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Abstract: This research aims to investigate the role of Industry 4.0 in the production and service 

sector in Pakistan. It therefore considers five Industry 4.0 factors, namely big data, smart factory, 

cyber physical systems (CPS), Internet of things (IoT), and interoperability. In order to analyze the 

role of Industry 4.0, the textile industry is taken as a production industry, while the logistics industry 

is considered as a service industry. Both are facing various challenges in production and services 

causing below standard overall performance. To address this issue, a quantitative research 

approach with cross-sectional research design was selected. First hand data was collected through 

a survey questionnaire from a total of 224 employees of textile and logistics companies. Smart partial 

least square-structural equation modeling (PLS-SEM) was preferred to analyze the collected data. 

Findings of the study revealed that Industry 4.0 has a key role in promoting the production and 

services sector in Pakistan, as it has a significant impact on the overall performance of the considered 

sectors. This research is one of the pioneer studies that examines the role of Industry 4.0 on the 

textile and logistics industry of Pakistan. Thus, this research also contributes in a practical 

dimension by explaining the implementation of Industry 4.0 for improving the performance of the 

textile and logistics industries. 

Keywords: Industry 4.0; big data; smart factory; cyber physical systems; Internet of things (IoT); 

interoperability; logistics; textile; production industry; services industry 

 

1. Introduction 

Industry 4.0 is a name given to the recent tendency of automation, as well as data exchange, in 

various manufacturing technologies. It comprises of cyber physical systems, cognitive computing, 

cloud computing, and the Internet of things. It is generally referred to as the fourth industrial 

revolution. The key to every industrial revolution is improvement in productivity (Herčko et al. 2015; 

HuseyniÌ et al. 2017; Stverkova and Pohludka 2018). Nowadays, a well-performing enterprise can be 

considered as one capable of using many opportunities, being adaptable to continual changes in the 

environment, and achieving better performance (Rajnoha and Lesníková 2016). Organizations have 

achieved a higher profitability through the use of the steam engine, power, and the move from simple 

to computerized innovation. Most of the progressive methods of modern enterprise performance 

management share a strong strategic orientation of management focused on further business 

development. These progressive methods use highly sophisticated knowledge resulting from 
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modern enterprise information technology, such as business intelligence, or the latest big data 

analytics (Rajnoha and Lorincová 2015). The effect of Industry 4.0 is broader, and it influences not 

only production, but also indirect departments, particularly engineering procedures. 

The fourth modern transformation, or Industry 4.0, causes extensive fluctuations in industrial 

production (Kagermann et al. 2013). Starting from the German strategic initiative, Industry 4.0 is 

presently a major frame of a few countries from the U.S., Europe, and Asia (Kagermann et al. 2013; 

Ślusarczyk 2018). It has worked quickly in the creation of advanced ideas (Strandhagen et al. 2017); 

for instance, the Internet of things (IoT), big data, smart factory, cyber physical systems, and 

interoperability rely upon a prompt change in the outlook in mechanical creation. Nowadays, most 

production and services companies are moving towards higher technology by introducing Industry 

4.0 ideas (Oláh et al. 2018a). Production and services industries are the backbone of every country, 

having significant a contribution to a nation’s economy (ibid). However, the production and services 

sector of Pakistan has not achieved significant growth in current years due to low technological 

improvements (Khan and Khan 2010). 

The textile industry is one of the major production sectors in Pakistan. However, it has been 

facing various challenges related to technology. Production has been influenced negatively due to a 

decrease in technological advancement, leading to an effect in overall performance. The Pakistan 

textile industry contributes approximately more than 60 percent (U.S. $9.6 billion) to the total exports 

of the country. Despite this, the industry is facing a extensive decline in its growth rate (Khan and Khan 

2010). Figure 1 shows the decrease in textile exports for the previous six years. 

 

Figure 1. Pakistan’s textile industry exports. Source: Pakistan Bureau of Statistics (2016). 

Pakistan’s textile exports have been on a massive and consistent decline for a long period (Khan 

and Khan 2010). This has caused a drop in Pakistan’s exports to a new six-year low, and a gross 

domestic product (GDP) growth reaching only 4.24% in 2015 (Pakistan Bureau of Statistics 2016). 

Pakistan’s GDP growth is significantly lagging behind other frontier markets in Asia, such as 

Cambodia, Bangladesh, Vietnam, and Laos. 

Apart from the production sector, the services sector of Pakistan is also not performing up to 

standard (Shamsi and Syed 2015). The logistics industry of Pakistan is facing different issues 

(Hameed et al. 2018) due to a lack of technological development, as Pakistan’s electronic commerce 

market is very volatile and the logistics industry is struggling to cope with various problems (Shamsi 

and Syed 2015). Additionally, the logistics industry is lacking as compared to other neighboring 

countries, namely China, India, and Malaysia (Hameed et al. 2018). 

However, all the issues in the production and services industries of Pakistan can be resolved 

through introduction of Industry 4.0 technologies. It is expected that Industry 4.0 related 

technologies, such as big data, smart factory, cyber physical systems (CPS), the Internet of things 

(IoT), and interoperability, have the ability to resolve various issues through modern technologies. 

According to prior studies (see for instance: Brecher 2015; Schuh et al. 2014), four enablers of 

productivity growth under Industry 4.0 include IT-globalization, single source of truth, automation, 
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and cooperation (Oláh et al. 2018b). These productivity enablers are important in both the production 

as well as the service industry. Industry 4.0 promotes production and services which automatically 

increase the overall performance of the production and service industries. Figure 2 shows the 

mechanism of Industry 4.0, and the performance of the production and service industries. 

 

Figure 2. Influence of Industry 4.0 factors on production, services, and company performance. Source: 

Developed by the current study. 

Therefore, the objective of this research is to investigate the role of Industry 4.0 in the production 

and service sectors of Pakistan. However, the sub-objectives are given below: 

1. To examine the role of five Industry 4.0 factors, namely big data, smart factory, cyber physical 

systems (CPS), the Internet of things (IoT), and interoperability, in production and service 

operations in the textile and logistics industries. 

2. To examine the role of production and service operations in the enhancement of the textile and 

logistics industries’ performance.  

The current research contributes to the body of knowledge by investigating key Industry 4.0 

factors, which contribute significantly in the production and service sector. The scientific contribution 

of this survey-based exercise is to attain single summary statistics enabling rank discoveries in social 

sciences. These rank discoveries include having in-depth understanding of the role of Industry 4.0 
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factors affecting the production and service industry, along with their performance in emerging 

economies. Hence, through quantitative findings, a diverse range of groups, such as professionals 

working in the production and services industries, individuals associated with Industry 4.0, and 

social science scholars and researchers, would benefit from in-depth understanding of the 

relationship between the five factors and performance of the industries. Moreover, policy makers 

would be able to use the statistics to address the concerns of declining performance. Managers and 

professionals working in the production and service industries benefit from the study by having 

useful insight into the role of the factors of Industry 4.0 in demonstrating quality performance, hence 

systems and practices can be scientifically developed, reflecting scientific contribution. Therefore, the 

survey-based exercise provides statistics representing the overall functioning, systems, and practices 

of the industries, interlinked with the factors of Industry 4.0 shaping scientific development that 

reflect scientific contribution. This is one of the pioneer studies which examine the impact of Industry 

4.0 on the textile and logistics industry, particularly in Pakistan. 

2. Review of Literature 

Industry 4.0 can be defined as an umbrella term, denoting a variety of recent concepts, as well 

as numerous linked disciplines within industry (Lasi et al. 2014). The primary drivers of Industry 4.0 

can be separated into two major aspects. In the first case, it is the mixture of quickly progressing 

technological expansions with the Internet of things (IoT), big data, cyber physical systems (CPS), 

smart factory, and interoperability. Such types of technologies may cause a paradigm shift within 

industrial production (Lasi et al. 2014), and this can be further explained as technology push. 
The other aspect is the demand from various manufacturing firms, particularly in different 

countries having high cost levels, to make oneself autonomous of high labor costs by exploiting new 

technology with the help of Industry 4.0 (Strandhagen et al. 2018. Figure 3 shows how an industrial 

revolution takes place and how we reached the current level of Industry 4.0 (Kagermann et al. 2013). 

The first industrial revolution took place in 18th century, the second took place in 19th and 20th 

centuries, the third took place in the late 20th century, and finally, the fourth industrial revolution 

(Industry 4.0) took place in 21th century. 

 

Figure 3. Fourth industrial revolution. Source: Kagermann et al. (2013). 

In the context of technological advancement, this study provides vital information on how to 

boost productivity in production (textile) and service (logistics) industries based on the various 

principles of Industry 4.0. The current study defines the basic factors, as well as mechanisms of 

increasing productivity, based on this concept. The major focus of the current study is based on five 

Industry 4.0 factors: big data, smart factory, cyber physical systems (CPS), the Internet of things (IoT), 
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and interoperability. This research examines how these factors are helpful in the production and 

service sectors. 

Big data is an umbrella term for any technique used to process a huge amount of data or 

information, comprising capture, security, transfer, storage, analysis, curation, search, privacy, and 

visualization, and including both structured and unstructured data (Xu and Duan 2018). Big data is 

a term used to refer to the rise in the volume of data that is hard to store and process, as well as 

analyses with the help of traditional database technologies (Hashem et al. 2015). The nature of big 

data comprises substantial procedures to recognize, as well as translate, the data into new insights. 

Numerous researchers have applied big data in prior studies. For instance, Manyika et al. (2011) 

referred to big data as a large volume of scientific data for visualization. Manyika et al. (2011) defined 

big data as “the amount of data just beyond technology’s capability to store, manage, and process 

efficiently.” Meanwhile, Zikopoulos et al. (2013) defined big data as characterized by three Vs: 

Volume, variety, and velocity. “Big Data is a collection of data from traditional and digital sources 

inside and outside your company that represents a source for ongoing discovery and analysis.” No 

doubt big data is supposed to be a new form of capital in today’s marketplace (Mayer-Schönberger 

and Cukier 2013; Satell 2014), however several firms have remained unsuccessful in exploiting it’s 

advantages (Mithas et al. 2013). On the other hand, the idea of the smart factory is the unified 

connection of various steps of individual production, from the initial planning stages to actuators in 

the field. 

Furthermore, “Cyber-Physical Systems (CPS) refers to a new generation of systems with 

integrated computational and physical capabilities that can interact with humans through many new 

modalities” (Baheti and Gill 2011). The capability to interact with and enlarge the abilities of the 

physical world with the help of computation and communication, as well as control, is a significant 

enabler for future technological developments. Moreover, the Internet of things (IoT) is a simple term 

for a magnificent idea. The Internet of things (IoT) is the linkage of all devices to the internet as well 

as each other. There are three Internet of things (IoT) components, which consist of (a) hardware, (b) 

middleware, and (c) presentation (Gubbi et al. 2013). Definite taxonomies of each component can be 

found elsewhere (Buyya et al. 2009; Tilak et al. 2002; Tory and Moller 2004). 

Finally, “Interoperability is in essence what happens when we bring the above elements 

together. It is the connection of cyber-physical systems, humans and smart factories communicating 

with each other through the Internet of Things (IoT).” In this direction, manufacturing partners can 

efficiently share various types of information error-free. Basically, interoperability enables error-free 

transmission as well as translation. It is one of the basic requirements of a modern technological 

system (Sheth 1999). 

Industry 4.0 Applications for the Production and Service Industry 

The environment of production can be defined as the environment in which a firm related to 

production continues their operations. Therefore, it links with both external as well as internal factors 

(Strandhagen et al. 2017; Govorukha and Kuchkova 2018). A significant factor for explaining the 

production environment is the customer order decoupling point (CODP). It is one of the value 

creation processes in which a product is matched with a real customer order. After production 

manufacturing, it is delivered to the customer through logistics companies. Thus, both production 

(textile) as well as services (logistics) industries work together and meet the customer’s needs. 

However, for smooth operations, both these industries require technological advancement through 

Industry 4.0. Table 1 shows Industry 4.0 technologies for logistics. 
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Table 1. Industry 4.0 technologies for logistics. 

Decision Support 

and Decision-

Making 

Identification and 

Interconnectivity 

Seamless 

Information 

Flow 

Automation, Robots and 

New Production 

Technology 

Artificial 

intelligence 
Sensors Real-time control Industrial robots 

Big data analysis Auto ID 
Integration of IT 

systems 
3D printing 

Augmented and 

virtual reality 
Networking technology 

Cloud 

computing 

Automatic Guided 

Vehicles 

Source: Strandhagen et al. (2018). 

Advanced technological developments empower researchers to classify patterns in big data 

(Lycett 2013). Such scientific investigation needs less reliance on present knowledge and more focus 

on what is unknown (Sammut and Sartawi 2012). With the help of big data, it is quite possible to see 

what is missing, and missing data is easily accessible. It is understood that big data is one of the 

perfect instruments to attain precise results and increased profit in both the production and service 

sectors (Stoicescu 2016). 

Big data enables employees to access huge amounts of information about customers and about 

any production process that has a significant influence on performance. It also has the capability to 

extract meaning and to sort through big volumes of numbers, as well as find the hidden patterns, 

unforeseen correlations, and startling connections that can be utilized in various industries, like the 

production and services fields (Stoicescu 2016). 

The fourth industrial revolution builds upon the applications of cyber physical systems (CPS), 

which feature end-to-end information communication technology (ICT)-based integration 

(Kagermann et al. 2013). Information and communication technology-based integration has 

significant influence in electronic logistics (Hameed et al. 2018; Gwiazda et al. 2015; Witkowski et al. 

2017; Ślusarczyk et al. 2016) and communication between employees of organizations, 

communication between partners, and communication between a company and it’s customers. This 

communication technology increases performance through increases in logistic services and 

production in textiles. Lee (2008) explained that cyber physical systems (CPS) are integrations of 

computation and physical procedures with embedded computers and networks monitoring physical 

procedures. It can be considered as the merger between the physical and digital world (Lasi et al. 

2014). This merger is most important for production in the textile industry and services in the logistics 

industry (Mahmud et al. 2017). 

Moreover, smart factory is interrelated with cyber physical systems (CPS) and the Internet of 

things (IoT). Smart factories are the important component of Industry 4.0, as according to Hermann 

et al. (2016), it is in a factory where cyber physical systems (CPS) communicate over the Internet of 

things (IoT), assisting humans and machines in task execution. These tasks include both production 

and services. 

Smart factories, with the help of cyber physical systems (CPS) and the Internet of things (IoT), 

enable the collection, distribution, and availability of manufacturing related information in real-time 

(Lucke et al. 2008). Radziwon et al. (2014) described this more comprehensively: “a Smart Factory is 

a manufacturing solution that provides such flexible and adaptive production processes that will 

solve problems arising on a production facility with dynamic and rapidly changing boundary 

conditions in a world of increasing complexity.” 

In addition, this study outlines the importance of interoperability in Industry 4.0 for the 

production and services industry. Industry 4.0 is not only an integration of cyber physical systems 

(CPS), the Internet of things (IoT), information communication technology (ICT), big data, and smart 

factories, it is also an interoperability process (Lu 2017). The framework of interoperability is shown in 

Figure 4. 
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Industry 4.0 has two major factors: Integration and interoperability (Romero and Vernadat 2016). 

Integrated with various applications and software arrangements, Industry 4.0 attains seamless 

operations across production and service organizational boundaries, while also realizing networked 

organizations Ruggaber, 2006. Figure 4 shows the framework of interoperability and how it facilitates 

the production and services sectors with the integration of other Industry 4.0 factors. Finally, from 

the literature at hand, the hypotheses for the study are proposed below: 

Hypothesis 1. Big data has a significant relationship with production and services. 

Hypothesis 2. Smart factories have a significant relationship with production and services. 

Hypothesis 3. Cyber physical systems (CPS) have a significant relationship with production and services. 

Hypothesis 4. The Internet of things (IoT) has a significant relationship with production and services. 

Hypothesis 5. Interoperability has a significant relationship with production and services. 

Hypothesis 6. Production and services have a significant relationship with the performance of the production 

and services industry. 

 

Figure 4. Framework of interoperability: How it facilitates the production and services sectors. Source: 

Lu (2017). 

3. Research Methodology 

In this cross-sectional research design, the target sectors were mainly textile (production 

industry) and logistics (service industry), because both face similar challenges, such as these sectors 

account for over 50% of national exports but share trade worldwide is less than 2% (Wadho and 

Chaudhry 2016), selection of the right channel of distribution (Khan 2010), and low government 

support in terms of tax incentives for exports and infrastructural development (Afzal 2017; Bashar 
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2017), leading to inadequate technological advancement. Moreover, despite having a distinctive 

nature, the trends and variations of both sectors are similar to a larger extent. Data was collected from 

the operational managers of the textile and logistics industry directly involved in Industry 4.0 

activities, by using a matrix-based survey questionnaire. 

3.1. Sample Size and Sampling Technique 

Roscoe (1975) introduced a rule-of-thumb for considering an appropriate sample size, 

suggesting that an acceptable sample size should be more than 30 and less than 500 respondents 

(cited from Sekaran and Bougie 2012). On the other hand, Comrey and Lee (1992) argued that over 

200 respondents reflects an adequate sample. The same argument is supported by Haque et al. (2017), 

who suggest that in order to draw a logical conclusion, any sample over 200 is acceptable in social 

science research. Hence, 300 questionnaires were distributed among the operational level employees 

(managers) of textile and logistics companies. The total sample size was 224, which is adequate to 

draw conclusions. Moreover, the researchers used purposive sampling by ensuring an equal split in 

both considered sectors. According to the strategy of Haque et al. (2018), by considering the equal 

split between groups or sub-sections through employing purposive sampling, researchers can have 

fair representation. This strategy enables the researchers to target equally by avoiding over-drift 

towards one set at the expense of the other. We adopted the same strategy by using purposive 

sampling to have equal and fair representation from both sectors. Thus, 112 respondents from each 

sector were included. Although purposive sampling is prone to self-selection biases, using the fair 

representation technique, such as only targeting managers involved in Industry 4.0 and an equal split, 

enabled the researchers to avoid self-biases.  

3.2. Questionnaire Development 

Data was collected using the 5-point Likert scale from strongly disagree to strongly agree (1—

strongly disagree, 2—disagree, 3—neutral, 4—agree, 5—strongly agree). A Likert scale is most 

suitable to examine the opinion and views of the respondents (Sekaran and Bougie 2012). Moreover, 

a 5-point Likert scale is preferred because it reduces the respondent frustration while increasing the 

originality of the data (ibid). 

We used two types of approach for reliability and validity. One was to ensure the instruments 

and models, while the other was to ensure the respondents. The reliability and validity of the 

instruments and models were checked through statistical tests, while for respondent’s we used the 

demographic-check approach. In the current research, the questionnaires were divided into two 

major parts. The first part of the questionnaire was based on the profile of respondents, which was 

comprised of gender, age, marital status, and income. The use of socio-demographic questions was 

used to reach the target audience while ensuring that our respondents were reliable and valid. We 

used these socio-demographic questions as a way to ensure that the characteristics of a population 

was authentic by re-checking it with their HR department. As part of the process, we asked the HR 

departments to confirm with us the number of managers falling into the age brackets, experience, 

gender, and so on, of our targeted departments. On receiving the response sheet from the HR 

department, we compared it with the actual respondents’ responses. The idea was to exclude any 

respondents that had discrepancies in the two (HR and participants’ given details of socio-

demographic information) sets. While seeking information from the HR departments, we did not 

disclose the name of any respondents to them for confidentiality reasons. Thus, the demographic 

check helped in assessing the reliability and validity of the respondents. 

The second part of questionnaire was comprised of the research items based on the key variables 

of the study, namely big data, smart factories, cyber physical systems (CPS), the Internet of things 

(IoT), interoperability, production and services, and production and services industry performance. 

The second part contained attitudinal and behavioral questions such as “we continuously determine the 

innovative opportunities for the strategic use of Big Data Analytics”, “when we make Big Data Analytic 

investment decisions we consider about how much these options will help end users make quicker decisions”, 

“in our organization business analyst and line people meet frequently to discuss important issues”, “in our 
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organization the responsibility for Big Data Analytic development is clear”, and “compare to rivals within our 

industry our organization has the foremost available analytic system” (See Appendix A). Thus, the survey 

questionnaire follows the DAB (Demographic-Attitudinal-Behavior) strategy. 

3.3. Data Collection Procedure 

Questionnaires were distributed through an e-mail survey using GOOGLEDOC. The 

questionnaire was emailed from the lead author’s personal email address. Firstly, the e-mail 

addresses of both industries’ managers were gathered. Secondly, respondents were selected 

randomly from the list. Proper guidelines to fill the questionnaire and the objective of study were 

addressed to respondents through e-mail. The respondents not involved in Industry 4.0 were 

excluded. 

We had 53 responses from textile firms and 61 from logistics organizations out of 300 (150 each 

industry) total distributed survey. After two weeks, we sent our first reminder to prompt more 

responses. In response to the reminder, we received 34 responses from textile firms and 37 from 

logistics. After another two weeks gap, we sent a second reminder, and we received 20 more 

responses from textile firms, whereas only 3 responses from logistics firms. Then we sent our third 

reminder, and in response we received 11 more responses from textile firms. Thus, we now had 118 

responses from textile firms, but only 112 questionnaires were valid in terms of being complete. 

Therefore, we requested 9 more responses from logistics firms, which we did receive. Hence, we had 

our total of 224 respondents after 3 reminders. 

3.4. Response Rate 

From 300 distributed questionnaires, 230 responses were received, out of which 6 were missing 

significant parts of the questionnaire and thus excluded from the analysis. Therefore, a total of 224 

questionnaires were used for the purpose of data analysis through the partial least square (PLS)-

structural equation modeling (SEM) technique. Table 2 shows the response rate. 

Table 2. Response rate. 

Response Frequency/Rate 

Total number of questionnaires distributed 300 

Total number of questionnaires returned 230 

Total number of useable questionnaires 224 

Total number of questionnaires omitted 06 

Total response rate (230/300) 76.666% 

Total response rate after data entry (224/300) 74.666% 

4. Data Analysis and Results 

The current research followed the recommendations of Henseler et al. (2009) to analyze the 

collected data, which is a prominent method to analyze primary data. It is based on two major parts, 

which include (1) measurement model assessment and (2) structural model assessment. 

Measurement model assumptions must be achieved prior to performing structural model 

assessment. This includes accessing the reliability of data; that is, whether the collected data is reliable 

to conduct the study or not. It comprises the Cronbach alpha and composite reliability. Cronbach’s 

alpha is a measure of internal consistency to check close relatedness of items as a group. It is also 

based on the factor loadings (shown in Figure 5) of each item (question). All the items should have 

factor loadings above 0.50 to approach the other assumptions of the measurement model, such as 

average variance extracted (AVE). AVE shows the external consistency on which the convergent 

validity is based. Convergent validity, a parameter frequently utilized in social sciences research, 

refers to the degree to which two measures of constructs that theoretically should be related are in 

fact related. The second part is the structural model used to test the hypotheses, which was developed 

from the literature review. The research findings are generally based on structural model assessment. 
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The results of the current research were obtained through Smart PLS-SEM, which is one of the 

prominent techniques to analyze data. Most of the prior studies recommended PLS-SEM as one of 

the suitable techniques to analyze the data (Hair et al. 2016; Henseler et al. 2009). 

PLS-SEM is based on two major steps. Firstly, the measurement model was examined to check 

the reliability as well as validity of the model. In the process, factor loading, reliability, and average 

variance extracted (AVE) were examined. According to previous studies, items having factor loading 

below 0.40 should be deleted (Hair et al. 2010). For the present study, Cronbach alpha (0.70), 

composite reliability (0.70), and average variance extracted (AVE) (0.50) are all acceptable. Figure 5 

shows the factor loadings and Table 3 shows Cronbach alpha, composite reliability, and average 

variance extracted (AVE). All these values are at a more than satisfactory level. Furthermore, 

discriminant validity is shown in Table 4 through the heterotrait–monotrait criteria. 

 

Figure 5. Measurement model. 

There are two things reported in this measurement model, AVE and item loadings. Here, items 

of latent variables are loaded. As per the rule of thumb, factor loading should be greater than 0.40 

(Hair et al. 2016), and here we can see that all the loaded items of smart factory (SF), big data (BD), 

production and services (PS), production and services industry performance (PSIP), cyber physical 

systems (CPS), interoperability (INTER), and the Internet of things (IOT) are acceptable. Moreover, 

the item loading formed the average variance extracted (AVE), which should be greater than 0.50 

(Hair et al. 2016). In our data, SF (0.715 > 0.50), BD (0.695 > 0.50), PS (0.612 > 0.50), PSIP (0.777 > 0.50), 

CPS (0.764 > 0.50), IOT (0.757 > 0.50), and INTER (0.716 > 0.50) are acceptable, thus the measurement 

model is valid. 
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Table 3. Measurement model (results). 

Variables Cronbach’s Alpha rho_A Composite Reliability Average Variance Extracted (AVE) 

BD 0.853 0.857 0.901 0.695 

CPS 0.896 0.899 0.928 0.764 

INTER 0.802 0.805 0.883 0.716 

IOT 0.917 0.919 0.939 0.757 

PS 0.797 0.808 0.862 0.612 

PSIP 0.927 0.928 0.945 0.777 

SF 0.894 0.909 0.925 0.715 

Note: BD = big data, SF = smart factory, CPS = cyber physical systems, IOT = Internet of things, INTER 

= interoperability, PS = production and services, PSIP = production and services industry 

performance. 

Table 4. Heterotrait–monotrait ratio of correlations (HTMT). 

Variables BD CPS INTER IOT PS PSIP SF 

BD        

CPS 0.880       

INTER 0.648 0.614      

IOT 0.591 0.577 0.890     

PS 0.765 0.744 0.641 0.631    

PSIP 0.713 0.606 0.762 0.668 0.777   

SF 0.623 0.603 0.835 0.721 0.62 0.691  

Secondly, structural model assessment was used to test the relationships between independent 

and dependent variables. In the current study, the hypotheses were supported with a t-value equal 

to or more than 1.96. All the hypotheses with a value less than 1.96 were considered as not supported. 

In the current study, it is found that all the independent variables for big data have a statistically 

significant relationship with production and service processes (t = 2.737 > 1.96). Thus, we fail to reject 

Hypothesis 1. Smart factory has a highly statistically significant relationship with production and 

service processes (t = 8.435 > 1.96), hence we do not reject Hypothesis 2. Similarly, we found that cyber 

physical systems have a statistically significant relationship with production and service processes (t 

= 2.539 > 1.96). Therefore, we fail to reject Hypothesis 3. Furthermore, the Internet of things (IoT) has 

a statistically significant relationship with production and service processes (t = 2.467 > 1.96). Hence, 

we fail to reject Hypothesis 4. We also found that interoperability has a significant relationship with 

production and service industry processes (t = 7.535 > 1.96). Thus, we fail to reject Hypothesis 5. 

Lastly, production and services have a highly statistically significant relationship with the 

performance of the production and services industry (t = 30.467 > 1.96). Hence, we do not reject 

Hypothesis 6. Moreover, the β-value shows that all the relationships are positive. Figure 6 shows the 

relationship between variables and Table 5 shows the results of the hypotheses. 
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Figure 6. Structural model. 

Table 5. Structural model (results). 

Relationship 
Original 

Sample (β) 

Sample 

Mean (M) 

Standard Deviation 

(STDEV) 

T Statistics 

(|β/STDEV|) 

p 

Values 

Effect 

Size (f2) 

BD -> PS 0.292 0.287 0.107 2.737 0.006 0.071 

CPS -> PS 0.241 0.244 0.095 2.539 0.011 0.049 

INTER -> PS 0.339 0.344 0.044 7.535 0.000 0.081 

IOT -> PS 0.225 0.217 0.091 2.467 0.014 0.045 

PS -> PSIP 0.751 0.754 0.025 30.467 0.000 0.875 

SF -> PS 0.397 0.388 0.047 8.435 0.000 0.083 

Additionally, Table 4 shows the effect size (f2). In the current research, big data, smart factory, 

cyber physical systems, the Internet of things (IoT), and interoperability all have small effect size (f2) 

according to the recommendations of Cohen (1988). However, production and services have a strong 

effect size (f2). 

According to Chin (1998), an 0.33 value of variance (R2) is moderate and 0.67 is substantial. In 

the current study, this value is 0.564, which is moderate. This indicates that all the variables are 

expected to bring 56.4% variance in dependent variables. 

Predictive relevance (Q2) is important to measure how well observed values are reproduced by 

the model (Akter et al. 2011). It is critical to measure the predictive validity of a complex research 

model (Chin 1998; Geisser 1975). It refers to “a synthesis of cross validation and function fitting with 

the perspective that the prediction of observables is of much greater relevance than the estimation of 

what are often artificial construct – parameters” (Chin 2010, p. 679; Geisser 1975, p. 320). In the current 

study, a blindfolding procedure was used and the Stone–Geisser test was employed for predictive 

relevance (Q2) (Geisser 1974). The predictive relevance (Q2) is shown in Table 6. According to the 
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recommendations of Henseler et al. (2009), it should be greater than zero. This indicates that the 

model of the current study has achieved a certain level of quality. 

Table 6. Predictive relevance (Q2). 

Endogenous Latent Variable SSO SSE Q2 = (1 − SSE/SSO) 

Production and Services Industry Performance 620.000 375.346 0.395 

Production and Services 496.000 361.144 0.272 

Source: Author’s own calculations based on collected data. 

Table 7 shows the goodness of fit (GFI) of the model. It is examined through the standardized 

root mean square residual (SRMR), normed fit index (NFI), and adjusted goodness-of-fit index 

(AGFI). According to Hooper et al. (2008), SRMR must be below 0.08, NFI must be equal to or above 

0.95, and AGFI must also be equal to or above 0.95. In the current study, all the values are satisfactory. 

Table 7. Goodness of fit (GFI). 

Chi-Square Statistic Model-Fit Results 

Standardized Root Mean Square Residual (SRMR) 0.075 (<0.08) 

Normed Fit Index (NFI) 0.953 (≥0.95) 

Adjusted Goodness-of-fit Index (AGFI) 0.971 (≥0.95) 

5. Research Findings 

The current research examined the effect of five Industry 4.0 factors (big data, smart factory, 

cyber physical systems (CPS), the Internet of things (IoT), and interoperability) on the production 

(textile industry) and services (logistics industry) sectors of Pakistan. Moreover, the role of the 

production and services sector in the performance of the production and service industry was also 

examined. 

The results of the current research found that big data has a significant positive relationship with 

the production and service sector. The results of the analysis show a t-value of 2.737 and β-value of 

0.292. This indicates a direct relationship of big data with production and services. Increases in big 

data implementation will promote the textile and logistics industry. Furthermore, the current study 

results are in line with previous studies (Akter et al. 2016; Wamba et al. 2017; Stoicescu 2016). 

In the case of smart factories, a significant relationship was found with production and services, 

with a t-value of 8.435. A β-value of 0.397 also shows a positive relationship of smart factories with 

production and services. These results are in line with the study carried out by Lalic et al. (2017). 

Therefore, the results demonstrate that better implementation of smart factory technologies will lead 

to higher production and services. The positive significant results of cyber physical systems (CPS) 

and the Internet of things (IoT) found with the current findings support the previous studies of 

Witkowski et al. (2017) and Ślusarczyk et al. (2016). It is identified that both cyber physical systems 

(CPS) and the Internet of things (IoT) have a significant relationship with production and services, 

with t-values of 2.539 and 2.467, and β-values of 0.241 and 0.225, respectively. Thus, both cyber 

physical systems (CPS) and the Internet of things (IoT) have a significant positive relationship with 

production and services. 

Finally, the effect of production and services on production and services industry performance 

(textile industry and logistics industry) was examined. It was found that better production and 

services have a significant positive role in enhancing the overall performance of the textile industry 

and logistics industry, with a t-value of 30.467 and β-value of 0.751, which is consistent with the 

previous studies of Strandhagen et al. (2017) and Govorukha and Kuchkova (2018). Thus, Industry 

4.0 has major contributions towards production and services, which ultimately impact positively on 

the overall performance of the production industry and service industry. 
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6. Conclusions 

The current research focused on the role of Industry 4.0 on the production and services sector of 

Pakistan. Data was collected from operational level employees (Managers) of the textile and logistics 

industry through a survey questionnaire. 

The findings revealed that Industry 4.0 has major importance in overcoming the various 

challenges of the textile and logistics industry of Pakistan. Particularly, five Industry 4.0 factors (big 

data, smart factory, cyber physical systems (CPS), Internet of things (IoT), and interoperability) are 

the most invaluable to enhance performance. Through these elements, introduction of the latest 

technology has the potential for enhancing various operations in the considered industries. 

Additionally, through these five factors, Industry 4.0 is positively associated with the production and 

services sector, which has positive impact on overall performance. Thus, the textile and logistics 

industry of Pakistan requires the introduction of Industry 4.0 through a comprehensive plan, which 

should cover the aforementioned five factors. 

Future researchers are invited to compare the performance of various production and services 

industries after and before Industry 4.0 implementation. This will better show the Industry 4.0 

benefits. The researchers should consider a panel study to examine the impact of different time 

intervals, as it will reflect the variations in different time zones. Additionally, the researchers should 

consider the split of public and private companies on geographic grounds to further expand the 

research phenomenon. 

Managerial Implication 

Within the context of managerial implications, the results of this research provide insights into 

the focus areas to promote production and service industry operations which automatically increase 

performance. In general, the outcomes retrieved from this research could be useful to other countries, 

where the performance of the production and service sector is low, especially in emerging economies. 

Specifically, the outcomes of this study could be applied by policymakers to address the declining 

performance of the textile and logistics industry.  

Most importantly, this study is beneficial because it revealed various important elements of 

Industry 4.0 to promote production and service sector performance that managers can consider and 

implement to ensure that the sector’s performance remains stable. This will allow the managers to 

not only survive, but to drive the competitive dynamic environment. This study is also beneficial for 

managers in a sense that they can ensure mandatory Industry 4.0 practices in the textile and service 

industries in general. Thus, the study is more advantageous for practitioners when making the 

strategies to improve the performance of the textile and logistics industries. 
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Writing—review & editing, A.u.H. 

Funding: This research received no external funding 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

This is a survey questionnaire to investigate the influence of Industry 4.0 on production and 

service sectors in Pakistan. The target respondents are managers working in textile and logistics 

companies. The survey questionnaire will take approximately 10–15 min, but you can take more time 

if you want. The shared information and details will remain confidential. Your personal information 

will not be disclosed to the general public at any stage. You can withdraw at any stage of the research, 

if you wish to. 

Section A: Demographic Questions 
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Kindly tick the option that best represents your company and your details: 

1. Type of industrial Sector: 

 Textile (Readymade garments, Bedwear, Towels, Fabric, Yarn, Cotton, Carpets) 

 Logistics  

2. Gender: 

 Male        Female 

3. Age 

 18–25    26–35    36–45    46–55 

 56 or Above 

4. Experience 

1–2 years    3–5 years    6–8 years    9–12 years 

 13–16 years   17–20 years   21 or above  

5. Education 

 Diploma/FA/FSC      BA/BSC/Engineering 

 Master         MPhil 

 PhD 

Section B: Attitudinal and Behavioral Questions 

(i) Measure of Big Data 

Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

B Questions 1 2 3 4 5 

1 We continuously examine the innovative opportunities for the 

strategic use of big data analytics. 

     

2 
When we make big data analytics investment decisions, we 

think about and estimate the effect they will have on the 

productivity of the employees’ work. 

     

3 In our organization, business analysts and line people meet 

frequently to discuss important issues. 

     

4 In our organization, the responsibility for big data analytics 

development is clear. 

     

(ii) Smart Factory 
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Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

C Questions 1 2 3 4 5 

1 It offers ways that can successfully address the issues.      

2 It provides the ability to work in real time.      

3 It provides the ability to adjust and learn from data.      

4 It has a significant relationship with responsive, proactive, and 

predictive practices which enhance the accuracy. 

     

5 It enables the organization to avoid operational downtime and 

other productivity challenges. 
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(iii) Cyber Physical System 

Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

D Questions 1 2 3 4 5 

1 It provides significant computational resources which 

contributes to operations and services.  

     

2 It enhances the processing capability and local storage.      

3 It provides unprecedented opportunities for innovation.      

4 It provides the ability to handle challenges, barriers, and 

threats. 

     

(iv) Internet of Things 

Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

E  1 2 3 4 5 

1 It provides lower lead times for customers and lower overall costs.      

2 It helps to improve the production capacity.       

3 It provides the linkage of all devices to the internet which help 

in production processes.  

     

4 It provides a better communication between employees.       

5 It provides a link between customers and company, and 

increases the customer satisfaction level.  

     

(v) Interoperability 

Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

F Questions 1 2 3 4 5 

1 It has the ability to automatically interpret the information 

exchanged meaningfully and accurately. 

     

2 It implies exchanges between a range of products, or similar 

products from several different vendors. 

     

3 It provides better technology to boost inter organizational 

activities. 
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(vi) Production/Services 

Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

G Questions 1 2 3 4 5 

1 Effective production inside the company increases the overall 

industry performance.  

     

2 Effective services to the customer increase the overall industry 

performance. 

     

3 Effective production and services increase the customer 

satisfaction level.  

     

4 Effective production and services bring accuracy in the 

operations of the company.  

     

(vii) Production/Service industry performance 

Please select one of the following options (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5 = Strongly Agree) 

F Questions 1 2 3 4 5 

1 Overall performance of the company last year was far above 

average. 

     

2 Overall performance of the company relative to major 

competitors last year was far above average. 

     

3 Overall sales growth of the company relative to major 

competitors last year was far above average. 

     

4 
Relative to our largest competitor, during the last year, we had 

a larger market share. 

 

     

5 Relative to our largest competitor, profitability was increased.       

Thank you for your survey and time. 
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