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Abstract: Human norovirus (HuNoV) is a food-borne pathogen that causes acute gastroenteritis in
people of all ages worldwide. However, no approved vaccines and antiviral drugs are available at
present. Therefore, the development of accurate and rapid detection technologies is important in
controlling the outbreak of HuNoVs. This paper reviewed the research progress on HuNoV detection,
including immunological methods, molecular detection and biosensor technology. Immunological
methods and molecular detection technologies are still widely used for HuNoV detection. Fur-
thermore, biosensors will become an emerging developmental direction for the rapid detection of
HuNoVs because of their high sensitivity, low cost, easy operation and suitability for onsite detection.

Keywords: human noroviruses; food-borne pathogens; detection technology; immunological meth-
ods; molecular detection; biosensor

1. Introduction

Norovirus (NoV) is a single-stranded sense nonenveloped RNA virus, which belongs
to the Caliciviridae family. It is classified into 10 genogroups (GI-GX) and further divided
into 48 confirmed capsid genotypes on the basis of the amino acid sequences of the major
capsid protein (VP1). Amongst the genogroups, GI, GII, GIV, GVIII and GX can infect
humans, and they are commonly referred to as human noroviruses (HuNoVs) [1]. HuNoVs
are recognised as the main food-borne pathogen causing acute gastroenteritis in humans
worldwide. The proportion of food-borne infections caused by HuNoV in the world is
18% each year [2]. Statistics show that the global annual direct economic loss caused by
HuNoVs is USD 4.2 billion, and the socioeconomic loss is USD 60.3 billion (of which,
infants and children under 5 years old cost USD 39.8 billion) [3]. HuNoVs have become a
leading factor in nonbacterial gastroenteritis [4–6].

The genome of HuNoV is divided into three open reading frames (ORFs) (Figure 1) [7].
ORF1 encodes six nonstructural proteins [8,9]. ORF2 and ORF3 encode the major capsid
protein (VP1) and minor capsid protein (VP2), respectively. The VP1 is composed of a
conserved S domain and a P domain [10]. The P domain is further divided into the P1
subdomain and a highly variable P2 subdomain. It has multiple neutralising epitopes, and
it can bind to the known viral ligand, namely, histo-blood group antigens (HBGAs) [11].
The VP2 is located inside the capsid [12]. Therefore, VP1 or partial sequences of ORF1 are
usually selected as the target sites for HuNoV detection.

HuNoV is highly infectious. It is usually transmitted through faecal–oral routes, aerosols,
contaminated water and food, or direct human-to-human contact [13,14]. Various fresh foods
such as berries, leafy vegetables and shellfish are carriers of HuNoVs [15–17]. However,
HuNoVs detection in food and environmental samples are difficult due to the complicated
matrix of backgrounds. Moreover, the high stability of virions against normal disinfection
methods in these samples cause numerous food-borne HuNoV infections [18–21].
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Figure 1. Structural and nonstructural proteins of Human norovirus. 
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[15–17]. However, HuNoVs detection in food and environmental samples are difficult due 
to the complicated matrix of backgrounds. Moreover, the high stability of virions against 
normal disinfection methods in these samples cause numerous food-borne HuNoV 
infections [18–21]. 

Another obstacle to developing efficient detection methods is the lack of mature 
HuNoV culture modes in vitro and in small animal models. Jones et al. reported the 
successful replication of HuNoV in human B cells. However, only HuNoV GII.4 can be 
replicated in this system [22,23]. Ettayebi et al. successfully developed a culture system 
using human intestinal enteroids. However, the HuNoV titres in this culture system are 
limited [24,25]. Animal models have also been explored. Dycke et al. reported HuNoV 
replication in zebrafish larvae. However, the highest virus titre has reached only 107 
PFU/mL [26]. Therefore, the inability to collect sufficient HuNoV makes studying various 
detection methods and developing antiviral strategies difficult. 

At present, the control for HuNoV outbreaks primarily depends on the detection 
technology for achieving early detection, control and prevention. The most important 
goals for the development of HuNoV detection methods are high safety, good sensitivity, 
strong specificity, quickness and simplicity. With continuous research on the biological 
mechanism of HuNoVs, progress has been made in the detection of HuNoVs. According 
to different detection principles, HuNoV detection technologies can be divided into 
morphological methods based on HuNoV particles, immunological methods based on 
antigen–antibody reactions, molecular detection methods based on nucleic acids and 
biosensor methods which have developed in recent years. This article summarises the 
development of major detection technologies for HuNoVs. 

2. Detection Techniques 
2.1. Morphological Methods 

In the early days (the 1970s–1980s), the clinical diagnosis methods for HuNoVs 
primarily included electron microscopy (EM) and immunoelectron microscopy (IEM) 
[27,28]. The limit of detection (LOD) for EM is high (>106 virus particles/g sample). Thus, 
collecting samples (faeces or vomit) was necessary for testing during the acute phase of 
the disease [29]. Considering that the morphological characteristics of HuNoVs were not 
evident under the electron microscope, observation of viral morphological characteristics 
had strong subjectivity. Therefore, the detection rates and accuracy were low. IEM used 
the convalescent patients’ serum as antibodies to specifically capture HuNoV particles 
before identification. This method significantly improved the accuracy and sensitivity 
compared with EM. Although IEM was a sensitive and specific serological technology, its 
high technical requirements, the need to match the serum and the expensive equipment 
hindered its application in clinical testing. 
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Another obstacle to developing efficient detection methods is the lack of mature
HuNoV culture modes in vitro and in small animal models. Jones et al. reported the
successful replication of HuNoV in human B cells. However, only HuNoV GII.4 can be
replicated in this system [22,23]. Ettayebi et al. successfully developed a culture system
using human intestinal enteroids. However, the HuNoV titres in this culture system
are limited [24,25]. Animal models have also been explored. Dycke et al. reported
HuNoV replication in zebrafish larvae. However, the highest virus titre has reached only
107 PFU/mL [26]. Therefore, the inability to collect sufficient HuNoV makes studying
various detection methods and developing antiviral strategies difficult.

At present, the control for HuNoV outbreaks primarily depends on the detection
technology for achieving early detection, control and prevention. The most important goals
for the development of HuNoV detection methods are high safety, good sensitivity, strong
specificity, quickness and simplicity. With continuous research on the biological mechanism
of HuNoVs, progress has been made in the detection of HuNoVs. According to different
detection principles, HuNoV detection technologies can be divided into morphological
methods based on HuNoV particles, immunological methods based on antigen–antibody
reactions, molecular detection methods based on nucleic acids and biosensor methods
which have developed in recent years. This article summarises the development of major
detection technologies for HuNoVs.

2. Detection Techniques
2.1. Morphological Methods

In the early days (the 1970s–1980s), the clinical diagnosis methods for HuNoVs pri-
marily included electron microscopy (EM) and immunoelectron microscopy (IEM) [27,28].
The limit of detection (LOD) for EM is high (>106 virus particles/g sample). Thus, col-
lecting samples (faeces or vomit) was necessary for testing during the acute phase of the
disease [29]. Considering that the morphological characteristics of HuNoVs were not
evident under the electron microscope, observation of viral morphological characteristics
had strong subjectivity. Therefore, the detection rates and accuracy were low. IEM used
the convalescent patients’ serum as antibodies to specifically capture HuNoV particles
before identification. This method significantly improved the accuracy and sensitivity
compared with EM. Although IEM was a sensitive and specific serological technology, its
high technical requirements, the need to match the serum and the expensive equipment
hindered its application in clinical testing.

2.2. Immunological Methods

Early immunological methods were based on the specific reaction between patients’
serum and HuNoV particles, for example, immune-adhesive haemagglutination assay
(IAHA), radioimmunoassay (RIA), biotin-avidin immunoassay (BAI) and enzyme im-
munoassay (EIA) [30–33]. The IAHA can be used to assess the level of Norwalk virus
antibodies in serum, but it cannot detect viral particles in clinical samples. The RIA used
radioisotopes (I125) to label antibodies (anti-NoV IgG). However, the shelf life of labelled
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antibodies was short (less than 2 weeks), and the detection was time-consuming (approxi-
mately 6 days). It also had disadvantages such as high cost and a certain degree of risk.
Compared with RIA, the shelf lives of labelled antibodies for BAI and EIA were longer,
which was 3 months (−20 ◦C) and 6 months (4 ◦C), respectively. In brief, these methods
primarily relied on a limited number of serum and clinical stool samples from infected
volunteers. Moreover, the major shortcomings, such as long processing time, difficult
matching of serum and limited detection sensitivity for clinical samples, hindered the
development of immunological detection technology.

The Norwalk virus genome was successfully cloned until 1992. The VP1 was further
expressed by the baculovirus system. The VP1 could self-assemble to form virus-like parti-
cles, which had the same immunogenicity as NoV. It provided an excellent antigen and
antibody production platform and served as an alternative model to study the interaction
between receptors from potential host cells and NoVs [34,35]. Since then, monoclonal
antibodies (MAbs) and polyclonal antibodies (PAbs) against VLPs have been produced
and widely used in the immunological detection of HuNoVs. Studies showed that hyper-
immune serum obtained from VLP-immunised animals (mice, guinea pigs and rabbits)
contributed high specificity and sensitivity to RIA, EIA and enzyme-linked immunosor-
bent assay (ELISA) detection methods compared with human serum samples [34,36]. In
1995, Herrmann et al. prepared MAbs against the NoV prototype 8FIIa strain. It was
applied in EIA to detect NoV in stool samples [37]. The LOD was 1 ng/mL. The specificity
was strong, and cross reaction was not detected. In 2007, Okame et al. used anti-GII.3
VLP PAbs as capture antibodies and three anti-GII.4 VLP MAbs as detection antibodies
to conduct a sandwich ELISA. A total of eight genotypes (GI and GII) of HuNoVs from
clinical samples were successfully detected [38]. In 2008, Takanashi et al. developed an
immunochromatographic (ICG) test strip for the rapid detection of GI and GII HuNoVs
in clinical stool samples [39]. Xu et al. developed a colloidal gold ICG assay for the de-
tection of HuNoVs [40]. This system used the recombinant S protein of HuNoVs as the
immunogen to prepare MAbs (capture antibodies and labelled antibodies) for the rapid
(15 min) detection of GI and GII in clinical samples. Compared with RT-qPCR, the detection
rate, specificity and consistency were 84.2%, 100.0% and 87.7%, respectively. A total of 10
genotypes of HuNoVs could be detected simultaneously. In addition, alkaline lysis was
performed on HuNoV particles during pretreatment. This process could obtain several
viral particles, and it is safe for people. Moreover, this method was easy to operate without
the extraction of viral nucleic acids. Therefore, it is suitable for use as a point-of-care test or
for preliminary screening of HuNoVs.

Commercial kits for the detection of HuNoVs based on immunological methods were
developed. EIA-based kits mainly include IDEIA Norovirus (Oxoid Ltd., Hampshire, United
Kingdom; two generations available) and RIDASCREEN Norovirus (R-Biopharm, Darm-
stadt, Germany; three generations available). ICG-based kits mainly include NOROTOP®

(ALL.DIAG SA, Strasbourg, France), ImmunoCardSTAT!® Norovirus (Meridian Bioscience
Europe, Nice, France), Ridaquick Norovirus (R-Biopharm, Darmstadt, Germany), and SD
Bioline Norovirus (Standard Diagnostics, Inc., Kyonggi-do, Korea). Both commercial EIA- and
ICG-based kits were evaluated for clinical sample testing [41–47]. The ICG-based kits have a
shorter detection time (about 15–30 min) compared to EIA-based kits. Given the large anti-
genic differences and infectious ability amongst different genotypes of HuNoVs, the viral
loads in foods and environmental samples were low. The viral loads in clinical samples
were relatively high, but large differences were observed in different genotypes. Therefore,
immunological methods such as ELISA and immune colloidal gold cannot satisfy the
strict testing requirements because of the low sensitivity [48,49]. However, immunological
methods have easy and fast operation and simple equipment requirements. As important
techniques, immunological methods should be further improved. Immunological methods
can be used for early screening of HuNoVs infection and for efficient diagnosis of disease
in combination with molecular detection methods.
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2.3. Molecular Detection Methods

The HuNoV molecular detection technology was primarily used to detect the con-
served fragments of the NoV genome. The junction region of ORF1-ORF2 was mostly
conserved in the NoV genome, which was widely used as a target for molecular detec-
tion [50,51]. To date, detection technologies based on HuNoV nucleic acid were primarily
divided into two types according to different nucleic acid amplification methods. One is
based on isothermal amplification, including reverse transcription-loop-mediated isother-
mal amplification (RT-LAMP), nuclear acid sequence-based amplification (NASBA) and
recombinase polymerase amplification (RPA); the other was based on thermal cycling
and amplification, including reverse transcription polymerase chain reaction(RT-PCR),
quantitative real-time polymerase chain reaction (RT-qPCR), in situ capture-RT-qPCR
(ISC-RT-qPCR) and reverse transcription digital polymerase chain reaction (RT-dPCR).

2.3.1. Isothermal Amplification

The LAMP could be used to detect different subtypes of HuNoVs [52]. The LOD was
approximately 103 genomic copies/reaction tube. No cross reaction was observed amongst
the subtypes. Based on this method, hydroxy naphthol blue dye was introduced into
RT-LAMP to evaluate the results directly [53]. The sensitivity reached 103 genomic copies
per reaction tube, and the coincidence rate was 94.83% compared with RT-PCR detection.
Then, a one-step RT-LAMP was developed. The sensitivity was 10 times higher than that of
traditional RT-qPCR [54]. The RT-LAMP had high sensitivity, low cost and easy operation,
which was suitable for onsite rapid detection. Moreover, multiplex RT-LAMP can promote
this technology.

NASBA technology could be applied to detect NoVs. Greene et al. first reported
that the LOD was 104 RT-PCR-detectable units of NoVs RNA in a stool filtrate, and the
detection time was 4–6 h [55]. Moore et al. detected GI and GII HuNoVs in clinical stool
samples [56]. Compared with RT-PCR, the sensitivity and specificity of NASBA were 100%
and 80%, respectively. Lamhoujeb et al. reported a real-time molecular beacon NASBA
to detect GII HuNoVs in stool samples, which was 88.5% consistent with the RT-qPCR
results [57]. NASBA does not require high-quality templates, and this technology has low
mismatch rates, easy operation and high specificity and sensitivity. It is suitable for the
rapid preliminary determination of the cause of infection, which can provide early warning
for the early control of HuNoV infection.

RT-RPA is a new type of rapid real-time detection technology for HuNoV. The de-
tection can be completed within 30 min at 40 ◦C, and the LOD reached 3.40 ± 0.20 log
genomic copies. Compared with the routine RT-qPCR assay, RT-RPA is not sensitive to
inhibitors, and it can detect complex samples [58]. Moreover, given its short processing
time, determining the cause of infection to control the spread of infection became easy.

2.3.2. Thermal Cycling Amplification

RT-PCR is the most widely used molecular detection technique because of its strong
specificity and high sensitivity. The first RT-PCR detection was developed for the relatively
conserved RNA polymerase gene in ORF1 [59]. However, primers designed for RT-PCR
could not meet the genetic diversity of HuNoVs. In addition, RT-PCR has been applied
in the ORF1-ORF2 junction region for the HuNoV genome (the most conserved region).
However, RT-PCR requires high-quality RNA templates, and it is a time-consuming process
and has high sensitivity to RNA inhibitors. Therefore, RT-qPCR was explored. Given
its high sensitivity and specificity, RT-qPCR is currently known as the standard for the
detection of HuNoVs in food and environmental samples. Kageyama et al. reported the
first set of primer probes for the detection of GI and GII HuNoVs and established relative
RT-qPCR [60]. Moreover, Jothikumar et al. established one-step TaqMan probe RT-qPCR
to detect GI and GII HuNoVs in shellfish and clinical samples [61]. The method took
90 min, and the sensitivity increased by 10–100 times compared with the traditional one-
step RT-PCR. Liu et al. updated the primers and probes and designed dual RT-qPCR to
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detect GI and GII HuNoVs, simultaneously [62]. Compared with the previously reported
RT-qPCR, dual RT-qPCR had higher specificity and sensitivity with a processing time of
40 min. This method not only ensured the reliability of the results but also improved
efficiency during detection for a large quantity of samples.

Virions have potential infectivity. However, RT-PCR and RT-qPCR, based on the de-
tection of viral RNA, cannot distinguish infectious virions, inactive virions, or free RNA.
It may result in misjudgment of the infection. In addressing the problem, Gilpatrick et al.
used antibodies (PAbs for VLPs) and magnetic beads to capture viral particles from stool
samples [63]. This method could remove inhibitors effectively and improve the accuracy of
the detection. However, the HuNoV genotypes that can be detected by this method were
limited. Afterwards, detection methods based on magnetic bead HBGAs and magnetic bead
PGM were successively reported to detect HuNoVs particles instead of free RNA [64–66].
Wang et al. developed ISC-RT-qPCR using HBGAs to capture viral particles [67]. This
method could evaluate the inactivation effect of HuNoVs by disinfection methods such as
heating, chlorine and UV [68]. It was also used to detect potentially infectious HuNoVs in
environmental water samples [69], clinical samples and commercial oyster samples [70].
The results showed that compared with traditional RT-qPCR, this method had higher
sensitivity, particularly for potentially infectious HuNoVs. ISC-RT-qPCR simplified the
steps for virion concentration and viral RNA extraction and eliminated the effects of PCR
inhibitors and free RNA of HuNoVs. Therefore, ISC-RT-qPCR had great advantages in
food, environmental and clinical sample detection.

New PCR-based detection techniques have been reported in recent years. Batule et al.
developed a HRPzyme-PCR colorimetric method for HuNoV detection [71]. This method
connected HRPzyme onto PCR primers. When a substrate was added into a PCR product,
the change in colour caused by the HRPzyme reaction was recorded by a microplate reader.
For the detection of GI and GII HuNoV in oyster samples, the recovery rates ranged
from 92% to 105% by this method. Moreover, RT-dPCR was developed and widely used,
which was suitable for samples with complex compositions and low viral loads. In this
method, microfluidization or microdroplets are adopted to disperse the diluted nucleic
acid solution into hundreds or even millions of microreactors or droplets on a chip. Then,
the number of nucleic acid templates in each microreactor or droplet is less than or equal
to one. After PCR, a microreactor or droplet containing the nucleic acid template will have
a fluorescence signal. On the contrary, microreactor or droplet without the template will
have no signal. Finally, the concentration or copy number of the target can be calculated
according to the Poisson distribution principle and the proportion of positive droplets.
dPCR has low detection limits, high accuracy and is not affected by the complex matrix
of the samples. However, RT-dPCR requires expensive instrument, which hindered its
widespread application [72–75].

Commercial kits for the detection of HuNoVs based on RT-qPCR were developed [76,77].
At present, the US Food and Drug Administration (FDA) has permitted three commer-
cial kits that can be used for GI/GII HuNoV detection, including FilmArray GI panel
(BioFire Diagnostics, Salt Lake City, UT, USA), Luminex xTag GI pathogen panel (GPP;
Luminex Corporation, Toronto, Canada) and Nanosphere Verigene enteric pathogen test
(Nanosphere, Inc., Northbrook, IL, USA) [78]. Chhabra et al. evaluated the performance
of three commercial kits including Biofire’s Gastrointestinal Panel (FilmArray, BioFire
Diagnostics, Salt Lake City, UT, USA), Luminex xTAG® Gastrointestinal Pathogen Panel
(GPP), and the TaqMan Array Card (TAC) for the detection of HuNoVs (GI/GII) in stool
samples [79]. The sensitivities of FilmArray, GPP, and TAC system for norovirus GI and
GII detection were 87.8%, 78.0%, and 87.8%, respectively. Zhuo et al. evaluated the Lu-
minex xTag GPP. The results indicated that this kit was not sensitive to GII.2 and GII.3
HuNoVs [80]. Therefore, commercial kits were insufficient for the detection of multiple
HuNoV genotypes. Furthermore, applicable kits may need to be updated on the basis of
the HuNoVs epidemic virus survey.
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2.4. Biosensor

In recent years, biosensors have shown great potential for application in pathogen
detection because of their timeliness, stability, low cost and the possibility of integrating and
miniaturising them into point-of-care testing devices [81–85]. A biosensor is usually composed
of a biometric recognition element, transducer and signal processing unit. The interaction
between the analyte and biometric recognition element is converted into a quantifiable signal
output by the transducer [86]. The biometric recognition element is the key to determining
the specificity of the biosensor. The selection of the biometric recognition element depends on
the characteristics of the analyte. It should have high affinity and stability for the analyte. It
includes enzymes (such as HRP), antibodies, ligands, nucleic acids and phages (for pathogenic
bacteria detection), molecularly imprinted polymers, affinity and cells. Amongst them,
antibodies are most commonly used for virus detection [87]. The current biosensors are
primarily divided into electrochemical sensors, optical sensors and piezoelectric sensors
according to the signal transduction mode [88]. Biosensors have become a new focus in the
field of HuNoV detection (Table 1). Considerable research focused on the development of
fast, sensitive, portable and easy-to-operate biosensors for the detection of HuNoVs in food,
environmental or clinical samples.

Table 1. Overview of biosensor assays for the detection of noroviruses.

Biosensor Bioreceptor Signal 1 Target LOD
(with Linear Range) 2 Reference

Electrochemistry

Concanavalin A CV NoV GII.4 subtype
35 genomic copies/mL

(102–106 genomic
copies/mL)

[89]

MNV-specific aptamer SWV MHV-1 2 (0–1.0 × 104 PFU/mL) [90]

Noro-1 affinity peptide QCM/CV/EIS rP2/
NoV GII.4 subtype

rP2 (99.8 nM)
GII.4 (7.8 genomic

copies/mL)
[91]

81-bases-long aptamer DPV GII VLPs 100 pM
(100 pM–3.5 nM) [92]

NoroBP-nonFoul
(FlexL)2 peptide EIS HuNoV GII.4

subtype

1.7 genomic
copies/mL

(0–105 genomic
copies/mL)

[93]

Optics

FCV antibody SPR FCV 3 ≈104 TCID50 FCV/mL [94]

Anti-HuNoV GII.4
monoclonal antibody

(12A11)
SPR GII.4 VLPs 0.01 ng/mL [95]

Anti-norovirus
antibody (NS14) LSPR NoV GII

VLPs/NoV

12.1 × 10−15 g/mL
(10−14–10−9 genomic

copies/mL)
95.0 genomic
copies/mL

(102–105 genomic
copies/mL)

[96]

Anti-norovirus GII.4
antibody (for capture)
Anti-norovirus GII.4
capsid protein VP1

antibody (for
detection)

The assay results
could be

visualised by the
naked eye

NoV GII.4 subtype

9.5 × 104 genomic
copies/mL

(1.58 × 105–7.9 × 107

genomic copies/mL)

[97]
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Table 1. Cont.

Biosensor Bioreceptor Signal 1 Target LOD
(with Linear Range) 2 Reference

Optics

Molecular beacon
probes (contained 20
bp complementary to

NV genogroup II
RNA)

UV–vis
absorption and

fluorescence
emission

measurements

NoV GII RNA (in
human serum)

NoV GII RNA (in
buffer)

In human serum: 8.2
genomic copies/mL

In buffer: 9.3 genomic
copies/mL

[98]

Anti-norovirus capsid
protein VP1 polyclonal

antibody

Benchtop
fluorescence
microscope

NoV GII (diluted
in deionised water)
NoV GII (diluted

in reclaimed
wastewater)

In deionised water: 1
genomic copies/µL

In reclaimed
wastewater: 10

genomic copies/µL

[99]

Anti-norovirus
antibody (NS14)

Colorimetric
detection

(OD450 nm)
HuNoV GII.4 VLP

92.7 pg/mL
(100 pg/mL to 10

µg/mL)
[100]

Monoclonal capture
antibody (C01875M)

Monoclonal detection
antibody (C01874M)

3D Total internal
reflection-
scattering
defocused

imaging with
wavelength-
dependent

transmission
grating

NoV GI capsid
protein VP1

820 yM
(820 yM–92.45 pM) [101]

1 CV, cyclic voltammetry; SWV, square wave voltammetry; QCM, quartz crystal microbalance; EIS, electrochemical impedance spectroscopy;
DPV, differential pulse voltammetry; SPR, surface plasmon resonance; LSPR, localised SPR; UV, ultraviolet. 2 ng (nanogram, 10−9 g), µg
(microgram, 10−6 g), pg (picogram, 10−12 g), yM (yoctomolar,10−24 M). 3 a surrogate of norovirus.

2.4.1. Electrochemical Biosensor

The electrochemical biosensor is a widely used biosensor [102]. Antibodies are commonly
used as the biological recognition element in electrochemical biosensor. However, mAbs have
high specificity and cost, whereas pAbs are relatively cheap, but they have poor specificity.
Therefore, aptamers, peptides and other proteins are considered as biological recognition
elements based on factors such as good stability and specificity, easy production, low cost and
easy modification. The fixation of biometric components is also important. The stability and
exposure of binding sites of biometric components are considered.

Wang et al. developed an impedance immunosensor on the basis of interdigital array
microelectrodes to detect avian influenza virus H5N1 [103]. Protein A was used to fix the
Fc of the antibody on the electrode and to expose the Fab. It effectively improved virus
capture efficiency. Hong et al. developed an electrochemical biosensor for HuNoV detec-
tion (it takes approximately 1 h) using concanavalin-A (ConA) as a biometric recognition
element immobilised on a gold nanoelectrode (Figure 2) [89]. ConA had good sensitivity
and selectivity, and the cost was only 2% of the cost for antibodies. This biosensor was
used to detect HuNoVs in lettuce with a LOD of 60 genomic copies/mL. Wang et al. devel-
oped a miniature electrochemical biosensor on the basis of aptamer modification to detect
HuNoV [90]. Murine norovirus (MNV) was used as an alternative model of HuNoVs. A
thiolated AG3 aptamer was modified with FAM (specific binding to MNV) and fixed on a
gold electrode to capture MNV. Then, cyclic voltammetry (CV) was used to characterise
the fixation of the aptamer, and square wave voltammetry was used to characterise the
MNV capture. This method was simple, sensitive and fast. Hwang et al. reported a highly
sensitive and specific electrochemical biosensor for HuNoV detection based on sulfhydryl-
modified affinity peptides immobilised on a gold electrode as a biorecognition element
(Figure 3) [91]. The short-chain affinity peptides against the P2 domain of the recombinant
VP1 (rP2) were screened as biorecognition elements by a phage display technology. Then,
quartz crystal microbalance (QCM), CV and electrochemical impedance spectroscopy (EIS)
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were used for the detection of rP2 and HuNoVs GII.4. The LODs reached 99.8 nM and
7.8 genomic copies/mL, respectively. Chand and Neethirajan reported a microfluidic chip
integrating screen-printed carbon electrodes and polydimethylsiloxane for the electrochem-
ical detection of HuNoVs GII.4 VLPs (Figure 4) [92]. The chip was filled with silica magnetic
beads to filter clinical samples and concentrate HuNoVs. The HuNoV-specific aptamers
labelled with ferrocene (as redox probes) and biotin were immobilised on the carbon elec-
trodes modified by graphene–gold nanoparticles and thiolated streptavidin. The HuNoVs
were captured by the specific aptamer, which resulted in changes in the electrochemical
signal. Then, differential pulse voltammetry analysis was used to determine and analyse
the results. Using this method, the LOD for VLPs reached 100 pM. Baek et al. developed
an impedance biosensor on the basis of NoroBP-nonFoul (Flexi)2 peptide-modified gold
screen-printed electrode (SPE) for HuNoV GII.4 detection. In oyster samples, the LOD
reached 1.7 genomic copies/mL with high sensitivity and good reproducibility [93].
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Figure 4. Schematic diagram of electrode functionalization and aptasensing for norovirus detection by screen-printed
carbon electrodes. Grp–AuNPs: Graphene–gold nanoparticle composite, Strp-SH: Thiolated streptavidin, Bt-Atp-Fc: Biotin-
and ferrocene-tagged aptamer.

To date, the most reported electrochemical biosensor detection methods use the classic
three-electrode system (working electrode, counter electrode and reference electrode).
Traditional solid electrodes are large, and they require complicated cleaning steps before
use. However, SPE has low cost, less reagents, easy modification, flexible selection for
solid-phase carriers (ceramics, paper, films, etc.) and inks (carbon, gold, etc.) and self-
designed shape and size, which is suitable for mass production and portable or small
devices [104,105]. Therefore, SPE has greater application advantages than traditional solid
electrodes [105]. In addition, the combination of SPE and microfluidic technology can
significantly reduce the consumption of reagents and samples. Multiple steps such as
sample processing and detection can be integrated through a rational design to achieve a
simple, fast and efficient testing [106–109].
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The cost for the development of an electrochemical biosensor is important. The gold
electrodes have strong electric signals, but they are expensive. On the contrary, carbon elec-
trodes have a lower cost, but the electrical signals are weaker. Therefore, carbon electrodes
are often modified by various methods. Gold nanoparticles (AuNPs) have good biocom-
patibility, excellent conductivity and high surface-to-volume ratio. AuNPs are commonly
used modification materials, particularly for electrochemical immunosensors [110,111]. Lin
et al. tested the signal amplification performance of electrochemical biosensors modified
by AuNPs. The EIS results indicated that the signal was significantly enhanced [112].
Moreover, the shapes (nanoballs, nanorods, nanoislands, nanocages, etc.) and sizes of the
gold nanomaterials can be controlled according to the needs [113].

2.4.2. Optical Biosensor

The optical biosensors for virus detection primarily include surface-enhanced Raman
spectroscopy (SERS) and surface plasmon resonance (SPR). SERS has been widely used in
the detection of a variety of viruses, such as hepatitis B virus, influenza virus, adenovirus,
rhinovirus, human immunodeficiency virus, respiratory syncytial virus and rotavirus [114].
However, no report has been found on the application of SERS in the detection and
identification of HuNoV.

SPR biosensors have been widely applied in virus detection, such as avian influenza
virus [115], Epstein–Barr virus [116], human hepatitis B virus [117] and Dengue virus [118].
Yakes et al. reported a quantitative SPR biosensor using feline calicivirus (FCV) as an
alternative model of HuNoVs [94]. The results showed that FCV could be detected from
purified cell lysates with a LOD of approximately 104 TCID50 FCV/mL. Moreover, this
biosensor had good renewability. Ashiba et al. developed an SPR-assisted quantum dot
fluorescence biosensor with a V-shaped trench. For HuNoV VLP detection, the LOD
reached 0.01 ng/mL [95]. Nasrin et al. reported an immunofluorescence nano-biosensor
on the basis of localised SPR (LSPR) [96]. The linear range for detecting HuNoV VLPs
was from 10−14 to 10−9 g/mL, and the LOD was 12.1 × 10−15 g/mL. For clinically iso-
lated HuNoVs, the detection range was 102–105 genomic copies/mL, and the LOD was
95.0 genomic copies/mL. Furthermore, SPR can be used to analyse the binding kinetics
and affinity of HuNoVs to ligands [119].

New optical detection technologies have been developed for HuNoV detection. Han
et al. developed a 3D sliding paper-based analysis device. The results could be observed
directly in 10 min without additional professional equipment [97]. HuNoV GII.4 in stool
samples was detected, and the LOD was 9.5 × 104 genomic copies/mL. Adegoke et al.
developed an ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular
beacon nano-biosensor for HuNoVs (Figure 5) [98]. The LODs of HuNoV RNA in human
serum and buffer were 8.2 and 9.3 genomic copies/mL, respectively. Chung et al. re-
ported a smartphone-based microfluidic paper analysis device [99]. The LODs of HuNoVs
in deionised water and recycled wastewater were 1 genomic copy/µL and 10 genomic
copies/µL, respectively. Ahmed et al. developed a colorimetric immunosensor based on
graphene–gold nanoparticle (Grp–AuNPs) nanoprobes [100]. For HuNoV GII.4 VLP detec-
tion, the linear range was from 100 pg/mL to 10 µg/mL. The LOD was 92.7 pg/mL, which
was 112 times lower than that of traditional ELISA. The sensitivity was 41 times higher than
that of commercially available diagnostic kits. Lee et al. developed an ultra-sensitive sensor
on the basis of a 3D total internal reflection scattering and defocusing microscope and a
wavelength-dependent transmission grating to detect norovirus group-I capsid protein
(NoVP). The LOD was 820 yoctomolar (yM, 10−24 M), and the detection linear range was
from 820 yM to 92.45 pM [101].
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A piezoelectric biosensor, as a newly developed mass-based biosensor, can be used in
virus detection. It measures small changes in mass caused by the binding of biomolecules
(such as antibodies/antigens and enzymes/substrates) [120]. QCM is the most commonly
used label-free piezoelectric biosensor [121]. It has been applied to virus detection, in-
cluding avian influenza viruses [122–124] and hepatitis B virus [125,126]. Piezoelectric
biosensors have ultrahigh sensitivity, and such biosensors are real-time, fast and quantifi-
able. However, improving their stability and anti-interference ability remains a challenge.
Piezoelectric biosensors have shown potential applications, although few reports were
focused on HuNoV detection using this technology.

3. Future Perspectives

Accurate and rapid detection technology is the main method to control the outbreak
of HuNoVs before effective antiviral drugs or vaccines are developed. Development of
good pretreatment methods for complex samples is the first important approach because it
can significantly affect the accuracy and sensitivity of the detection method. At present,
RT-qPCR is a reliable and common technology for detecting HuNoVs. The challenges are
primarily focused on processing samples from different sources, distinguishing infectious
and non-infectious viruses and the accurate assessment of the disease outbreaks. The im-
mune colloidal gold test strip is a rapid detection method, which has simple operation and
low cost. However, improving the detection sensitivity and extending the validity period
are the keys to promoting this technology for further use. Biosensors are a promising detec-
tion technology. Future research must focus on finding highly selective and active biometric
components and optimising fixation technology. Furthermore, good signal amplification
methods should be explored to reduce the detection limit. In the future, methods for the
optimization of the concentration of viral particles from food or environmental matrices
need to be improved, because the viral contamination in these matrices is generally low.
Meanwhile, the development of detection technology will focus on the improvement of the
existing technology and exploration of new interdisciplinary methods.
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