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Abstract: African swine fever is one of the most dangerous and fatal swine diseases, described for the
first time roughly a hundred years ago. Even now, there is neither a commercially approved vaccine
nor treatment available. The only way to hinder further spread of the disease is by culling the affected
herds and applying prevention based mainly on proper biosecurity. Due to growing awareness of
the potential ASF threat among pig producers, disinfection processes are considered as one of the
most important preventive measures. Currently, a variety of chemical compounds are applied for the
disinfection of pig farms. Meanwhile, these chemicals may pose a potential risk, due to their toxic,
irritant or corrosive effect. The aim of this study was to determine whether any plant-based natural
compounds may show a virucidal effect against ASFV, and simultaneously be depleted of some of
the side-effects typical for chemical compounds. Ideally, natural virucidal compounds should be
safe for both humans and animals, biodegradable, easily available and inexpensive. Fourteen plant
extracts were selected and screened for their virucidal effect against ASFV, using the suspension test
inspired by the PN-EN 14675:2015 European Standard procedure. The results of our study showed
that most of the tested plant extracts were ineffective against ASFV. Some extracts suspended in
a hydroglycolic medium exhibited high virus titre reduction, but it was confirmed that the effect
resulted from medium composition. However, a 1.05% peppermint extract showed high effectiveness
against ASFV, reducing the virus titre by ≥4 log10, thus demonstrating that natural compounds used
as virucidal agents could potentially be used in disinfection procedures, being both effective and
harmless to humans and animals.

Keywords: African swine fever; disinfection; plant extracts

1. Introduction

African swine fever (ASF), is one of the most serious diseases affecting domestic
and wild representatives of the Suidae family (i.e., wild boar, warthogs) [1,2]. The disease
is caused by the African swine fever virus (ASFV), a large DNA-virus that shows high
genetic and antigenic diversity. At present, 24 genotypes and eight serogroups have
been identified [3–5]. The antigenic diversity of ASFV and animals having no effective
immune response are the main constraints in effective vaccine development [6]. The current
epidemic began from a single introduction of the highly pathogenic ASFV genotype II to
Georgia, in 2007. Since then, ASF has been spreading across Eastern and Central Europe,
and in 2018 its devastating impact reached South-East Asia. Poland, as one of the leaders
in pig production in Europe since 2014, is one of the most affected countries. Until now,
in Poland—12,071 cases in wild boar and 469 ASF outbreaks in domestic pigs have been
recorded, in total [7]. In 2018, the devastating impact of ASF reached China, accounting for
approximately 50% of the world’s pork production, in 2017 [8] (Figure 1).
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Since China accounts for approximately 50% of the world’s pork production, the
emergence of ASF there caused a huge worldwide effect on pig production. Up until
February of 2021, China’s government had confirmed 187 ASF outbreaks in 31 different
administrative units [9–11]. The main reason for the high prevalence of ASFV in Chinese
domestic pig herds has been explained as a lack of basic biosecurity measures among
backyard and non-commercial pig holdings. Moreover, swill-feeding practices are still
popular among non-commercial pig producers in China. These types of farms raise more
than 60% of the pigs in China [5]. Until now, in Asia over 7,082,848 pigs have been culled
due to ASF, which is equal to 82% of the total global reported losses [11,12].
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Learning and understanding the ways of ASF introduction into the domestic pig
population is crucial for prevention and intervention strategies. These measures present
a single path to prevent further spread of the disease, especially in the absence of an
effective vaccine or treatment [13]. The role of wild boar in ASF spread is pivotal, as
they represent the main reservoir of the disease in the environment, mainly due to long
ASFV persistence in wild boar carcasses [14,15]. ASFV may also replicate in soft ticks
belonging to the Ornithodoros genus, present in Africa, making them actively involved in
indirect ASFV transmission to the domestic and wild susceptible vertebrate hosts. Further
studies have reported that a stable fly (Stomoxys calcitrans) may act as an ASFV mechanical
vector, therefore it is recommended to apply mosquito nets at farm level [16]. It was later
proved that only the ingestion of blood-fed ASFV contaminated flies by a susceptible
pig may induce disease onset [17]. However, the weakest point in ASF transmission,
from a contaminated environment to a pig holding, seems to be related to irresponsible
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human behavior. The main issue in ASF emergence in pig holdings is caused by neglecting
basic biosecurity rules, including: inadequate protection of the farm against the entry of
unauthorized people, no change of protective clothing, the presence of other domestic
animals at the farm, the lack of disinfection procedures, swill-feeding or the application
of disinfection agents with unconfirmed effectiveness. ASF is controlled by the culling of
infected pigs and the implementation of high standards of biosecurity.

Global environmental change is affecting social health and threatens the future of
many human beings. Contamination of the air, water and soil have led to the destruction of
biodiversity that poses a risk to the ecosystems upon which the existence of all organisms
depend. Environmental degradation, among others, is caused by overexploitation of
its resources, overpopulation and contamination by detergents and chemicals [18]. The
use of disinfectants, which has intensified recently, also has significant influence. In
addition, disinfectants used by humans or in close proximity to animals can be dangerous
to health and even life, after long-term exposure. For example, according to the U.S.
Occupational Safety and Health Administration, formaldehyde should be handled as a
potential carcinogen. It can cause asthma-like respiratory problems and skin irritation,
such as dermatitis and itching, or after ingestion, even death [19,20]. This substantially
limits the scope of its use as a disinfectant. This is not an isolated case, many chemical
disinfectants cause more or less adverse health reactions, while having a detrimental effect
on the environment. Therefore, the search for effective and safe antiviral agents has become
an important area of study. The great diversity of plants and the lack of effective therapies
and vaccines for ASF have urged a growing need for developing new, effective and safe
agents to limit the spread of the disease. There are innumerable potentially useful plant
extracts and herbs, and some of them have been shown to have great medicinal value in the
prevention or treatment of viral diseases [21]. Scientific databases contain a huge number of
articles on the antiviral, antifungal, antibacterial and even anthelmintic effects of medicinal
herbs and plant extracts [22–26]. Moreover, several studies have shown that plants display
antiviral activity both in vitro and in vivo [26]. However, their antiviral effectiveness may
vary, depending on virus nucleoid acid type (RNA or DNA), virion architecture (enveloped
or non-enveloped) and even against different strains of the same virus [25,27,28].

Plant extracts are usually derived from leaves, roots, fruits, stems, seeds, twigs, bark
and flowers [28]. Selection of the plant part from which an extract should be prepared
depends largely on the chemical composition of the plant. Extracts are obtained from
dried, crushed vegetable material with solvents of different polarity. The most commonly
used polar solvents are water, ethyl alcohol, glycerin and glycols, while non-polar are
vegetable oils, isopropyl myristate and palmitate octyl. Choosing the proper raw material
and solvent is pivotal for obtaining the most effective plant extract [29]. Medicinal plants
contain primary and secondary substances in their composition. Primary metabolites are
basic substances necessary for the life of every plant and fulfilling basic physiological
functions (building, energy and spare). These include carbohydrates, fats, proteins, amino
acids, enzymes and chlorophyll. Secondary metabolites, in turn, are products of the
plant’s metabolism and usually are not crucial for basic life functions, they do not exist
in all plants, but only in specific groups. Secondary metabolites include mainly saponins,
coumarins, flavonoids, alkaloids, steroids, antibiotics, resins and lotions, essential oils,
tannins, minerals and vitamins [30]. The effectiveness of some medicinal plants has been
correlated with the presence of specific active substances. It has been proven that the
main biologically active virucidal compounds of plants are terpenoids, alkaloids, stilbenes
and flavonoids [31].

Due to the lack of information on the testing of plant extracts against ASFV [32,33],
the aim of the present study was the determination of the antiviral activity of fourteen
oil, hydroglycerin or hydroglycolic plant extracts (Table 1), using a method based on the
PN-EN 14675:2015 European Standard.
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Table 1. Tested extracts and their percentage composition.

Species (Family) Common Name Part Extracted Extracts Ingredients

Ribes nigrum (Grossulariaceae) Black currant Seeds Ribes nigrum oil extract-100%

Aronia melanocarpa (Rosaceae) Black chokeberry Seeds Aronia melanocarpa oil extract-100%

Fragaria ananasa (Rosaceae) Strawberry Seeds Fragaria ananasa oil extract-100%

Rubus idaeus (Rosaceae) Raspberry Seeds Rubus idaeus oil extract-100%

Thymus vulgaris (Lamiaceae) Thyme Flower/Leaf

Glycerine-52.60%
Water-45.0%

Thymus vulgaris extract-2.00%
Sodium benzoate-0.20%
Potassium sorbate-0.20%

Equisetum arvense (Equisetaceae) Field horsetail Above ground parts

Glycerine-48.50%
Water-48.50%

Equisetum arvense extract-2.50%
Sodium benzoate-0.25%
Potassium sorbate-0.25%

Mentha piperita (Lamiaceae) Peppermint Leaf

Propylene glycol-76.1%
Water-20.00%

Mentha piperita extract-3.50%
Sodium benzoate-0.20%
Potassium sorbate-0.20%

Aloe barbadensis (Asphodelaceae) Aloe Vera Leaf
Aloe barbadensis-99.8%
Sodium benzoate-0.1%
Potassium sorbate-0.1%

Centella asiatica (Apiaceae) Asiatic pennywort Leaf

Glycerine-49.0%
Water-48.50%

Centella asiatica extract-2.00%
Sodium benzoate-0.25%
Potassium sorbate-0.25%

Citrus aurantifolia (Rutaceae) Lime Fruit

Glycerine-50%
Water-47.50%

Citrus aurantifolia extract-2.00%
Sodium benzoate-0.25%
Potassium sorbate-0.25%

Melissa officinalis (Lamiaceae) Lemon balm Leaf

Glycerine-50%
Water-47.40%

Melissa officinalis extract-2.00%
Sodium benzoate-0.30%
Potassium sorbate-0.30%

Cucumis sativus (Cucurbitaceae) Cucumber Fruit

Glycerine-50%
Water-47.85%

Cucumis sativus extract-1.75%
Sodium benzoate-0.20%
Potassium sorbate-0.20%

Urtica dioica (Urticaceae) Common nettle Leaf

Propylene glycol-79.0%
Water-17.648%

Urtica dioica extract-3.0%
Phenoxyethanol-0.29%
Methylparaben-0.062%

Trigonella foenum-graecum (Fabaceae) Fenugreek Seed

Propylene glycol-76.50%
Water-20.00%

Trigonella foenum-graecum extract-3.125%
Phenoxyethanol-0.375%

Underline—the actual percentage of extracts in the tested solutions (excluding pure extracts without the medium).

2. Materials and Methods
2.1. Cells and Viruses

A Vero-adapted Ba71V strain was obtained from the African Swine Fever European
Union Reference Laboratory (Valdeolmos, Madrid, Spain). A Vero cell line was obtained
from ATCC (ATCC® CCL-81TM) and subcultured in a Minimum Essential Medium (Gibco,
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Life Technologies, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (FBS,
Gibco, Billings, MT, USA) and a 1% antibiotic-antimycotic solution (100×) (Sigma-Aldrich,
St. Louis, MO, USA). The cultures were grown at 37 ◦C, in a humidified atmosphere of air
containing 5% CO2.

2.2. Virus Stock Preparation

Sub confluent monolayers of Vero cells were infected with use of MOI ~0.01 and
incubated at 37 ◦C, for 4–5 days until a 100% cytopathic effect was observed. In order
to obtain [34] a sufficient virus titer (at least 106.5 TCID50/mL), allowing for the demon-
stration of a 4 log titre reduction, after disinfectant treatment, viruses with a too low titer
were subjected to three freeze/thaw cycles and precipitated, using the following buffer:
20% polyethylene glycol (PEG) and 2.5 M sodium chloride in a 2:3 buffer:virus ratio. The
virus-buffer solution was agitated overnight at 4 ◦C, subsequently ASFV was pelleted by
centrifugation at 13,000g for 90 min at 4 ◦C and resuspended in a 1/10 volume of the initial
medium. The obtained virus stocks were titrated, aliquoted and stored at −80 ◦C. Virus
titers were determined by 50% tissue culture infectious dose (TCID50/mL) titration, using
the Spearman-Kärber method [35].

2.3. Plant Extracts

Four oil plant extracts were received from the Łukasiewicz Research Network—New
Chemical Syntheses Institute (Pulawy, Poland) and ten extracts were provided by courtesy
of the cosmetic company Bandi (Warsaw, Poland). Five of the 14 extracts were pure extracts,
six were hydroglycerin extracts and the remaining three hydroglycolic extracts (Table 1).

Three selected concentrations of each plant extract were used. The maximum concen-
tration that can be obtained by following the principles of the method is 80%. However,
in this study, an intermediate concentration (60%) and a low concentration (30%) were
also selected for analysis. All plant extracts were tested at the same three concentrations
although, due to the medium being present in most of the extracts, the final concentration
of eight of them was much lower; see Table 2. All selected concentrations of plant extracts
were prepared immediately before use by dilution in hard water.

2.4. Diluents and Interfering Substances

All tested chemical compounds were diluted with water of standardized hardness,
containing a defined concentration of Mg+, Ca2+, Cl− and HCO3− anions (pH 7). The
hard water was prepared according to the PN-EN 14675:2015 European Standard. The
suspension test was prepared with interference substances: BSA—bovine albumin 3.0 g/L
(low level soiling) and BSA + YE—bovine albumin 10 g/L, plus a yeast extract 10 g/L (high
level soiling) were prepared, according to the European standard PN-EN 14675:2015.

2.5. Test Conditions

Each extract concentration was tested in triplicate. One part of the virus suspen-
sion was mixed with one part of the interfering substances, respectively, with low level
soiling, high level soiling and incubated at 10 ± 1 ◦C for 2 min ± 10 s. Subsequently,
eight parts of the plant extract diluted to 1.25-fold of each tested concentration was added.
The obtained mixture of the virus, tested extract and interfering substance was incu-
bated at 10 ± 1 ◦C for 30 min ± 10 s. Afterwards, test tubes were placed on crushed
ice (4 ◦C). Samples were immediately serially diluted (in quadruplicate) 10-fold (both
the control virus and experimental virus suspensions) on a Vero cell culture, in 96-well
plates. The plates were incubated for 7 days at 37 ◦C ± 2 ◦C, in air containing 5% CO2
and examined daily for the appearance of cytopathic effects (CPE). Finally, all plates were
assessed for cytopathic effects by microscopic examination after 7 days post infection (dpi)
A minimum 6.5 log10 (TCID50/mL) of virus titer in the control sample was required to
demonstrate a ≥4 log reduction.
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2.6. Cytotoxicity Reduction

Several plant extracts turned out to be cytotoxic to the Vero cells, therefore precluding
in proper assessment of the test and demonstration of a 4 log10 titre reduction. Microspin
S-400 HR columns (GE Healthcare, Fairfield, CT, USA) were used, in order to remove
the cytotoxic extract from the samples, right after 30mins incubation of the tested and
control samples.

Table 2. Logarithmic reduction of the ASFV titer in the presence of plant extracts. Contact time: 30 min. Temperature of
incubation: 10 ◦C. Values were calculated as a mean of the 3 experiments, ±SD.

Plant Extracts
Tested Concentration of the Extract

(Real Concentration of Active Compound)

Log10 Difference ** (±SD)
(TCID50/mL)

Virucidal Effect
(Reduction ≥ 4 Log10)

BSA BSA + YE BSA BSA + YE

Black currant
80% (80%) 0.3 (±0.11) 0.1 (±0.1) No No
60% (60%) 0.4 (±0.11) 0.0 (±0.0) No No
30% (30%) 1.4 (±0.23) 0.8 (±0.31) No No

Black
chokeberry

80% (80%) 0.33 (±0.11) 0.25 (±0.2) No No
60% (60%) 0.33 (±0.11) 0.5 (±0.00) No No
30% (30%) 0.08 (±0.11) 0.0 (±0.00) No No

Strawberry
80% (80%) 0.08 (±0.11) 0.25 (±0.00) No No
60% (60%) 0.83 (±0.23) 1.33 (±0.11) No No
30% (30%) 0.75 (±0.00) 1.58 (±0.11) No No

Raspberry
80% (80%) 0.75 (±0.20) 0.58 (±0.11) No No
60% (60%) 0.58 (±0.20) 0.58 (±0.11) No No
30% (30%) 0.0 (±0.00) 0.0 (±0.00) No No

Thyme
80% (2%) 1.25 (±0.40) 0.83 (±011) No No

60% (1.2%) 1.41 (±0.51) 0.66 (±0.11) No No
30% (0.6%) 0.25 (±0.20) 0.0 (±0.00) No No

Field Horsetail
80% (2.5%) 0.0 (±0.00) 0.0 (±0.00) No No
60% (1.5%) 0.16 (±0.11) 0.16 (±0.23) No No

30% (0.75%) 0.66 (±0.23) 0.25 (±0.35) No No

Peppermint *
80% (3.5%) 0.0 cc (±0.00) 0.0 cc (±0.00) No No
60% (2.1%) 1.92 cc (±0.23) 3.16 cc (±0.35) No No
30% (1.05%) 4.41 d (±0.23) 4.17 d (±0.11) Yes Yes

Aloe vera
80% (80%) 0.75 (±0.20) 1.16 (±0.11) No No
60% (60%) 1.08 (±0.62) 0.83 (±0.31) No No
30% (30%) 0.83 (±0.11) 1.16 (±0.11) No No

Asiatic
pennywort

80% (2%) 1.0 (±0.00) 0.0 (±0.00) No No
60% (1.2%) 1.25 (±0.35) 0.0 (±0.00) No No
30% (0.6%) 0.66 (±0.31) 0.0 (±0.00) No No

Lime
80% (2%) 0.50 (±0.35) 0.0 (±0.00) No No

60% (1.2%) 0.08 (±0.11) 0.0 (±0.00) No No
30% (0.6%) 0.66 (±0.11) 0.0 (±0.00) No No

Lemon balm
80% (2%) 1.91 (±0.23) 2.25 (±0.35) No No

60% (1.2%) 1.5 (±0.35) 1.83 (±0.23) No No
30% (0.6%) 1.33 (±0.23) 1.0 (±0.54) No No

Cucumber
80% (2%) 0.0 (±0.00) 0.0 (±0.00) No No

60% (1.2%) 0.25 (±0.35) 0.25 (±0.35) No No
30% (0.6%) 0.08 (±0.11) 0.08 (±0.11) No No

Common nettle
80% (3%) 0.0 d (±0.0) 0.0 d (±0.0) No No

60% (1.8%) 0.25 (±0.20) 1.50 (±0.20) No No
30% (0.9%) 1.83 (±0.42) 1.16 (±0.11) No No

Fenugreek *
80% (3%) 0.0 cc (±0.00) 0.0 cc (±0.00) No No

60% (1.8%) 2.58 cc (±0.23) 2.4 cc (±0.11) No No
30% (0.9%) 2.16 (±0.31) 1.08 (±0.11) No No

**—The difference was calculated between the control and the tested sample, *—Cytotoxic effect, BSA—low soiling level (bovine serum
albumin 3.0 g/L), BSA + YE—high soiling level (bovine albumin 10 g/L+10 g/L); cc—results are presented after applying cytotoxicity
neutralization and reduced additionally by result of the medium’s antiviral activity; d—results are presented after being additionally
reduced by the result of medium antiviral activity.



Pathogens 2021, 10, 1357 7 of 12

2.7. Medium Antiviral Activity Assay

In order to assess the possible virucidal effect of the extract’s medium, a pure media
(relevant for each extract) was prepared without an active substance and tested, accord-
ing to Section 2.5 Test conditions. Final results are expressed as the logarithmic differ-
ence between the sample and control, and reduced additionally by the result of medium
antiviral activity.

2.8. Test Controls

Both standard and cytotoxicity controls were processed in the same manner as the
plant extract, which was replaced with hard water. In parallel, positive control for the virus
susceptibility in virucidal assay was performed using 1% sodium hypochlorite. The test
was valid when logarithmic reduction of virus titer caused by 1% sodium hypochlorite
was ≥4 log10 in both soiling conditions (BSA and BSA + YE) (Figure 2).
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2.9. Statistical Analysis

Statistical analyses were performed, using GraphPad Prism (version 8.4.3, GraphPad
Software Inc., La Jolla, CA, USA). Analyses of the mean differences between each plant
extract were shown with a standard deviation.

3. Results

The efficacy of the plant extracts was assessed by comparing the mean log reduction
in the mixture of virus and tested plant extracts, with the logarithm of the virus control
and the viral titer reduction value obtained by the medium. The extract was found to be
effective when the difference between the control virus titre and the obtained titre in the
sample was ≥4 log10. The collected results, after the necessary reductions, are included in
Table 2. The most effective concentrations of the tested extracts are summarized in Figure 3.
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Initially, three of fourteen extracts turned out to be effective against ASFV—peppermint,
fenugreek and common nettle—showing >4 log10 reduction of viral titer (data not shown).
The antiviral activity assay of the hydroglycolic medium showed that it was responsible
for effectiveness at high (80%) and medium (60%) concentration, reducing the viral titre
by >4 log10 and 1–2.4 logs10, respectively (Figure 4).
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Figure 4. The final result of the antiviral efficacy of peppermint extract compared to the reduction
achieved by the media.

In addition, peppermint (3.5%, 2.1%) and fenugreek (3%, 1.8%) showed significant
cytotoxicity. Both extracts were retested with the cytotoxicity assay. As a final result, fenu-
greek (3%, 1.8%), common nettle (3%, 1.8%) and peppermint (3.5%, 2.1%) were considered
as ineffective. The hydroglycolic medium at 30% concentration did not cause virus inactiva-
tion. A similar result was obtained for the lowest concentration of the common nettle and
fenugreek extracts. However, at the same level (30%) peppermint extract (1.05%) turned out
to be effective against ASF, presenting 4.41(±0.23) log10 reduction (BSA) and 4.17 (±0.11)
log10 reduction (BSA + YE), which corresponds to more than 99.99% pathogen reduction.
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A relatively high reduction in virus titer of approximately 2log10 was observed for a
2% concentration of lemon balm. Interestingly, a higher efficiency was achieved under high
level soiling conditions. Moderate effectiveness was demonstrated for 1.2% and 2% Thyme
extract at the low soiling level—it reduced a virus titre by a maximum of 1.41(±0.51) log10
and 1.25(±0.40) log10, respectively. Despite the high initial concentration of the oil extracts
(blackcurrant, black chokeberry, strawberry and raspberry), these demonstrated a low
virucidal activity. Maximal observed viral titre reduction was observed for strawberry
(30%)–1.58 (±0.11) log10, BSA+YE. Similarly, aloe vera extract was ineffective, causing
maximal viral titer reduction of about 1log10 under both soiling conditions. Field horsetail,
cucumber, asiatic pennywort and lime showed the lowest effectiveness. In the case of
the last two extracts, the high soiling condition rendered them completely ineffective
against ASFV.

The mean virus titer value used in the study was 7.25 (±0.5) TCID50/mL for the high
level soiling conditions, while 6.7 (±0.6) TCID50/mL for the low level soiling conditions
(Figure 5) The difference confirmed the increased survivability of the viral population as the
organic matter particles physically protect the virus from disinfectants and other antiviral
agents, which may affect the assessment of the plant extract as a disinfectant [36]. There-
fore, pre-cleaning cannot be ignored before disinfection. The effect of high-level soiling
conditions on the effectiveness of plant extracts in most cases is also visible, in Figure 3.
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4. Discussion

ASF is one of the most dangerous swine diseases that the world has faced during the
last century, so far without an effective vaccine or treatment. The only solution to combat
the disease is the culling of infected pigs or prevention consisting of compliance with the
principles of biosecurity and effective disinfection. Due to the growing awareness of people
related to ecology and the broadly understood care for the environment, much attention is
paid to limiting the use of chemicals and focusing on the use of plants and their derivatives.
Hence, medicinal products, cosmetics and detergents are often based on plant products.

Due to the lack of information on plant extracts and their virucidal effectiveness
against ASFV [32,33], the aim of the present study, was to determine the virucidal ac-
tivity of fourteen selected plant extracts (Table 1), based on the method inspired by the
PN-EN 14675:2015 European Standard. Neither of the available studies have proven the
effectiveness of the examined extracts. The lack of effectiveness arose not only from an
insufficient reduction rate (0.7 log10), but it was also related to high cytotoxicity. According
to the European Standard, the viral titre must be reduced by at least 4 log10 to consider a
disinfectant effective.
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This is the first study reporting the virucidal activity of plant extracts against ASFV by
an in vitro suspension test, inspired by PN-EN 14675:2015. In this investigation, 14 plant
extracts belonging to ten different plant families were tested. Despite many scientific studies
confirming the virucidal effectiveness of blackcurrant, black chokeberry, strawberry and
raspberry extracts [23,24,37–39], unfortunately we were unable to prove their effectiveness
against ASFV. The preliminary tests of four oil extracts showed their very low solubility,
which may have influenced the obtained results. Several of the tested plant extracts showed
moderate virucidal activity, by decreasing the viral titre between 1–2 log10, however, they
cannot be considered fully effective against ASFV, because they do not meet the 4 logs10
reduction criterion. Initially, fenugreek, common nettle and peppermint were found to
be the most effective. However, after verifying the impact of hydroglycolic medium on
its effectiveness, only peppermint showed confirmed virucidal efficacy by inactivating
ASFV at 1.05% concentration, under low and high soiling conditions. It is noteworthy
that propylene glycol (PG) (concentration ≥76.1%) was found to be effective (virus titer
reduction ≥4 log10) against ASFV, and we were able to show its synergistic action in the
case of peppermint. These results are partly supported by Kramer et al. where using
acetone instead PG decreased hand disinfectant efficacy against other viruses [40].

Despite the fact that the virus is enveloped, and known to be susceptible to various dis-
infection strategies [41], only one of the fourteen tested extracts effectively inactivated the
ASFV, which may indicate the moderate virucidal properties of the examined extracts, or a
too low concentration was used. Peppermint virucidal efficacy with respect to enveloped
viruses has already been proven in many previous studies [22,25,27,42] which support
our results. On the basis of studies indicating the inactivating effect of menthol against
herpes simplex virus infection (HSV-1 and HSV-2) [42] and analysis of the substances in the
composition of the peppermint extract, it can be hypothesized that antiviral effectiveness
against ASFV is related to the dominant amount of menthol in its composition (42.8%),
which distinguishes it from the other two members of the Lamiaceae plant family. Other
authors have shown that plant extracts from the Lamiaceae family were moderately ef-
fective, which is consistent with our results [43,44]. It can be assumed that their antiviral
effectiveness is related to the presence of an unidentified, common component within
these three plants, however, to confirm this hypothesis, more detailed research should be
performed. Therefore, it can be concluded that thorough analysis of secondary substances
in composition of plant extracts and testing them in higher concentrations is recommended
in future studies.

In conclusion, our research showed that peppermint extract (1.05%) is virucidal against
ASFV. In light of the obtained results, it can be concluded that the higher concentrations are
also effective, albeit cytotoxic. The remaining thirteen plant extracts showed low or moder-
ate virucidal activity against ASFV. High soiling was shown to have a significantly negative
impact on disinfection effectiveness, which confirms the crucial role of pre-cleaning prior
to proper disinfection.

Our research has proven the existence of a naturally-derived disinfectant, effective
against the ASF virus, which may be safe for animals, humans and the environment, which
is additionally ecological, biodegradable, inexpensive and easily available.
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6. Woźniakowski, G.; Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Frant, M.; Niemczuk, K. Attempts at the development of a
recombinant African swine fever virus strain with abrogated EP402R, 9GL, and A238L gene structure using the CRISPR/Cas9
system. J. Vet. Res. 2020, 64, 197. [CrossRef] [PubMed]

7. GIW General Veterinary Inspectorate/Glówny Inspektorat Weterynarii. Afrykanski Pomór Świń (ASF). Available online:
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