments in
co-differentiation and fusion have led to longer survival of organoids and better neural
differentiation [71,141].

Viral studies utilizing co-culture methods with brain organoids are beginning to be
reported. Some researchers utilized co-culture of specific cell types with their organoids.
For unguided brain organoids, Abud et al. co-cultured the organoids with microglia-like
cells (iMGLs) [142]. dos Reis et al. cultured their brain organoids with HIV-1 infected
microglia [94]. For the guided organoid protocols, Xu et al. co-cultured COs with human
cortical tissue, while Bershteyn et al. cultured NPCs with PMPs [33,95].

7. Conclusions

Clearly, there are many options for researching viral pathogenesis in brain organoids
(Table 3). As Jacob et al. wrote: “Brain organoids offer a simple, accessible, and tractable hu-
man cell platform to investigate cellular susceptibility, disease mechanisms, and treatment
strategies [55]”. Because brain organoids generated using unguided methods produce cell
types of all lineages, they are best used for experimentation aimed at generating hypotheses
or preliminary data. Unguided protocols are typically less expensive than guided protocols.
Organoids generated via guided methods produce specific cell types reflecting specific
regions of the brain and are useful for experimentation aimed at testing hypotheses. Most
viral pathogenesis studies used the Lancaster method or a modification of the Lancaster
method. Regardless of methodology used to generate brain organoids, further studies
using human patients are necessary to validate findings.

There is a wide range of costs for generating any type of brain organoid. Media and
supplements have limited shelf life while growth factors and patterning factors can cost
thousands of dollars per unit, which can make research using these models cost prohibitive
especially for generating preliminary data. Kits available from Stemcell Technologies
provide a less expensive and consistent platform for guided and unguided organoid
generation that can make organoid methodology accessible to more researchers.

Although there are limitations to using brain organoids, many can be addressed
through the use of specific patterning factors and co-cultures such that animal models
can be eliminated or greatly reduced. With ongoing advancements in cell culture and
bioengineering, limitations for brain organoid models or shrinking and data production
are resulting in better understanding and treatment of viral infections of the CNS.
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Table 3. Comparison of organoid models for their use in experimentation.

Preliminary Data, Hypothesis

Preliminary Data, Hypothesis

Purpose Generating, Hypothesis Testing Generating, Hypothesis Testing Hypothesis Testing Hypothesis Testing Hypothesis Testing
Anatomy Forebrain Cerebrum Region Specific L€ midbrain, Forebrain with BBB or vasculature Fused organoids
telencephalic etc.
Methodology Guided Unguided Guided Guided Guided/ Unguided
STEMdiff™ Dorsal or Ventral :
Reagents Forebrain STEMdiff™ Cerebral Organoid Kit Homemade Homemade Homemade but may use }<1ts to
Organoid Differentiation Kits generate forebrain portions
Cost $ $$ $3$ $3$$
Time ++ ++ ++ + +++
Dorsal kit generates dorsal pallium, Al cell tvpes are present. Whole
R . ventral kit generates ventral sub yP P o . o . Useful for understanding vasculature ~ Useful for modeling interactions
easoning L N . cerebrum represented; inexpensive, Focuses on specific neuron/glia type. .. 0. i X .
pallium; inexpensive, technical . . in viral pathogenesis in CNS. between specific brain regions.
support available technical support available
Modifications Add choroid plexus; co-culture with Patterning factors can be added to Patterning factors can be added to Patterning factors can be added
microglia promote cell types of interest promote cell types of interest to promote cell types of interest
Difficulty + + +++ ++++ +++++

+ Relative added protocol difficultly or time. More symbols means the protocol is either more difficult or takes more time. $ Relative cost of the protocol. More symbols indicates the protocol is more expensive
(See Table 2 for estimated costs).
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There are numerous guided and unguided methods for generating organoids repre-
senting multiple regions of the brain, with several types of modifications for fine-tuning
the model to a researcher’s specifications. Organoid models of the CNS can serve as a
platform for characterization and mechanistic studies that can reduce or eliminate the use
of animals, especially for viruses that only cause disease in the human CNS. Organoid
generation can be costly and time consuming, and choosing the correct methodology is
paramount for ensuring experimental aims are met. However, regardless of methodology
used, viral studies using brain organoids have advanced our understanding of human
neuropathogenesis.
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