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Abstract: Math proficiency is considered a critical subject for entry into most science, technology,
engineering, and math (STEM) occupations. This study examines the relationship between parental
occupation and gender differences in students’ math performance, that is, the gender math gap.
Using insights from theories of social and gender reproduction, we hypothesize that daughters of
STEM-employed parents, and especially STEM-employed mothers, will score higher on standardized
math tests than their peers with non-STEM parents. Multiple waves of panel data from the Early
Childhood Longitudinal Study, Kindergarten Cohort (ECLS–K) featuring students in third, fifth,
and eighth grades are used to examine these hypotheses. Results from random effects regression
models confirm these hypotheses while also revealing support for STEM-employed father-to-son
and father-to-daughter transmission of a math performance advantage. Also, regardless of parental
occupation, a gender math gap remains evident. We conclude by discussing implications, study
limitations, and directions for future research.
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1. Introduction

The U.S. is expected to add over one million jobs in STEM (science, technology, engineering, and
math) fields in the foreseeable future (President’s Council of Advisors on Science and Technology 2012).
Yet, gender disparities in degree attainment may influence who is able to take advantage of job growth
in this important sector of the economy. Bachelor degrees awarded to women increased in many fields
between 1998 and 2008, but no such change occurred in STEM fields (U.S. Department of Education
2012a, 2012b). Women currently earn less than 20 percent of all the mathematics, physical sciences,
engineering, and computer science degrees in the U.S., and roughly two thirds of STEM jobs fall within
these last two fields (Fayer et al. 2017; Landivar 2013; U.S. Department of Commerce 2010, 2011).

This study aims to advance research on average differences in mathematical performance between
male and female students during elementary and middle school. This phenomenon, sometimes
described as the gender math gap, is the tendency for male students to outperform their female peers
in mathematics courses and standardized tests (College Board 2013; U.S. Department of Education
2012a, 2012b). The gender math gap has been well documented among high school students for
several decades, but is generally more muted prior to high school (e.g., College Board 2013; Downey
and Yuan 2005; Hyde et al. 1990; Sohn 2010; U.S. Department of Education 2012b). Early inquiries
suggested that stereotyping discouraged young women from enrolling in advanced math courses
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(e.g., Conway et al. 1996; Elliot and Church 1997; Schmader 2002; Sherman 1981; Spencer et al. 1999),
but more recent empirical studies, including meta-analyses, have suggested that stereotyping is not a
consistent factor (Flore and Wicherts 2015; Stoet and Geary 2012). Consequently, our study is among
those that aim to explore other, more structural explanations for the gender math gap (e.g., Young and
Fisler 2000).

Our study investigates how structural processes of social and gender reproduction within families
may influence the gender math gap. Extant studies have examined the influence of social antecedents
other than household factors (e.g., race-ethnicity, culture, socioeconomic status) on the gender math
gap (e.g., Entwisle et al. 1994; Lewis et al. 2012; Shih et al. 2007). We examine the intergenerational
transmission of math proficiency and possible pathways whereby the math gap might be diminished.
Specifically, we investigate the role of parental occupation in STEM fields on the math performance of
these parents’ sons and daughters. In doing so, our study enlists panel data on standardized math test
scores from third, fifth, and eighth grade students. Consequently, this investigation sheds new light on
possible math gap trajectories, and could delineate practical steps to ameliorate this gap.

2. Literature Review

Despite women’s increased presence in the broader workforce, they are three times more likely
to be employed in lower paying administrative occupations than higher paying STEM professions
(Firestone et al. 1999; Moen 2011). The average woman employed in a STEM field earns 38 percent
more than her female counterpart in a non-STEM occupation; yet, men hold more than three quarters
of all STEM jobs in the United States (U.S. Department of Commerce 2011). Mathematical acumen
is widely considered a foundational and essential skill for success in most STEM fields even though
mathematical scientists and those in related fields make up less than 4 percent of all STEM employment
(Fayer et al. 2017). Of course, there are different types of STEM occupations, ranging from professional
careers as computer scientists, engineers, and natural scientists to the teaching of these subjects in
school settings. Moreover, various types of health professions are often considered STEM occupations,
but some rely more heavily on science than others. Women are often differentially represented
within these internally heterogeneous STEM sectors (Ceci et al. 2014). Moreover, definitions of STEM
occupations vary somewhat even among federal government offices (see Fayer et al. 2017). For example,
nursing—composed of 83 percent women (Kaiser Family Foundation 2017)—is considered a scientific
field in some but not all definitions of STEM careers (Fayer et al. 2017).

Since advanced math is the gateway subject for nearly all STEM majors (Bybee 2011), the gender
gap in mathematical performance is a significant problem (College Board 2013; U.S. Department
of Education 2012a, 2012b). Math test score disparities favoring male students have been observed
prior to high school (Fryer and Levitt 2010; Robinson and Lubienski 2010; Robinson et al. 2011;
Schweinle and Mims 2009). However, such disparities typically become more pronounced with age.
For example, even quite recently, the average SAT math score for male high school students (531) was
significantly greater than that of their female peers (499) (College Board 2013). And while female
students’ math test scores have increased over time, some research indicates that the gender math
gap has remained intact for over a decade or longer (U.S. Department of Commerce 2011; see (Schafer
and Gray 1981) for an early study). However, other studies paint a somewhat more optimistic picture.
There is some evidence that the gender math gap has diminished over time or, in some circumstances,
may favor girls (Hyde et al. 1990; Hyde et al. 2008; Voyer and Voyer 2014). Disparate findings with
respect to the gender math gap reflect the variability of this gap among diverse samples of students,
such as the general population versus more selectively sampled groups (e.g., gifted students) (see
(Voyer and Voyer 2014) for a meta-analysis). Where evidence for male students’ higher scores in
mathematical reasoning has been documented, they have been shown to influence career trajectories
beyond graduation, including entrance into higher paying fields such as engineering, physical sciences,
mathematics, and computer science (Cheema and Galluzzo 2013; College Board 2013; Paglin and
Rufolo 1990; Sohn 2010).
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Empirical literature on suspected causes of a gender math gap favoring male students is diverse.
Some research underscores the influence of gendered expectations among teachers (Gunderson et al.
2012; Kloosterman et al. 2008; Li 2004; Robinson et al. 2011), while other studies point to academic
peer pressure that negatively sanctions math proficient female students (Fischer and Massey 2007;
Schmader 2002). Test anxiety and related factors have also been examined (Hannon 2012). Early
research surmised that boys’ putatively superior spatial skills manifest themselves in a gender math
gap and produce disparate consequences across educational trajectories (Benbow and Stanley 1981,
1982). However, more recent scholarship has highlighted the role of family factors in mathematical
aptitude (Casad et al. 2015; Entwisle et al. 1994; Frome and Eccles 1998), an influence that had been
noted in some early research as well (Benbow and Stanley 1980; Block 1983). Parents’ gender
ideologies influence their children’s self-confidence with respect to math (Muller 1998), and parents
with traditional gender attitudes tend to have daughters with diminished mathematical self-efficacy
(Frome and Eccles 1998; Jacobs and Eccles 1992; Jacobs 1991; Parsons et al. 1982; Schafer and Gray
1981). Parents with lower mathematical expectations for their daughters tend to have daughters with
less ambition in math (Casad et al. 2015; Frome and Eccles 1998; Parsons et al. 1982). Moreover, because
parents of daughters may underestimate the importance of math skills for long-term professional
development, they often (1) provide less positive verbal reinforcement related to math; (2) rationalize
their daughters’ sub-par math performance; and (3) offer less homework assistance (Muller 1998).
Parental influence can also boost the math performance of female students. Young women who receive
positive support from their parents, especially their father, tend to persevere in college STEM courses
(Frome and Eccles 1998; Scott and Mallinckrodt 2005). Such support may be one key to fostering
positive self-assessments, which have been shown to be quite important in women’s pursuit of a STEM
occupation (e.g., Correll 2001; Sáinz and Eccles 2012). Family factors have been shown to have a more
muted influence among students who are academically talented (Raymond and Benbow 1986), but
may operate differently and with greater effect in the general population.

Among research studies that bear directly on our investigation, one study analyzed science
course performance of high school students in relation to parental occupation, and found a smaller
gender performance gap for female students with a mother employed in a STEM field (Riegle-Crumb
and Moore 2014). That study added to a growing body of literature on the social reproduction of
educational proficiencies across generational lines (Frome and Eccles 1998; Scott and Mallinckrodt 2005;
Tenenbaum and Leaper 2003). In fact, another study using ECLS–K data examined social influences on
the gender math gap among students, but focused on the employment of parents in math-intensive
occupations (Fryer and Levitt 2010). That investigation detected no benefit for elementary school-age
students who had a parent employed in a math-intensive field. However, that study’s narrow definition
of parental employment in a math-intensive field minimized variation in the key independent variable.
Moreover, Fryer and Levitt (2010) only focused on elementary school students despite the commonly
observed widening of the math gap beyond elementary school. It is also possible that larger structural
elements present within societies influence gender and math performance outcomes. Although
counterintuitive, a far-reaching cross-national comparative examination revealed that having more
mothers employed in a STEM occupation was associated with parental valuation of sons’—but not
daughters’—mathematical performance; in that same study, societal gender inequality was not related
to gender differences in mathematical performance or anxiety (Stoet et al. 2016). Still others have
found an inconsistent relationship between the gender math gap and greater societal gender equality
in cross-national comparisons (Fryer and Levitt 2010). In short, a mix of findings has emerged, but
the critical role of parental occupation and other structural elements have begun to attract sustained
attention among those interested in explaining and, where possible, reducing the gender math gap.
Our study focuses quite pointedly on the potential influence of parental STEM employment on gender
differences in math performance. Moreover, our study features panel data from students in elementary
school through middle school. Analyzing student data along the educational trajectory is important
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because, as noted, mathematical acumen disparities generally widen as young people move toward
high school.

3. Theory

We enlist insights from Bourdieu’s social reproduction theory and more recent insights from
gender reproduction paradigms to examine the influence of parental occupation on youngsters’
mathematical ability. Social reproduction theory is organized around the premise that advantages
enjoyed by parents are often transmitted to their children. Cultural capital—that is, valued knowledge,
skills, and behaviors that can be translated into educational and economic advantage—is a key conduit
for the intergenerational transmission of privilege and inequality (e.g., Bourdieu 1977, 1991, 1996;
Bourdieu and Wacquant 1992; see also Kraaykamp and van Eijck 2010; Tzanakis 2011). Within much of
this research, structural factors such as family organization and educational background are considered
core generators of cultural capital. Families are particularly adept at generating cultural capital, as
those in positions of privilege can employ practical strategies related to marriage, language, fertility,
and education to establish and maintain their status (Bourdieu 1996).

Initial variants of social reproduction theory paid some attention to the gendered dimensions
of cultural capital, although such insights have been expanded with the rise of gender reproduction
theory (Eccles et al. 2000; Frome and Eccles 1998; Huppatz 2012; Parsons et al. 1982; Ridgeway 2011;
Tenenbaum and Leaper 2003). Gender segregation within family relationships is a foundational
medium through which children learn and internalize the hidden nuances of gender (e.g., Bourdieu
1989, 1996), and these gendered habits often gain additional reinforcement as youngsters transition
from home to school (Bourdieu 1962; see also Kraaykamp and van Eijck 2010; Ridgeway 2011;
Swartz 1977). Therefore, while social reproduction pays attention to the transmission of inequality
regimes writ large (e.g., class position), gender reproduction theory focuses more pointedly on how
differences between boys and girls as well as men and women are structured and sustained (e.g., deeply
gendered patterns of housework, child care, educational achievement, and occupational pursuits)
(Ridgeway 2011).

How might gender reproduction operate with respect to math proficiency? Students are often
exposed to messages about gendered forms of academic proficiency through social networks, and the
internalization of these messages can have consequences for later life trajectories (Hill et al. 2014).
Parents, in particular, may directly convey expectations or provide messages about academic
proficiency. However, as noted, stereotype threat and related factors have not proven to be a consistent
influence on math performance (Flore and Wicherts 2015; Stoet and Geary 2012). So, structural factors
emerge as a likely antecedent. Given the power of what some gender reproduction theorists and
researchers call “gender capital”—that is, gendered forms of cultural capital (Huppatz 2012)—parents
may not so much overtly discourage daughters against the pursuit of math achievement or STEM
careers. Rather, structured patterns of gender difference and inequality found in workplaces can
be transposed into family life and sustained across generations. Specifically, parents may model
sex-differentiated competencies in math and other subjects in a manner that strikes parents and, quite
importantly, their sons and daughters, as “natural” and “normal” based on their occupations. Hence,
capacities that are structurally embedded in social institutions such as the workplace and the home
need not be articulated but rather can present themselves as the “natural order of things.” In this
way, social institutions are “structuring structures” and gendered patterns can exhibit remarkable
persistence. In short, theories of social reproduction—and their variant, gender reproduction—are
valuable inasmuch as they are able to explain the structural—even institutional—character and
persistence of social stratification and gender inequality. Gendered math performance and the gender
math gap may be subject to these dynamics of structural influence. If so, we would expect to find
evidence for this pattern in linkages between parental occupation and children’s math achievement.

Our study also examines a potential upside of social reproduction for students—and especially
female students—in elementary and middle school. Specifically, we seek to determine if children
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who have at least one parent employed in a STEM occupation exhibit greater mathematical
ability. Consequently, we augment conventional theories of social reproduction and research on
the intergenerational transmission of occupation by examining the prospects for gender reproduction
in the home (e.g., Oren et al. 2013). We anticipate both male and female children to receive a cultural
capital benefit from the employment of either or both parents in a STEM field. Given the social and
familial prominence of gender, we also expect gender-specific patterns of social reproduction to be
evident. In this regard, we anticipate observing mother-to-daughter and father-to-son transmission of
math proficiency, respectively, when mothers and fathers are employed in STEM fields. Such homes
may provide more positive role modeling and reinforcement, whether transmitted consciously or
not, along gender-specific lines. The mother-to-daughter transmission of math proficiency would
counter the gender math gap, while father-to-son proficiency would reinforce it. In this way, we
follow other researchers who have pointed to the value of exploring how social reproduction can be
gendered (Eccles et al. 2000; Frome and Eccles 1998; Parsons et al. 1982; Tenenbaum and Leaper 2003).
We propose a series of hypotheses based on these theoretical perspectives.

4. Hypotheses

Having reviewed research on the gender math gap while introducing our theoretical framework,
we advance three hypotheses. All hypotheses are stated net of confounding factors for which we
control in our statistical analyses.

• H1: Children with one or both parents employed in a STEM field are expected to exhibit
significantly higher standardized math test scores than children with no parent employed in a
STEM field.

• H2: Among female students, those with a STEM-employed mother are expected to exhibit
significantly higher math test scores than their female counterparts with a mother not employed
in a STEM field.

• H3: Among male students, those with a STEM-employed father are expected to exhibit
significantly higher math test scores than their male counterparts with a father not employed in a
STEM field.

5. Research Methods

5.1. Data

To conduct this study and test these hypotheses, we enlist data from the public-use file for
students assessed through the Early Childhood Longitudinal Study, Kindergarten Cohort of 1998–1999
(ECLS–K). These data follow the cohort of children for nine years, from kindergarten through eighth
grade. The ECLS–K allows researchers to study how a variety of family, school, community, and
individual factors are potentially linked to school performance. Students were assessed periodically for
their cognitive, social, emotional, and physical development. Information about the children’s home,
educational activities, school type and environment, classroom curriculum, and teacher qualifications
was also collected. The first wave of the ECLS–K was nationally representative. The child’s gender
and race were ascertained in the original round, while the family type, household income, parental
education, and parental occupation were collected from each subsequent round.

The data collection in fall 1998 of the original cohort yielded direct child assessments of 19,173
kindergarten students and a parent interview sample size of 18,097. Attrition occurred in subsequent
waves, but the sample size remained robust. The ECLS featured 14,470 direct child assessment
and 13,489 parent interviews for the third-grade cohort, 11,346 child assessments and 10,996 parent
interviews for the fifth-grade cohort, and 9296 child assessments with 8755 parent interviews for the
eighth-grade cohort). The size of our study sample (14,374 third-graders, 11,274 fifth-graders, and 9285
eighth-graders) is truncated somewhat by the available standardized test scores. Multiple imputation



Soc. Sci. 2018, 7, 6 6 of 17

was conducted on independent variables to retain as many cases as possible. Multiple imputation of
the dependent variable was avoided because it would produce invalid values (inaccurate test scores).

5.2. Dependent Variable

The ordinal standardized math test scores of both male and female students from three waves of
the ECLS–K data are the focus of this study. Students’ math achievement was measured on a scale
that was prepared for secondary analysis by an internal team of ECLS researchers. Each test examined
age-appropriate mathematical skills and featured a broad range of items designed to examine mastery
across various math performance domains. For example, the eighth-grade test examined (1) number
sense, properties, and operations, (2) measurement, (3) geometry and spatial sense, (4) data analysis,
statistics, and probability, and (5) patterns, algebra, and functions (Najarian et al. 2009). Every math
test used by ECLS was carefully field tested to ensure valid measurement, and the ECLS team ensured
sufficient parity across waves to generate a longitudinal scale score (Najarian et al. 2009).

Analysis using ECLS standardized test data focuses on student performance as determined by
math Item Response Theory (IRT) scores examined in three separate waves, including the spring
semester of the child’s third grade (ECLS wave 5 with an alpha coefficient = 0.95), fifth grade (ECLS
wave 6 with an alpha coefficient = 0.95), and eighth grade (ECLS wave 7 with an alpha coefficient = 0.92)
in school. The ECLS team recalibrated cognitive math assessments for each round using IRT procedures.
The consistent use of IRT scoring permits the measurement of gains in achievement over time and
across grade levels (Najarian et al. 2009; Tourangeau et al. 2009a, 2009b). The IRT provides a test
using patterns of correct and incorrect answers to establish estimates that are comparable across
different groups (Tourangeau et al. 2009a, 2009b). For the current study, the IRT scaled scores for
math are included in the model for academic achievement. The IRT is designed to solve practical
problems otherwise associated with the assembly, administration, scoring, and analysis of large-scale
aptitude tests (Reise and Waller 2009). The results can be compared between students and throughout
each administration of the test for the same student, regardless of when tests were administered
(Tourangeau et al. 2009a, 2009b).

Our dependent variable is composed of math test scores produced by students from all three
waves of the survey used in this study. We use random effects models (also known as panel regression)
to analyze merged data from all of these waves and then include survey wave as a control variable
in our regression models. Conducting panel regression of merged data permits us to examine score
changes exhibited by students across the educational trajectory, that is, from third grade to fifth grade
to eighth grade. Our analytical procedures are described in more detail below yet warrant mentioning
here to clarify the nature of our dependent variable. We do not pool or average math test scores because
such an approach would truncate variation in our dependent variable. Our data merging procedure
preserves each dependent variable data point from every survey wave, thereby permitting us to
examine the full range of variation in math performance (gain or losses) exhibited by students over
time. In short, our use of math test scores treats these data points as a time-varying dependent variable.

5.3. Independent Variables

Parental occupation and gender are the two key categorical independent variables used in this
study. To test the proposed hypotheses, maternal and paternal occupations from all waves were
used. Parental occupation was the proxy for measuring the process of social reproduction in general
(i.e., influence of STEM-employed parent on child) and in gender-specific forms (e.g., influence of
STEM-employed mother on daughter). The gender-specific hypothesis is examined by focusing
primarily on the magnitude of the maternal influence on female students, with gender coded as
male = 1 and female = 0 and the latter serving as the reference category.

Maternal and paternal occupation variables were dummy-coded into three time-varying variables:
1 = male parent in a STEM occupation (Dad STEM) with male parent not in a STEM occupation
(Dad non-STEM) serving as the reference, 1 = female parent in a STEM occupation (Mom STEM) with
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female parent not in a STEM occupation (Mom non-STEM) serving as the reference, and 1 = both
parents in a STEM occupation (Both parents STEM) with neither parent in a STEM occupation serving
as the reference (Both non-STEM). It is important to note that we do not treat these dummy variables
as static measures. Because parents can migrate into and out of STEM professions over each survey
wave, we treat parental occupation as a time-varying variable in our random effects models. We are
therefore able to test not only for the influence of parental occupation, broadly conceived, but can also
account for specific changes in parental occupation (migration into or out of STEM fields) over time.
Our combination of dummy-coding and random effects models offers these advantages.

We used a set of occupational categories with the definition of STEM workers as those employed
in computer and mathematical occupations, engineers, engineering technicians, life scientists, physical
scientists, social scientists, and science technicians for STEM largely based on the 2012 Standard
Occupational Classification Policy Committee (SOCPC) recommendations from the U.S. Department
of Labor 2010 Standard Occupational Classification system. The following are considered STEM
occupations based on the SOCPC framework: natural scientists and mathematicians; engineers,
surveyors, and architects; registered nurses, pharmacists, dieticians, therapists, and physician’s
assistants; health technologists and technicians; technologists and technicians, except health; and
physicians, dentists, and veterinarians. We adapted this coding framework to exclude nurses from
the STEM occupational category in our study. There are different approaches to defining STEM
(see Fayer et al. 2017), and nursing as a profession is not consistently classified as a STEM occupation.
Nursing is also, of course, a gendered profession (Kaiser Family Foundation 2017). Given our interest
in gender reproduction and the fact that more than 8 in 10 nurses are women, it is safest to exclude
nursing from our STEM category rather than introduce measurement error into this category. Of course,
some nursing degrees (e.g., nurse practitioner) are clearly more science-based than others, but we
have no way of distinguishing among them. Moreover, the argument could be made that nursing is
certainly not among the most math-intensive STEM professions, thereby providing little opportunity
for social or gender reproduction in terms of mathematical acumen. In the ECLS data, nurses were
grouped with pharmacists. Therefore, anyone in these two occupations was classified as non-STEM,
as were those in occupations other than the SOCPC STEM-designated professions featured above.

5.4. Control Variables

Control measures for students’ sociodemographic characteristics and parent/household attributes
were applied. Several variables were dummy-coded for analysis to capture the students’ family and
school background. Student-level controls for race-ethnicity were recoded into groups of interest
(Non-Hispanic White, Non-Hispanic Black, Hispanic, Non-Hispanic Asian, Non-Hispanic other), and
are treated as dummy variables in the analysis. Other race refers to American Indians, Pacific Islanders
or those identifying with more than one race, which were not assessed due to small sample sizes.
White is the reference group. For family type, single-parent families and other families were compared
with married parents as the reference category. Maternal and paternal education was measured,
respectively, on an ordinal scale ranging from 1 (eighth grade or below) to 9 (doctorate or professional
degree). To account for the ways in which different school climates and community contexts could affect
students (Riegle-Crumb and Moore 2014), school-level measures of Census regions were examined
(coded as 1 = South versus other [Northeast, Midwest, West = 0]), as were city type (urban = 1,
rural/suburban = 0), and school type (public = 1, private = 0). With the exception of race-ethnicity and
gender (time invariant characteristics), all other control variables are time-varying covariates that are
capable of changing across data collection waves. Our analytical technique (described below) permits
us to control for changes in these time-varying covariates. It is also worth noting that the three waves
of data were stacked to produce the results presented here. Given this data-stacking procedure, grade
level is entered into all regression models as a control variable, such that fifth and eighth grade were
dummy-coded with third grade as the reference. Stacking the data economizes and simplifies the
presentation of results while providing ample statistical power.
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5.5. Statistical Methods

Descriptive statistics for all variables were first generated to determine the frequency distribution
of the data for each wave of the ECLS–K study. To capitalize on the panel design features of the
data, a series of random effects regression models were estimated to evaluate the effect of parental
occupation and gender on student math scores. In each random effects model, the individual-specific
effect is a random variable that is uncorrelated with explanatory variables. Therefore, time invariant
variables such as race–ethnicity and gender can be included in the regression models. Each of these
regression models determines the statistical significance of each predictor variable on the dependent
variable (student math test scores). Given the focus of this study, special attention is paid to the effect
of parental occupation on math scores for students across three grades. Math scores from the third,
fifth, and eighth grade waves of the survey were merged and regressed on their dummy-coded parents’
occupation in a STEM field and gender net of statistical controls. As noted, this merging technique
preserves maximum variation in math scores across time because merging these data points permits
them to be treated as a time-varying dependent variable.

Our panel regression results were replicated using linear growth curve modeling using Stata
software. Very broadly, growth curve modeling “refers to statistical methods that allow for
the estimation of inter-individual variability in intra-individual patterns of change over time”
(Curran et al. 2010). One of two growth curve modeling strategies is commonly utilized by social
scientists: (1) linear growth curve modeling (using multilevel models); and (2) latent growth curve
modeling (using SEM software). Given the nature of our key independent variables as well as our
covariates, we utilized linear growth curve modeling. Methodologically, in our random effects models,
individuals and time serve as multilevel variables (repeated measures nested within each individual).
This approach is consistent with how these variables are analyzed as linear growth curves within the
multilevel modeling framework. The results using linear growth curve modeling were nearly identical
to the findings we present using random effects models utilized for this study. The key difference
between these approaches relates to the modeling of the time variable. In our random effects models,
we used two dummy-coded time variables, each representing a specific survey wave. Using linear
growth curve modeling, we specified time (survey wave) as a metric variable to estimate the rate of
change. Results of this replication are available by request.

6. Results

Descriptive statistics for all variables after imputation are presented in Table 1 for the third grade,
fifth grade, and eighth grade samples (respective panels). For each variable, the imputed sample size
(n) and percentage or mean and the standard deviation are presented. Sample composition is such
that 49.29 percent of third graders in the study are female, and 50.71 percent are male. The mean
math score for all 14,374 students was 98.72 in third grade, with a standard deviation (SD) of 24.72.
The number of students decreased to 11,274 in fifth grade, and their mean math score increased to
123.69 (SD = 24.79). By eighth grade, the number of students was 9285, while the mean math score
increased to 142.22 (SD = 22.01). Less than 1 percent (0.86 percent) of third-grade students have both
parents employed in a STEM occupation. Households with a mother employed in a STEM occupation
peak at 6.83 percent in eighth grade. Both parents employed in a STEM occupation also peaks in
eighth grade at 1.03 percent of households. In third grade, the percentage of students with a mother
employed in a STEM field was the lowest at 4.25 percent. Descriptive statistics on control variables are
also featured in Table 1.

Tables 2 and 3 feature the results of random effects regression models, and display results for the
dummy-coded parental occupation variables with gender of the student as a primary predictor variable.
In these tables, analyses are conducted for the whole sample of students with primary attention given
to the general effects produced by the various parental occupation categories (Mom non-STEM,
Mom-STEM, Dad non-STEM, Dad STEM, Both non-STEM, and Both STEM). Table 2 features parental
occupation results for all students combined with a gender variable (male) entered into each of the two
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models. Model 1 estimates effects for children who have one parent employed in a STEM occupation,
while Model 2 estimates effects for children with both parents employed in a STEM occupation. Table 3
features a series of gender-specific models whereby effects are estimated first for female students
(Models 1–2) and then for male students (Model 3–4).

Recall that H1 predicted that, among the full sample, children with one or both parents
employed in a STEM field would exhibit significantly higher standardized math test scores than
children with no parent employed in a STEM field. Table 2 examines the relative support for this
hypothesis in the full sample of students. The results indicate strong support for this hypothesis.
Students with a STEM-employed mother, STEM-employed father, or both parents STEM-employed
perform significantly better on standardized math tests when compared, respectively, with children
who have a non-STEM mother, non-STEM father, or neither parent STEM-employed. However, an
important caveat bears mentioning from Table 2. While the intergenerational transmission of a math
performance advantage for children of STEM-employed parents is observed, this advantage does not
eliminate the gender math gap. In both models featured in Table 2, the gender variable (male) remains
highly statistically significant (p < 0.001). Thus, parental STEM occupation employment confers a math
performance advantage for children. Yet, regardless of parental occupation, boys generally outperform
girls on standardized math tests.

H2 predicted, in gender-specific models, female students with a STEM-employed mother to
exhibit significantly higher standardized math test scores than their female counterparts with a mother
not employed in a STEM field. This hypothesis is supported by the results featured in Table 3 (Model 1).
Daughters of STEM-employed mothers score significantly better on standardized math tests than those
with non-STEM mothers (p < 0.05). However, this result is accompanied by a finding that warrants
an important caveat. Female students with a father employed in a STEM field also outperform their
female peers without a STEM-employed father. In fact, this father-to-daughter transmission of a
math performance advantage is considerably robust (p < 0.001). Thus, while H2 is supported for
STEM-employed mother-to-daughter transmission of a math performance advantage, STEM-employed
father-to-daughter transmission is especially strong.

H3 predicted male students with a father employed in a STEM field to exhibit significantly higher
math test scores than their male peers with a father not employed in a STEM field. As indicated
in Model 3 of Table 3, H3 is supported. Male students with a STEM-employed father outperform
their male counterparts who do not have a STEM-employed father (p < 0.001). An important caveat
is again warranted for Model 3. Male students with a STEM-employed mother do not outperform
their male peers without a STEM-employed mother. The coefficient representing this relationship
is non-significant. Therefore, the father’s occupational category but not the mother’s occupational
category is influential for male students.

In addition to testing the three hypotheses posed in this study, Models 2 and 4 in Table 3 were
run to determine the influence of couple employment combinations with STEM. As revealed in Model
2, female students with both parents employed in a STEM field far outperform female students with
neither parent employed in a STEM field (p < 0.001). Likewise, significantly higher math test scores are
achieved by male students with two STEM-employed parents when compared with male students
who have neither parent employed in a STEM field (p < 0.05). The empirical patterns reported here are
summarized in Table 4.
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Table 1. Descriptive statistics.

Third Grade Fifth Grade Eighth Grade

Variable n Percent Mean SD n Percent Mean SD n Percent Mean SD

Dependent Variable
Standardized Math Test Scores 14,374 98.72 24.72 11,274 123.69 24.79 9285 142.22 22.01

Independent Variables
Gender

Female (reference) 7085 49.29% 5599 49.66% 4616 49.71%
Male 7289 50.71% 5675 50.34% 4669 50.29%

Parents’ Occupation
Mother non-STEM (reference) 13,763 95.75% 10,741 95.27% 8651 93.17%
Mother STEM 611 4.25% 533 4.73% 634 6.83%
Father non-STEM (reference) 13,214 91.93% 10,368 91.96% 8310 89.50%
Father STEM 1160 8.07% 906 8.04% 975 10.50%
Both Parents non-STEM (reference) 14,251 99.14% 11,162 99.01% 9189 98.97%
Both Parents STEM 123 0.86% 112 0.99% 96 1.03%

Control Variables
Student-level Variables

Race/ethnicity
White (reference) 8125 56.53% 6470 57.39% 5707 61.46%
Black 1889 13.14% 1275 11.31% 955 10.29%
Hispanic 2598 18.07% 2106 18.68% 1605 17.29%
Asian 958 6.66% 799 7.09% 514 5.54%
Other 804 5.59% 624 5.53% 504 5.43%

Parents’ Education
Mother Education 14,374 4.56 1.87 11,274 4.58 1.85 9285 4.79 1.95
Father Education 14,374 4.68 2.11 11,274 4.62 2.08 9285 4.77 2.08
School-level Variables

Family Type
Two Parent Home 11,316 78.73% 8860 78.59% 7388 79.57%
Single Parent Home 3058 21.27% 2414 21.41% 1897 20.43%

Census Region
Non-South (reference) 9667 67.25% 7639 67.76% 6245 67.26%
South 4707 32.75% 3635 32.24% 3040 32.74%

Location of School
Rural (reference) 3194 22.22% 2678 23.75% 2446 26.34%
Urban 11,180 77.78% 8596 76.25% 6839 73.66%

School Type
Private (reference) 2639 18.36% 2055 18.23% 1579 17.01%
Public 11,735 81.64% 9219 81.77% 7706 82.99%
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Table 2. Random effects models to predict standardized math test scores.

Standardized Math Test Scores

Variables Model 1 Model 2

Intercept 90.55 *** 90.70 ***
Male 3.87 *** 3.87 ***

Mom STEM 1.05 * -
Dad STEM 2.87 *** -

Both parents STEM - 4.60 ***
Black −19.04 *** −19.13 ***

Hispanic −10.60 *** −10.70 ***
Asian 0.40 0.48
Other −9.15 *** −9.21 ***

Single Parent Home −1.59 *** −1.73 ***
South 0.66 0.66
Urban 2.83 *** 2.87 ***
Public −0.25 −0.27

Mothers’ Education 1.14 *** 1.14 ***
Fathers’ Education 0.79 0.82 ***

Fifth Grade 24.44 *** 24.44 ***
Eighth Grade 41.16 *** 41.22 ***

Wald Chi-squre 97,143 *** 97,069 ***
df 15 14

Person-Grade 34,933 34,933

* p < 0.05; ** p < 0.01; *** p < 0.001.

Table 3. Random effects models to predict standardized math scores by gender.

Standardized Math Test Scores by Gender

Model 1 Model 2 Model 3 Model 4

Variables Female Female Male Male

Intercept 90.23 *** 90.43 *** 94.64 *** 94.74 ***
Mom STEM 1.45 * 0.55
Dad STEM 2.99 *** 2.76 ***

Both parents STEM - 6.38 *** - 3.09 *
Black −18.43 *** −18.52 *** −19.67 *** −19.76 ***

Hispanic −10.51 *** −10.62 *** −10.69 *** −10.77 ***
Asian −0.20 −0.15 1.08 1.20
Other −9.43 *** −9.58 *** −8.88 *** −8.88 ***

Single Parent
Home −1.62 *** −1.78 *** −1.51 *** −1.64 ***

South 1.37 ** 1.35 ** 0.08 0.09
Urban 2.74 *** 2.78 *** 2.87 *** 2.90 ***
Public −0.18 −0.21 −0.28 −0.27

Mothers’
Education 1.22 *** 1.22 *** 1.07 *** 1.08 ***

Fathers’ Education 0.67 *** 0.69 *** 0.92 *** 0.94 ***
Fifth Grade 24.25 *** 24.25 *** 24.62 *** 24.62 ***

Eighth Grade 42.47 *** 42.55 *** 39.85 *** 39.90 ***
Wald Chi-squre 52,453 *** 52,411 *** 45,501 *** 45,478 ***

df 14 13 14 13
Person-Grade 17,300 17,300 17,633 17,633

* p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 4. Summary of results in relation to hypotheses.

Hypothesis Level of Support and Findings

H1: Children with one or both parents employed in a
STEM field are expected to exhibit significantly higher
standardized math test scores than children with no
parent employed in a STEM field.

H1 is supported (Table 2). However, the gender
math gap persists net of parental occupation.

H2: Among female students, those with a
STEM-employed mother are expected to exhibit
significantly higher math test scores than their female
counterparts with a mother not employed in
a STEM field.

H2 is supported (Table 3). However, having a
STEM-employed father or both parents
STEM-employed is also beneficial for
female students.

H3: Among male students, those with a STEM-employed
father are expected to exhibit significantly higher math
test scores than their male counterparts with a father not
employed in a STEM field.

H3 is supported (Table 3). However, having both
parents STEM-employed is also beneficial for
male students. Having a STEM-employed mother
makes no difference.

7. Discussion and Conclusions

This study set out to explore the role of parental occupation as a possible antecedent to students’
math performance and, more broadly, the gender math gap. The gender math gap consists of the
propensity for male students to outperform their female peers in math courses and standardized
tests. In this study, we examined standardized math test scores of students across three grade
levels in elementary and middle school. Using insights from social reproduction and gender
reproduction theories, we examined the degree to which parental occupation—and, specifically, having
a STEM-employed mother, a STEM-employed father, or two STEM-employed parents—affected male
and female students’ performance on standardized math tests in third, fifth, and eighth grade.

We anticipated that children with either parent or both parents employed in a STEM field would
perform better on standardized math tests. We found that students with a STEM-employed mother,
STEM-employed father, or both parents STEM-employed perform significantly better on standardized
math tests when compared, respectively, with children who have a non-STEM mother, non-STEM
father, or neither parent STEM-employed. Thus, an intergenerational math advantage is transmitted
from parents to children. At the same time, it is important to note that this advantage does not eliminate
the gender math gap. In random effects regression models, the gender variable (male) was consistently
and strongly significant in a way that indicated boys’ superior overall mathematical performance.
Thus, regardless of parental occupation, boys generally outperformed girls on standardized math
tests. These findings indicate that a parental math advantage and a gender math gap are not mutually
exclusive. We find evidence for both in our statistical models. Despite the consistency of the parental
math advantage based on STEM employment, it does bear mentioning that households with two
STEM-employed parents are an extremely small minority of families in the study (generally below 1
percent of all study participants). The relatively small number of cases in this category could influence
the observed findings. Of course, parents are not the only influence on students’ capabilities. Students’
course-taking patterns as they transition from elementary school to middle school may have an effect
on students’ perceptions of their own abilities in mathematics (Sáinz and Eccles 2012). Additional
research should be conducted to examine such influences.

A second hypothesized effect was linked to female students’ test performance with a
STEM-employed mother. We predicted that female students with a STEM-employed mother would
achieve significantly higher math test scores than their female peers whose mother was employed in a
non-STEM field. This anticipated finding was tied most closely to gender reproduction theory and
was observed in the data. Support was also found for our third hypothesis, which was also connected
to gender reproduction theory. We found that the boys of STEM-employed fathers consistently fared
better on standardized math tests than their peers whose father was not employed in a STEM field.
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Thus, gender reproduction in the form of mother-to-daughter mathematical skill transmission was
observed even as its opposite—that is, father-to-son transmission—was also evident. In short, having
both parents employed in a STEM field can provide broad-based benefits for children’s mathematical
performance. And sons and daughters with a STEM-employed father consistently score better on
math tests, while mothers’ STEM employment is relevant only for their daughters (not their sons).
Our findings are different than those that emerged from a cross-national comparative study in which
mothers’ STEM employment was unrelated to gender differences in young people’s mathematical
performance (Stoet et al. 2016). Our study is only based on U.S. data and focuses on elementary
and middle school students. Moreover, because we found evidence of a mother-to-daughter math
proficiency effect (but no mother-to-son effect), more research is needed within and outside the U.S. to
explore the prevalence of such patterns.

What, then, are the implications of these results, and what directions for future research seem
most promising? Social supports designed to bolster math performance may be critical for many
different types of students, but may be especially helpful for those whose parents are not employed
in a STEM field. Given the persistence of the gender math gap in all of our regression models that
controlled for student gender, the targeted recruitment of girls to advanced math courses and math
camps may also be beneficial. Relatedly, caregivers in households where one or both parents are not
employed in a STEM field might benefit from additional direction in nurturing mathematical acumen
among their children and especially their daughters. Based on the findings of this study, the only
types of families in which such direction is not urgently needed are those in which both parents are
STEM-employed. However, these families make up a small proportion of our sample. Therefore, some
caution is warranted in interpreting these findings. Given the probabilistic (not predictive) nature of
our investigation and the wide prevalence of the math gap, there is no good reason to withhold math
supports from any female students at any point in the educational trajectory. Even if math support
benefits may be more muted for girls raised by two STEM-employed parents, such supports may help
reverse other potentially adverse social influences on girls’ math performance.

Future research could be conducted to address the limitations of this study. Observational research
and in-depth interviews could pinpoint the specific strategies that two STEM-employed parents use to
foster math achievement so readily in sons and daughters alike, and such strategies may be adapted
for use in other homes. Collecting additional survey data from an oversample of households with two
STEM-employed parents would be especially helpful given the generally low representation of such
families in the general population. And, of course, previous investigations examining the ecological
(society-wide) antecedents of the gender math gap could be replicated for the U.S.-based ECLS
sample by pairing aggregate-level indicators (e.g., state or county-level gender inequality measures)
with survey outcomes (for a cross-national investigation using this approach, see Stoet et al. 2016).
Such an analytical approach would entail the use of multiple data sources and multi-level modeling
techniques that are beyond the scope of our paper. Finally, the precise mechanisms underlying parental
and maternal influence cannot be determined by our investigation due to survey data limitations.
Future research should explore the mechanisms for transmitting mathematical competence across
generations, including parental expectations for subject-specific skills and abilities (e.g., knowledge of
mathematical lexicon or procedures), communication habits (e.g., verbal encouragement), everyday
activities (e.g., math and measurement games), and direct support (e.g., homework help). Until such
research is conducted, this study has shed important light on parental occupation as an antecedent of
gender dynamics associated with math performance.
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