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Abstract: An important aspect of robotic painting is replicating human painting techniques on
machines, in order to automatically produce artwork or to interact with a human painter. Usually,
painterly rendering techniques are transferred to the machine, and strokes are used as the basic
building block of an image, as they can easily be mapped to the robot. In contrast, we propose to
consider regions as a basic primitive to achieve more human-like results and to make the painting
process more modular. We analyze the works of Kadinsky, Mondrian, Delaunay, and van Gogh to
show the basis of region-based techniques in the real world and then transfer them to an automatic
context. We introduce different types of region primitives and show procedures for how to realize
them on our painting machine e-David, capable of painting with visual feedback. Finally, we
present machine-created artwork by painting automatically generated sets of shapes in the styles of
various artists.

Keywords: robotic painting; artistic technique; image segmentation; automatic artwork production

1. Introduction

Technology has always been used to replicate human artwork, from early automata
to the current day. A detailed overview of the historical development can be found in
(Gülzow et al. 2018). Stroke-based rendering (SBR) has been a particularly influential
approach to automatic artwork creation. In SBR, a reference image is recreated by placing
strokes—curved lines with a defined color and varying size—onto a virtual canvas. This
method is supposed to imitate the human painting process and has been an effective way
to produce painterly results. More modern approaches use machine learning to either
transfer a stroke-heavy style to non-painterly input images or to output strokes directly
(Gatys et al. 2016). A stroke is usually given as a sequence of control points, along which a
certain texture is mapped for rendering. This format is also convenient for robotic painting,
as most machines are built to move a tool along a path, which is common for tasks such as
welding or spray painting. By using stroke control points as a path and attaching a painting
tool, such as a brush, to the machine, a real stroke can be realized on a canvas with little
modification of the underlying SBR method.

A well-known virtual SRB method has been presented by Aaron Hertzman in which
strokes are placed by following the color gradient (Hertzmann 1998). The method begins
with large strokes and produces a painterly representation of the original image after
placing smaller and smaller strokes. This method has been adapted and transferred to
robotic painting multiple times, for example in the e-David (Deussen et al. (2012), also see
Figure A1) and cloudPainter projects (van Arman 2020). Using primarily path-based strokes
for a painting robot is intuitive but comes with multiple downsides for actual execution
on a painting robot. Most importantly, a planned stroke path is not always realizable
and depends heavily on the tool used and environmental factors. The inability of the
tool to create certain features can often cause these methods to replan further problematic
features as a correction attempt, creating major artifacts. Furthermore, SBR usually works
frame-to-frame and does not take painting results deviating from the plan into account.
This is a stark difference from human painters, who react to defects as they occur.
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We propose to extend robotic painting towards a set of region-based primitives in
contrast to strokes, each of them representing a set of brush movements in a constrained
area, allowing for a more directed and accurate painting process. These region primitives
can aid both the generation of an overall paint plan that minimizes errors, as well as the
realization of precise image features, such as sharp borders between regions. Furthermore,
by restricting the area of operation to a fixed region, it is possible to implement time-critical
or multi-step actions such as color mixing, gradient creation, or smoothing. For painting
robots with optical feedback mechanisms, knowledge about target structures allows for
more detailed error computation than just local color error.

We derive our region-based primitives from an analysis of human artworks and
describe how they may be implemented in a robot drawing system. We selected a subset
of artists that use styles, which are conducive to robotic painting since the space of all
potential human painting techniques is too large to cover. Nevertheless, a small set of
versatile operations can be used to let robots produce a large variety of artworks. This
can be seen in stippling, where images can be approximated by placing the same dot or
line primitive in certain patterns (see Hiller et al. 2003). The availability of more complex
primitives also simplifies the painting process as a whole, since more types of abstraction
can be built upon them. This is similar to the usage of patterns in CAD/CAM, where,
for example, the option of creating a bolt circle around an opening saves a lot of manual
placement of drilling locations. The ultimate goal for us is the generation of an adaptive
paint plan, which produces a painted image. Such a plan should be derivable from any
input pixel image.

A critical part of this approach is to have a visual feedback mechanism in the robot
system, as it allows us to take brush artifacts into account while painting regions. We
execute the proposed methods using the e-David painting robot, which was first described
in Deussen et al. (2012) and Lindemeier et al. (2015) with system improvements later added
in Gülzow et al. (2020).

1.1. Primitives Used by Human Artists

A human artist produces a painting by applying pigments with certain tools to a
painting surface (Merriam-Webster 2022). One goal of robotic painting is to mimic the
results of this process, by programming the robot to execute movements, which produce
similar results. The question then becomes from where to derive those movements or
movement patterns. For well-automated industrial processes such as welding, machining,
or spray painting, detailed descriptions down to single operations have been recorded by
and for humans. This facilitates the transfer of such tasks to machines. For example, a
novice welder will be told to move the welding electrode at a specified distance and angle
to the workpiece (Weman 2011), which can easily be programmed into a welding robot.

While painting processes can range from applying pigments by hand to cave walls
to using palette knives to create artworks with plastic structures, we will focus on using
brushes to deposit liquid paints onto a flat canvas made of paper or cloth. Even with
this reduction of scope, the imitation of human painting poses multiple challenges: first,
humans are able to continuously monitor their painting process visually and develop an
intuition to predict the effects of tools and painting mediums. This is necessary to manage
the second challenge, the complex behavior of brushes, paints, and canvas surfaces. Unlike
machine tools, which have a rigid tool location with known regions of effect, brushes
cannot be fully predicted without extensive modeling.

In the arts, such textbook instructions are rare: detailed descriptions on how to
manipulate a brush to achieve a desired result are not given since introductory works
assume the reader can intuitively manipulate tools. For example, in a book on the Sumi-e
painting technique the author instructs:

“Dip your brush partway into the gray; then dip just the tip in the black. Holding
the brush perpendicular to the paper, make several strokes. They can go in any
direction and may be thick or thin, straight or wiggly. Move your whole arm
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as you paint, keeping the brush upright. There is no wrong or right way, just
exploration.” (Lloyd-Davies 2019)

While such a presentation is useful to aspiring human painters and even people who
have never held a brush before, for applying this technique in a painting robot, the only
usable information is the description of the brush orientation. While digital rendering
in a Sumi-e style has been implemented by Ning et al. (2011), the authors had to derive
movement primitives by themselves. Another example is the description of multiple brush
techniques in “Universal Principles of Art”, of which the entry for glazing reads:

“Paint, usually oil or acrylic, is applied in semitransparent layers. Each layer is
allowed to dry before the next is applied, allowing for great depth and richness
of tone and color. A soft brush is used and layers can be modified using a fan
brush.” (Parks 2014)

This description is again reasonable for a human to grasp the technique, but extra
considerations which are relevant for a machine are not available. Concrete details on
brush pressure, angle, and velocity are missing. Should one stroke be used or multiple? Is
overlap intended or not? This is again left to intuition or experimentation.

Due to the absence of concrete instructions, we shall analyze existing artworks to
determine basic primitives which can be used to copy certain human approaches in robotic
painting. A primitive is a set of operations that can be executed by a machine to realize
a predictable image feature. The artworks discussed here have not been selected to be
representative of an artist, style, or other artistic reasons, but instead for certain prominent
features which exemplify a feature that can be made robot-paintable.

Cubism and Orphism: Piet Mondrian and Robert Delaunay

Cubism is an art style that seems to lend itself to automatic painting. The movement
emerged in Paris circa 1907 and is characterized by the representation of objects from
multiple viewpoints at once, abandoning traditional perspective or adherence to form,
leading to a fragmentation of the depicted objects (Parks 2014). The style can be traced
back to Henri Matisse and was firmly established by Picasso (see Ganteführer-Trier 2004).
Importantly for robotic painting, cubist artworks generally consist of well-defined regions,
which lends itself to motion planning. A subgenre of Cubism is Orphism or Orphic Cubism,
which is distinguished by linear or curved nonfigurative shapes, which abandon concrete
depictions and focus more on colors (Chipp 1958). Robert and Sonia Delaunay are major
representatives of this genre.

(a) (b)
Figure 1. Example works of abstract Cubism and Orphism. (a) Piet Mondrian, 1930: “Composition II in
Red, Blue, and Yellow”; (b) Robert Delaunay, 1938: “Paris Rythme” (Photo by Jean Louis Mazieres 1938).

Piet Mondrian was influenced in his later works by Cubism and is known for continu-
ing its abstraction down to only the most basic geometric elements and colors (Grauer 1993).
An example of this is his “Tableaus”, which are compositions consisting of axis-parallel
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black lines that separate rectangular regions filled with primary colors (Figure 1a). For
replication of such a painting, a machine would need to fill in regions solidly and produce
sharp, straight lines between them. Robert Delaunay produced artworks in a compara-
ble style, where structures of overlapping circles and circle segments border each other.
Figure 2 shows critical regions from both paintings. To replicate the regions from Figure 2a,
the machine must be able to paint the sharp boundaries.

(a) (b)

(c) (d)
Figure 2. Sections of Mondrians and Delaunays paintings with boundaries highlighted. (a) Section
of Mondrian’s painting from Figure 1a showing an area with multiple straight region boundaries;
(b) boundaries marked (green: region boundary, yellow: inside/border region); (c) section of Delau-
nays Painting from Figure 1b showing an area with round boundaries between regions; (d) boundaries
marked as above.

These features are particularly challenging for a robotic painting system since small
deviations can already ruin the overall impression. For example, if a dark stroke slightly
intrudes into an adjacent light region this error is nearly impossible to recover from. If the
light paint is thin, even repeated reapplication will likely not fully conceal the overpainting
event. In case the light pigment is also quite opaque (e.g., Titanium White) we risk an
oscillation: the imprecise brush handling which leads to the error in the first place can
reoccur and move the problem into the dark area. Since the robot cannot adapt its technique
on the fly, it can get suck correcting each side repeatedly. If drying times are not considered,
moving over the freshly painted dark area will lead to picking up the pigment and mixing
it into the light area, further escalating the error.

How do human painters solve this problem? Either they use aids, such as masking
tape, to produce straight, clean lines in one go, or they rely on their painting experience
to create the feature carefully. Importantly, they will switch between a mode for filling in
the interior of a shape and creating the outline. In “outline mode” painters steady their
hands, go slowly, and pay great attention to their brush’s trajectory. They can either draw a
stroke directly to the desired edge or use multiple strokes, with each getting closer to the
desired contour. The main goal of the latter strategy is error prevention, since putting in
more effort to not make a mistake is often quicker than fixing it.

Since a painting robot is much more limited in error correction behavior, such as
scraping off paint later, a conservative approach seems beneficial. We describe a solution
in Section 3.2, which allows us to place paint without exceeding one or two constraining
boundaries. Primitives for painting sharp, precise linear, and angular boundaries are
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generally applicable as any painting in any style might require a sharp delimitation of
adjacent regions. We refer to them as constrained regions in the following. This is mirrored in
the development of Purism, an art style that developed as a criticism of Cubism and stems
from a return to painting objects, albeit in a Cubist-influenced style (Ball 1978). Ozefant,
a main developer of the style, went on to call Cubism a “mere decorative vehicle” he
compared to “carpets” (Ozefant and Corbusier 1918). The derived style focuses on still
lifes, in which objects are represented as flat planes with neutral colors (Britannica 2022).

1.2. Post-Impressionism: Van Gogh and Cézanne

Post-Impressionism describes an art period between roughly 1886 to 1900 which
branched off from Impressionism (Brodskaïa 2018). Impressionism is considered a reaction
against a “classical” style of Greco-Latin painting in oil, choosing instead to change the
choice of subjects and painting technique. Landscapes with visible strokes and intermixing
colors were often used (Mauclair 2019). Post-Impressionism in turn rejects the naturalistic
form of Impressionism and seeks the use of simpler colors, more visible shapes, and a more
abstract representation of things (Voorhies 2004). As such, this art style is also of interest for
our analysis: The complex colors and gradients used in Impressionist works are difficult to
realize deliberately with a robot, and also the analysis of a work to plan painting actions is
nontrivial. Visible shapes in simpler colors are more approachable.

Figure 3. “The Sower” by Vincent van Gogh (Photo by Gandalf’s Gallery 1888).

Works by Vincent van Gogh are famous works of Post-Impressionism. His paintings
are frequently used as example sources in GAN-based style-transfer, see (Gatys et al. 2016),
as the overall structure is characteristic and visually defines the image. In van Gogh’s
paintings, regions are not necessarily separated by color and not necessarily monochrome.
Instead, regions arise from similarly oriented or shaped strokes. Borders between regions
can arise from differently oriented “streams” of strokes clashing. Within a single region
strokes of totally different colors can still form a coherent area, as shown in “the sower”
(Figure 3). For example, the wheat field in the background is not separated from the blue
foreground using a strict line, but instead, the vertically painted straws naturally distinguish
themselves from the blue foreground, made up of shorter, horizontal strokes. Even regions
of very similar color can be separated by structuring elements: The vertical yellow wheat
strokes are distinguishable from the horizontal, but also yellow, sky (Figure 4a). Smaller
elements are also paintable using structural differences, such as the legs of the titular sower,
which have a blue hue similar to their local background, but as the stroke orientation
follows the legs, it contrasts the field (Figure 4b).
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(a) (b)
Figure 4. Sections of “The Sower”. (a) Three structured regions with orthogonal orientations border-
ing each other; (b) a more complex structured region, with some boundary violations.

From these features, we can derive the need for a similar primitive in robotic painting:
large-scale structures can be characterized by a general area they should cover, a struc-
turing element, and one or more filling colors, at different densities. Their main use is
for backgrounds or large objects which are not the main subject of an image. Realizing
them with a purely SBR method would be tedious as the exact placement of features does
not matter, but these would still cause high error values, long painting times, and likely
repeated overpainting of smaller elements. Instead, we aim to implement a primitive that
“roughly” paints such a region without getting stuck on unimportant details. Measuring
area coverage, the density of the involved colors, and the structure overall are preferred
over checking the placement of each detail. In the following, we refer to such areas as
structured regions.

Finally, we observe the paintings of Paul Cézanne, specifically his landscape paintings
(Figure 5). In these, we again see regions of individual colors. These are sometimes strictly
delimited, with darker lines enforcing separation between roofs, corresponding to the
previously discussed constrained regions. In other places, a structure is only hinted at
with hatching-like structures. Elements such as trees, clouds, or boulders are represented
with this technique. In doing so, Cézanne abstracts away very detail-rich areas, while
still preserving the general meaning. Overall, the exact location of a hatched structure
is not critical, however, the orientation and color relative to the surroundings are. As
opposed to the larger structured areas of the “Sower”, we can identify substructures within
a region corresponding to, for instance, a tree canopy. Figure 6b shows a section of a tree in
which rough branches mesh with leave structures that are drawn as multiple rough brush
motions, using different shades of green. The leaves form a glaze over the branches, giving
an impression of depth. Figure 6a shows an interaction of foreground and background:
the gray sky, the blue sea, and the green leaves all overlap together and give the tree
transparency.

To replicate these effects on a painting machine, the introduction of a gestural area is
convenient. It represents the application of a known brush technique to a specified area.
The program or artist planning the infill of a region can apply these to a structure to quickly
achieve a visual impression. As opposed to structured regions, these are smaller primitives,
usually only associated with a single, albeit complex, brush movement. It is also possible to
prerecord these actions and store them for later use by a planner. By comparing elements
of such a library to patches of an image a sufficiently predictable action can be selected and
applied confidently.
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Figure 5. View of the Sea at L’Estaque (Photo by lluisribesmateu 1969 1883–1885).

(a) (b)
Figure 6. Sections of “View of the Sea at L’Estaque”. (a) Part of a tree with gestural strokes;
(b) sketched branch structure in a gestural tree.

2. Related Work

For a historical perspective on the development of painting machines, we refer to
Gülzow et al. (2018). This allows us to focus on recent developments related to region-based
painting and other trends in robotic painting after 2015.

Berio et al. (2016) present a method for fluid painting robot motion, which enables
their robot “Baxter” to produce human-like graffiti writing. Their approach does not focus
on the production of precise regions but on the creation of calligraphic movements. This
approach is more low-level and uses direct motor control with custom inverse kinematics,
emphasizing the motion side of the painting process. Such direct control is less conductive
to precise painting, however, larger features can be realized with these methods. Their
graffiti is also performed with very wide pens, which cover a significant region of canvas
in a single application.

The Busker painting robot, developed by Scalera et al. (2018) has been used in multiple
projects with different tools to produce paintings.

Airbrush painting is a common task for robots in car manufacturing, with specialized
robots existing only for this task. These machines focus on providing a homogeneous,
single-color coating for car bodies. In the arts, airbrushes can also be used but the task
shifts to depositing multiple colors for image creation. For this purpose, Seriani et al. (2015)
measure the paint distribution achieved by an airbrush nozzle at different distances from a
canvas and use a 2D Gaussian distribution to model it. They use the distribution outline
for path planning inside of polygons and consider the time spent at each location to predict
paint deposition. This allows them to create grayscale reproductions of a target image. In
Scalera et al. (2017) a similar approach is revisited. Airbrush painting is region based by its
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nature and necessitates the decomposition of an image into sprayable regions. The main
limitation is the difficulty to realize small features. Sharp edges also cannot be realized
without additional tools.

Busker has also been used for painting with watercolors: in a recent study, Scalera
et al. use basic image analysis tools, such as Canny edge detection and Hough transform
to divide an image into hatching areas. The main focus of this work is on stroke artifacts,
which occur from the interaction of pigment dissolved in water, which can still move after
a stroke has been placed. Inhomogeneous regions such as backruns, granulation, and
edge darkening occur due to this phenomenon. The authors use their visual system to
measure the reduction of pigment along a brushstroke, which allows them to terminate the
stroke before pigment deposition becomes ineffective. Finally, a magnet-based system for
automatic brush changing is discussed in (Scalera et al. 2019).

Beltramello et al. (2020) also use a UR-10 robot and equip it with a palette knife, in
order to create paintings. Unlike most other approaches which use soft tools, this is a
rare use of a rigid tool. The authors present multiple ways to create strokes with different
features, depending on the application of the tool. Input images are processed from high
to low frequencies, with each layer resulting in a binary mask, that is filled with hatching
patterns. The tool is oriented with respect to the edges of painting regions. Furthermore,
they characterize the covered area and achievable line length with the palette knife in
relation to the paint angle and tool path length. While the robot has a webcam to obtain
images of the canvas, its algorithm does not seem to use visual feedback during the painting
process. Instead, the optical system is used to localize the painting area and to create a
correspondence between the robot and canvas coordinate system.

In a recent paper, Scalera et al. (2022) use a sponge to fill in regions. They propose
a contour-filling algorithm that considers the sponge’s footprint and creates paths that
paint a given area without violating the defined outline. Scalera et al. use a Voronoi-based
image segmentation which divides a pixel image into paintable regions. By applying
image erosion, they find inner, outer, and median regions, which place different constraints
onto sponge positions. The authors also present a calibration tool for the used KUKA
LBR iiwa robot (see KUKA AG 2022). Their system can fill in preprocessed images in a
region-based way.

Overall, multiple robotic painting systems have been developed further in recent
years, all with different approaches to painting. The variety of tools and painting media
shows the potential of this area of robotics and art. However, most projects are limited in
accuracy due to both painting tools and media being hard to predict in their precise effects.
Additionally, the main focus is on filling regions with a single color. In the following paper,
we propose methods to expand robotic painting beyond these limitations, by increasing
region accuracy and considering region texture.

3. Materials and Methods

For the experiments described below, we use the e-David painting robot, as described
in (Gülzow et al. 2020). The machine is equipped with round nylon brushes of various sizes
and uses premixed acrylic paints, which the robot picks up automatically from a palette.
As a painting surface, we use acrylic paper. The methods described here are not dependent
on specific painting media and can be used for other types as well.

All methods require the use of the visual feedback system, which allows image
acquisition of the canvas after some brushstrokes have been executed. Feedback pictures
are corrected for lens distortion to ensure a precise pixel to canvas location mapping. We
also correct for lighting and color deviation using calibration targets on the canvas base.
For placing brushstrokes we compute the expected width for a certain pressure level using
the width-calibration method described in (Gülzow et al. 2018).
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3.1. Overview of Brush Defects/Precision Limitation of Robotic Strokes

The basic action a painting robot can perform is to move a brush over a canvas,
producing a stroke. While these strokes are executed precisely and can be repeated easily,
they are not a fully controllable primitive.

In fact, even a straight line, seemingly a very simple stroke, is already not trivial
to paint precisely with a robot. Ideally, the paint would be applied evenly around the
movement path, but in reality, a multitude of effects take place due to the complex behavior
of paint brushes. As the tool contacts the canvas, hairs interact with each other which
can cause single bristles to detach from the main brush body and paint far away from the
intended site. The paint in the brush is pushed out under compression, creating a distinctive
blob and a large amount of paint is deposited. This can overshoot both an intended edge
as well as a specific tone of color. As the brush is dragged over the canvas, the amount of
paint deposited steadily decreases. When moving along a straight line, bristles that have
spread out initially, rearrange and form a thinner stroke. In case of any direction change,
the brush hairs will lag behind the tool center point (TCP) path, depositing paint offset
from it. Finally, when the brush is moved away from the canvas again, the deflected bristles
relax and can extend the stroke beyond the endpoint of the intended path. Figure 7 shows
a stroke painted with a simple two-point trajectory which highlights these problems. The
consequence for robotic painting is that if these effects are not controlled, the introduced
deviations destroy small features locally and lead to a global noise, which significantly
degrades the final result quality.

Figure 7. A brushstroke with the two-point path the robot followed indicated. The beginning of the
stroke is wider than the main body and the stroke extends beyond the expected endpoint.

Aside from instantaneous brush dynamics, the tool can bend over time. The bristles
might bend permanently away from the direction of travel, which creates an offset between
TCP and brush tip. This effect can immediately lead to excursions beyond a critical edge
when attempting to paint it directly. Managing long-term bends such as this is very difficult
to manage or simulate. Another common issue is warping of the paint surface from
excessive wetting. SBR-based algorithms will tend to correct many errors around difficult
features, which leads to a lot of paint being deposited and thus moisture entering the
canvas area. When painting onto paper, the surface will warp with some spots rising to
one or two millimeters. This immediately distorts any further brushstrokes, making the
problem worse. Avoiding repeated application is important.

A more detailed description of some of the factors mentioned here can be found
in (Gülzow et al. 2018). Human painters are less concerned with such details, as they
can continuously improve their skill in managing brush behavior through practice and
can correct errors. Robotic painters so far either rely on the repetition of a small number
of well-known strokes, similar to stippling, or on reacting to errors using feedback and
overpainting defects again and again (see Lindemeier et al. 2015). Stippled images forgo
a lot of possible variety, while feedback-driven overpainting risks that fixing a stroke
artifact with further strokes can introduce more errors that need to be fixed with yet more
strokes. Convergence might not be achieved in some tricky image regions. Furthermore,
the difference between a desired effect and an artifact might be dependent on image
context, which makes global SBR methods difficult to apply. Attempts have been made
to capture brush behavior for more specific painting approaches, like Sun et al. with their
work on Callibot, a machine designed explicitly for Chinese calligraphy (Sun and Xu 2013;
Sun et al. 2014). Unfortunately, this does not generalize to painting as a whole.
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Our proposed solution to this issue is constrained regions, in which we isolate the
predictable parts of a stroke for feature creation while hiding parts of the stroke with
potential defects within an area that can be overpainted safely later.

3.2. Constrained Regions

For a constrained region we intend to place pigment on the canvas only within the
given region and never exceed the boundaries. Critically, we must assume that some actions
lead to almost unrecoverable errors, e.g., when a very dark stroke is erroneously placed in
a very light region. However, it is possible to exploit parts of a region that are known not to
represent critical features for the image and concentrate stroke beginnings and ends there.
This “hides” artifacts away within a region so that they can be safely overpainted later,
without risking damage to critical edges. We describe regions as general polygons which
can have concave and convex regions. In concave parts, we are only required to correctly
match one line of the outline of the polygon and can hide stroke beginning and end zones
on the inside of the shape. Convex parts are more challenging as there is no room to hide
errors there. As shown in Figure 8, we subdivide polygons into corner areas (red) and side
areas (blue) depending on the local distance to one or two polygon sides.

Figure 8. A polygon with constrained regions highlighted. Red corner areas are on two sides, blue
side areas are constrained on only one.

The subdivision of a polygon is based on the stroke width achievable with the cur-
rent painting tool. A method to predict brush stroke width from application pressure is
described in (Gülzow et al. 2018). We select a pressure one third between the minimum
and maximum possible pressure for a given brush, resulting in a known stroke width w.
Parameter k is user selectable and determines the resolution at which a polygon is painted.
For most round brushes we use k = 5, as this produces a stroke with stable features.

In the following, we assume that all polygons which should be painted are realizable
with the given tools. If the polygon contains any segments with a length less than kw, a
warning is emitted. Additionally, if an acute corner is found, which is so narrow that most
of its area is narrower than the minimum achievable stroke width, this feature is deemed
unpaintable. The approach described here can detect such errors, but relies on input data
which is adapted to the limitations of the current tool set.

First, convex corners are detected by measuring all internal angles of the polygon.
Around such points, we draw a circle of radius kw. The intersection points of this circle
with the two outgoing segments and the corner form a triangle, representing a corner area.
Second, segments between two concave points yield rectangular side areas, which are
constructed by offsetting the segment into the shape by 1

2 kw. If this would intersect any
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other segments, k is reduced until this can be avoided. Third, segments with one or two
ends in a corner are trimmed to the corner region and also extended into the shape. Finally,
we expand all side regions by w in order to achieve some overlap and avoid gaps between
strokes. No expansion is performed if this would violate an outline.

By painting both types of border elements without exceeding any edges, an inside
region is established in which we can paint without needing to consider overpainting. This
can be achieved with structured regions as described in Section 3.3 and is skipped for now.

3.2.1. Single-Side Constrained Regions

Single-side constrained regions (SSCR) are mostly rectangular areas that have one
straight or slightly curved side which must be painted exactly. All other sides are considered
to be unconstrained and may be painted over. This reduced requirement allows us to use the
brush in a way that guarantees underpainting and then correcting for that brush behavior
using visual feedback. If we directly painted a line along the constraining edge, variations in
line thickness could cause us to exceed the edge. The bristles are not sufficiently constrained
in a regular stroke. Overall bristle length however is a fixed constraint, which we can exploit
for this use case. Since they are rigidly attached to the ferrule, they can only pivot around
the attachment point and the brush tip must be on or within a circular arc, centered on
the bristles attachment point. Thus, we apply the brush to the canvas with a sideways tilt
(Figure 9), and given the brush pressure and bristle length we can compute the tip position
on the arc. This adds a certain offset to our stroke, called brush tip overshoot or ∆tip. We
can compute this effect using the following formula for a line–circle intersection, with the
circle as the swing arc of the bristles and the line the canvas1:

See Table 1 for the involved parameters.

Figure 9. Brush tip (blue) deflection along an arc when pressure is applied demonstrating brush tip
overshoot. Red circles mark the found intersection points, from which we select the cone closest to
the brush tip.

Table 1. Parameters for predicting brush tip deviation.

Parameter Description

α Tool angle relative to canvas normal (in degrees)
ω Application pressure (in mm)
r Bristle length from tip to ferrule (in mm)

We assume the robot TCP is located at O, which we assume to be the origin for the
following computations. First, we find the brush hair fulcrum point F = ( fx, fy) from polar
coordinates:

fx = r · cos(α) fy = r · sin(α) (1)
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Since we are only looking at 2D deflection, the canvas C is a line parallel to the X-axis,
from which we select two points:

p = (0;−ω)T − ~F (2)

q = (1;−ω)T − ~F (3)

We use p and q to calculate the determinant D:

dx = px − qx (4)

dy = py − qy (5)

dr =
√

d2
x + d2

y (6)

D = pxqy − qx py (7)

In Equation (5) dy will always be zero for our choice of p and q. However, if the canvas
is at an angle this is no longer the case. Hence we include dy in the following equations.
We now obtain the intersection points β1 and β2 of the brush arc with the canvas as:

x1/2 =
Ddy ± sgn∗(dy)dx

√
r2d2

r − D2

d2
r

(8)

y1/2 =
−Ddx ± |dy|

√
r2d2

r − D2

d2
r

(9)

β1 = (x1; y1)
T + ~F (10)

β2 = (x2; y2)
T + ~F (11)

From which we pick the final β closest to the origin (lying in the tip of the brush) from
which we decide ∆tip = βx. Knowing ∆tip enables us to directly paint along a constraining
line and to realize said feature with much more precision than just painting without prior
knowledge. However, other sources of error exist, which are harder to compute and require
the use of visual feedback to control. While applying the brush to the canvas causes it to
slip forwards by the computed amount, sideways movement causes the brush to bend
away from the goal edge. As this effect is less uniform, we use the following method to
iteratively approach a target line:

First, a stroke is placed in parallel to the target line, offset by ∆tip + ε, where ε is some
user-defined safety distance. After a stroke has been placed, an image is taken and we
compare it to the intended color of the feature. This is done by converting the image to
LAB color space (see Schanda 2007) and then subtracting the target color from the image.
Since we know the intended location and the location of the initial stroke we can detect a
discontinuity in the difference image by scanning between the goal and stroke. We use the
measured distance to move the next stroke movement closer to the target line and repeat
this process until the target is reached within a certain tolerance. Figure 10 shows a sketch
of this strategy as well as a sequence of SSCR strokes as executed by the robot. By extending
the movement beyond the unconstrained sides of the SSCR we hide the effects of extended
or shortened stroke ends away from the critical feature. We also move the brush up and
down the constraining edge multiple times to even out paint deposition artifacts.
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Figure 10. Concept and effect of SSCR painting: the target line is slowly approached with alternating
strokes. We begin at a safe distance from the target line and take feedback images after each stroke.
Once the line is reached by the strokes, the process terminates and the edge is realized.

Overall, we can move along the intended constraint line and be sure we will never
overpaint it. Usable tilts for brushes have been found to lie between 15◦ and 45◦. Results
can be seen in Figure 11.

Figure 11. Progression of the iterative SSCR process. Top row: color images of the stroke sequence.
Bottom row: difference images with yellow indicating high difference and blue low difference. The
box is the SSCR with the blue line marking the constraining side. The green dashed line is the edge
detected by the system.

3.2.2. Two-Side Constrained Regions

SSCRs can be used to paint the exterior sides of polygons. However, they are in-
sufficient to realize the corners of any convex feature shape, since in that location two
edges must meet at a single point. Any lateral overpainting of the SSCR would destroy
the adjacent edge, so it is insufficient to just place two SSCRs over each other. We also
define two-side constrained regions (TSCR) which can realize a corner feature by placing
strokes aligned with both. Corner features are especially critical since any overpainting or
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misplacement ruins a salient point of the shape. At the same time, controlling the brush
with respect to two constraining edges is difficult. We implement a feedback-based strategy
in two steps, shown in Figure 12.

Figure 12. Strategy for the realization of corners. Left: in the first phase, move the strokes closer to
the sides until we find a working suitable distance. Right: in the second phase, the found strokes are
moved towards the tip until the region is properly filled. The gray area has already been covered in
phase 1.

First, we create a stroke from each constraining side and offset it towards the inside of
the shape and shift it towards the unconstrained side. This allows us to paint two strokes
that are guaranteed to lie within the TSCR but do not yet touch the outer edges. In the
first phase after both strokes are created a feedback image is taken and the distance of the
resulting strokes to the side is measured. If distance remains to the outside edge, we move
the next planned stroke towards the edge until it is reached (see steps 1–3 in Figure 13).
Once the outside edge has been reached, the stroke is moved in parallel to the edge in by
half of the expected stroke width while the distance to the tip is measured (steps 4 and 5 in
Figure 13). Once the tip is sufficiently covered the TSCR is considered done as a safe inner
region for filling has been established. The final strokes are stored as a limit for further
strokes in the region. Figure 14 shows the first step and the final result in more detail.

As with SSCRs we also tilt the brush, but towards the single unconstrained edge. This
avoids artifacts in the first part of a stroke, which are critical to forming the corner. We
also modulate brush sideways tilt towards the inside of the TSCR, away from the outer
edge. This is analogous to the SSCR and avoids brush expansion to violate the constraining
corner. In this compound angle, we again compensate for brush tip overshoot and move
the brush from the tip to the unconstrained edge, along the constraining edges.

Figure 13. TSCR paint progression shown in robot feedback images. Upper row: raw feedback
images with a black line added to indicate the target corner.
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(a) (b)

(c) (d)
Figure 14. Progression of painting a corner using a TSCR. The left column shows the feedback images
and the right column the difference images with measured corners indicated. The first two figures
show the canvas state after the first step while the last two are taken five strokes later once the process
had terminated. Note how the placed strokes were planned equidistant to the constraining sides, but
the placed strokes are much closer on the right. This shows that brush deviation must be handled
via optical feedback. (a) Initial painting of a corner with different distances despite paths being
planned equidistant from goal sides; (b) measurement of initial strokes: the dotted lines represent the
distance from the left edge (red), right edge (blue), and the tip (green). The dashed lines show the
next planned corrective strokes; (c) finished corner with minimal overpainting of the target line. Only
the unconstrained side is violated; (d) the final result: the painted regions are found to coincide with
the target edges. The tip has been fully realized. This terminated the corner painting procedure.

After an SSCR or TSCR has been correctly realized, the resulting final strokes are
partially reusable in similar features. If the tool itself, the tool orientation, the paint
medium, and the application pressure remain constant, repeating the strokes will also
result in an approximate copy of the created feature. Storing these results allows us to reuse
them later for similar features in other paintings. Over time, this allows the robot to build a
library of techniques, which speeds up the painting process and allows for more analysis
of brush behavior. This, however, limits the accuracy of the feature, since there is no chance
to react to certain errors, like brush tip drift, paint changing consistency in the reservoir, or
canvas warping (if painting on paper for example).

To realize a whole polygon, SSCRs and TSCRs can be painted in any order, since no
constrained side will ever be overpainted and adjacent constraining lines are always parts
of the same original segment. In our approach, we paint corners before the sides, as this
gives a better visual indication of where a shape will be located during the painting process.

3.3. Structured Regions

For a structured region (SR), we restrict the set of allowed brush movements that are
used to cover a canvas area. As described in Section 1.2, the goal of this method is to enable
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the painting system to create visual impressions not only via color application but through
stroke structure. Applying normal stroke-based rendering techniques for this purpose
would not be appropriate, since they rely on repeated overpainting for error minimization.
This would diminish structure effects since at some point a canvas area is saturated with
paint and additional brush applications simply even out the distribution.

Given some structuring element, such as a direction vector, we orient the movements
and through repetition cover the region. With a single color, the brush dynamics create a
visible structure, which then characterizes the area. Additionally, we can allow multiple
colors, similar to the previously discussed van Gogh painting “The Sower”.

For structured regions, we assume the edges to be unconstrained since altering brush
movements to avoid outer edges would change the goal structure. Instead, we assume
strokes may be painted slightly over the border of the given region. Such an effect can
be beneficial, e.g., in the case of a field of grass overlapping into the sky at the horizon.
Furthermore, a structured region can be combined with an outline of constrained regions
to achieve more precision at the expense of a homogeneous structure.

An underlying structuring field is used to guide stroke placement. In the simplest
case, this can just be a constant vector for an entire shape, like in the case of a corn field.
Other potential metrics include painting along the distance transform (DST) gradient or
the edge tangent field of a template image within the region being painted.

To assess the painting progress from feedback, we determine the overall coverage, av-
erage color, density of strokes, and texture structure. The average color is simply measured
by averaging all feedback pixels of the region. Coverage density can be estimated via back-
ground subtraction: if the background is covered to the desired degree, sufficient coverage
has been achieved. Multicolor regions require the uniform presence of all involved colors.
We measure the frequency of each color and identify subregions with lower concentrations.
There, strokes of the missing color are placed. The texture of a region is assessed from
the response of Gabor filters, as described in (Fogel and Sagi 1989). By orienting the filter
according to the local structure field and selecting the frequency to correspond to the stroke
width, we detect the presence of structured strokes. In case the orientation is erroneous or
the area is too homogeneous, we place further strokes on top.

3.4. Gestural Regions

As seen in the works of Cezanne, some parts of an image need not exactly match a
real subject but hinting at their structure is sufficient for an artwork. In the same spirit,
we use predefined complex stroke movements and apply them to a region to produce a
gestural effect, corresponding to their structure. By overlaying multiple of these in different
colors, a complex region is achieved. Unlike the previously discussed techniques where
brush movements consist usually of a more or less linear motion, the complex movements
used for gestural movements are longer, can self-overlap, and are not designed to minimize
brush dynamics. For example, in a zigzag movement pattern brush deflection changes
significantly at the point where the stroke path changes direction to the point of almost
reversing. If the pattern self-overlaps, paint that has just been deposited might be moved
again in the same movement. Both these effects can be useful for achieving certain visual
effects but are difficult to control exactly. Hence treating them as a special case in painting
allows the combination of precise and imprecise elements in robotic painting.

We implement a side-to-side scribbling motion, dabbing of the brush, and a swirling
brush action, which are performed in a given gestural region. These can then be rotated,
scaled, and placed to approximate an image element. For the realization of a gestural
region, we allow overpainting of the region boundaries and focus instead on area coverage.
This is achieved by computing the initial movement pattern for the given shape and using
visual feedback to detect uncovered areas. Color is reapplied in these areas until the entire
structure has been realized. While this is not a major novelty in robotic painting, the
introduction of this primitive gives a user of the painting robot the ability to realize certain
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structures more easily. Instead of planning individual strokes, the painting system can take
over parts of the planning process.

Figure 15 shows a simple tree painted with gestural regions: the paint plan consists
simply of branches and boxes representing areas covered by leaves (Figure 15a). These are
then replaced by zigzag lines with some jitter added (Figure 15b,c). Variations of the tree
are produced by swapping out the gesture, for example in Figure 15d a spiral movement is
used instead of a zigzag.

(a) (b)

(c) (d)
Figure 15. An example of how gestural regions can be used to realize variations of a tree: a paint
plan is generated from a simple procedural model which results in a set of branches and leaf patches
(a). These are then translated into a gestural stroke (b), which in this case is a zigzag. When realized
on the machine, this leads to some regions being quickly covered with paint, without the need for
feedback (c). Since the initial plan is kept abstract, and regions are labeled as either branch or leaf, it
is easy to swap out gestures for others (d).

4. Results

With the implementation of constrained regions, the e-David painting system has
gained the ability to predictably produce accurate outlines for arbitrary polygons. Except
for extreme angles, any such feature can be realized. The initially slow painting time can be
compensated by storing the results and repeating them directly for similar regions. Thanks
to the continuous measurement we can approximate corners and edges with a precision
of ±0.2 mm, independent of the tool, paint medium, or location on the canvas. If a faster
painting result is desired, the formula for tip deviation ∆tip presented in Section 3.2 can
be used, which allows planning a brush movement directly. While some error must be
expected, this is still accurate to ±0.5 mm. See table 2 for an overview of the achieved
precision in the presented TSCRs.
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Table 2. Achieved precision in the realization of the TSCRs shown in previous figures. Negative
values indicate the measured edge lies within the constrained region, while positive values show
overpainting outside of the region. The resolution of the feedback system is 0.3 mm per pixel.

TSCR Angle Error Left Side Error Right Side Error Tip Figure

30◦ +1 mm −0.6 mm −1.7 mm Figure 16
60◦ ± 0 mm +0.3 mm −0.3 mm Figure 13
90◦ −0.3 mm −0.6 mm −1.3 mm Figure 17

140◦ +0.6 mm ± 0 mm +0.3 mm Figure 18

Figure 13 shows the output of a TSCR used to paint a corner with a 60◦ angle. The
initial strokes are painted well clear of the border (Figure 14a). Here we can already see
that the initial strokes are not equally spaced to the goal corners, as the upper one is closer.
The deviation is due to the brush being deformed by a previous stroke in this case, which
is not predictable. Due to exactly this effect, an iterative approach is needed. The distance
to the sides and tip are then measured for the newly created strokes (Figure 14b and the
corresponding offset is applied). By repeating this until the stokes are placed exactly along the
goal edges, we achieve the result seen in Figure 14c. The corners and tip are filled precisely
and the robot stops before any overpainting occurs. Figure 14d shows the final error image.

We have also tested the applicability of this method for 30◦, 90◦, and 140◦ corners, as
can be seen in Figure 16, Figure 17 and Figure 18, respectively. In all cases, convergence is
achieved and the desired angle is produced at the required location. All shown images are
taken directly from the robot’s visual feedback system. The resolution achieved is 1 pixel
per 0.3 mm.

Figure 16. TSCR paint progression for a 30-degree corner. More tolerance is given at the tip since
the tool cannot reach into it fully without violating the other constraining side. Top row: feedback
images with no annotation. Bottom row: difference images with annotated goal and measurement
lines. In the first two images, the strokes are moved from the inside towards the goal lines. Once
these have been reached, the strokes are moved towards the tip, which fills it in.

Figure 17. Cont.
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Figure 17. TSCR paint progression for a 90-degree corner. Similar to Figure 16 a corner is filled in by
moving strokes towards the sides and then into the corners. Shown here are iteration steps 1, 3, and 5
of the realization process.

Figure 18. TSCR paint progression for a 140-degree corner. Obtuse angles are realized with the same
procedure used for acute and right angles (see Figures 16 and 17).

A drawback is that the tips of two-sided constrained regions do not come to a perfectly
sharp tip, but even for humans such features are not always realizable. Furthermore, most
painting tasks do not require such features but only need the impression of a pointy outline.

Figure 19 shows the progress a structured region. A 5 cm× 4 cm region is covered
with a single pigment and a horizontal structure. Within three iterations we achieve full
coverage of the intended region (red box). Due to the brush’s texture, a structure is achieved
in the desired direction. The outline of the region is not considered by this approach, but
by outlining it with constrained regions first, a sharp corner can be achieved. Experiments
have shown that using a single attempt to realize such a region without feedback is not
guaranteed to work since the required stroke density to achieve a guaranteed cover is very
high. Despite this, brush behavior might lead to some uncovered areas. From Figure 19b,c
we can see how remaining holes are detected and filled in. Figure 20 shows a small
example painting where two structured regions form a simple landscape: The sky consists
of horizontal strokes with larger white strokes added as cloud details. The grass is made up
of shorter vertical strokes and red dots are added as details. The paint plan for this image
only consists of two rectangles with the appropriate information.

(a) (b) (c)
Figure 19. Execution of a monochrome structured region with a horizontal structure vector. The
target area is shown with a red box and covered within three iteration steps. (a) Initial stroke set;
(b) first feedback step; (c) second feedback step.
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(a)

(b)
Figure 20. A simple landscape painted with structured regions. It consists of two rectangular areas,
with different attached attributes. The sky consists of a blue coverage with horizontal orientation with
an added white zigzag stroke covering 10% of the area. The grass is made up of vertically oriented
green strokes, which are also shorter. Additionally, a 25% coverage with simple red dots as flowers
is layered on top. (a) Sketch of the structured region input: each region is defined with a primary
structuring member and some additional elements to be painted on top with a specified density; (b)
the painting created from the given input data.

Figure 15 shows a basic fractal tree, painted using gestural techniques. While from a
technical perspective this is not very noteworthy, offering such primitives to users of robotic
painting systems is important. First, more abstract handling of the painting process hides
details of SBR from users. Secondly, the ability to give more vague instructions over always
requiring precise stroke commands makes the system more approachable and replicates
some of the vagueness inherent to painting as discussed in Section 1.1. Finally, it allows
for simplified automatic paint planning, as unimportant regions can be marked for rough
gestural infill. Generating synthetic images, such as the shown trees also becomes easier.
In this case, a simple fractal tree was generated as a set of boxes representing foliage and
branches (Figure 15a). Foliage boxes were replaced with zigzag-like strokes, resembling
those of Cézanne in Figure 5. The resulting leave structure in Figure 15c is somewhat
similar. Figure 15d shows the same tree structure painted with spiral gestures instead
of zigzags.

5. Discussion

The initial idea was to move robotic painting closer to how humans work by moving to
different types of paintable regions instead of strokes as the basic building block of an image.
We have described three concrete methods to achieve this and show their applicability in
different situations. These higher-level constructs are a new approach in this field and allow
robotic painting systems to become more usable, efficient, and human-like in their results.

We have demonstrated a working implementation of constrained regions which
are realized using information about the used paint brush and visual feedback. The
process allows for the precise realization of corners and edges, which can be used to create



Arts 2022, 11, 77 21 of 25

polygonal structures in painted images. The locally iterative process which focuses on direct
measurement of the effect of previous actions is novel in robotic painting. Furthermore,
since brushstrokes are guaranteed to not violate adjacent regions, the iteration stop for the
feedback process is well defined. The main limitation of this method is that small details
are not achievable, since some space is required to place initial strokes. This must be solved
separately by planning individual strokes. Furthermore, the realized features usually show
the brush stroke structure that was used during the feedback process, which might not
be suitable for all use cases. Despite this, constrained regions are a major step toward
imitating human pictorial rendering techniques in robotic painting.

Our implementation of structured regions also follows this direction: traditional SBR
methods would struggle with mixed areas like in Figure 4a. The optimization for an exact
color match causes repeated overpainting, leading to a more homogeneous, unstructured
area. Instead of focusing on coverage and overall distribution, we avoid this trap by
painting only uncovered or insufficiently colored areas within a structured region. This also
leads to improved convergence, since the system cannot get stuck in a loop where a feature
is painted and overpainted again when adjacent colors are reapplied over each other. This
occurred in previous e-David methods (see Lindemeier et al. 2015). Structured regions
are again a novel concept in robotic painting as they allow a more error-tolerant style in
places where an exact match to a template is not as important. The inherent drawback
of this method is that a structured region cannot exactly stay within its bounds, so either
some over- or underpainting of region borders must be tolerated. A combination with
constrained regions placed around a structured one could be a solution in some cases.

We also introduced gestural regions as a means to quickly and roughly cover some
areas with paint. We derived these from the observation that human painters tend to
use rapid but coarse brush movements in areas of a painting where precision is not the
main concern. The novelty of this approach lies in the use of an explicit region type for
this, which benefits the planning process. Furthermore, since gestural regions are defined
by their type of movement, it is possible to use interchangeable movements for varied
results. Additionally, by using predefined movements which are known to be executable
by a given painting machine, we can avoid stalling the machine through commands it is
not able to execute, e.g., when they are limited by point density or the speed of direction
changes. The limitations of gestural regions are of course their imprecise nature and lack of
feedback metrics.

On the input and image composition side of a robotic paint system, regions provide
the main advantage of improving planability. While in SBR the image emerges from a sum
of strokes globally, the image is only finished after fully converging. When this occurs
is unclear, since the noisy painting process can require going back to previously painted
locations at any time. In region-based painting, a finished region does not change after
completion and the criterion for said completion can be stated more explicitly.

On the output/production side of the painting system, we are now able to achieve
higher quality. Constrained regions lead to increased painting precision, which many
SBR-based systems have previously not been able to achieve. The ability to reliably create
precise edges and corners avoids potentially uncorrectable errors which can degrade entire
paintings. A secondary effect is the possibility to reuse previous painting results in a
knowledge base. Placing a single stroke on some unknown background in SRB-type
paintings is hard to predict and a recording is of limited use. Recording a region painted
onto a blank surface with defined actions can be reused since outside effects are minimized.

The main drawback of region-based methods is that we require a segmentation method
to determine paintable regions. The quality of our painting result depends on the quality
of the found regions, which can be a tricky problem to solve. SBR methods on the other
hand can directly work with pixel images.
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6. Conclusions

In this paper, we presented multiple new approaches to robotic painting. First, the
computation of brush slip based on brush hair length gives an upper bound for where
a given brush application will place a stroke edge on a canvas. This is a good prior for
more accurate painting. Since a complete simulation of brush physics is an extremely
involved task (see Baxter and Lin 2004), using an approximation for certain aspects of brush
dynamics allows us to slowly improve planning for physical painting tasks.

Second, the introduction of iteratively painted constrained regions represents a new
approach to robotic painting. Our method mimics human behavior more closely, where
a painter finishes an artwork region by region. We can subdivide polygons into SSRCs
and TSCRs and realize them individually. Our method uses optical feedback to achieve
precision within 1mm. Using constrained regions in images makes it possible to reliably
paint clear edges and corners.

Third, structured regions offer an efficient way to fill in certain areas. As we have
shown in Section 1.2, painted areas defined by their structure or color distribution are
common in human painting. For these preserving exact edges is not relevant, as structural
differences can serve to indicate borders. However, preserving the structured visual
impression is not usually considered in previous methods. Our approach is structure-aware
and allows the realization of these areas.

Constrained and structured regions also introduce visual feedback with frame-to-
frame coherence in robotic painting, which thus far had not been used: since only a limited
set of actions is used in a know region it is possible to judge the effect of single actions
taken in the region, such as the progress towards realizing a line or corner. Our system can
measure the achieved distance to a constraining line before and after an action, which can
be used to paint future lines more directly.

Finally, gestural regions are a simple but effective method to realize certain areas in a
more approximate manner. It mimics human behavior to use rough, semi-random scribbles
to fill in an area of lower importance to a painting. Implementing this in robotic painting
allows us to paint areas of different importance in different ways, by placing constrained or
structured regions on important features, while less relevant objects are reduced to a few
gestural regions. This reduces paint times, makes planning simpler, and avoids that the
system spends a lot of time on an unimportant but perhaps salient feature.

Overall we introduced three new principles which can be used for better motion
planning in robotic painting.

7. Future Work

To maximize the use of regions as primitives in robotic painting, the next research
step must be the development of a planning tool, which automatically translates input
images into a set of such regions. This will allow our approach to be as generally applicable
as traditional SBR methods. Especially with the recent developments in AI-generated
art, in which pretrained networks produce pixel images that look like abstract art (see
Elgammal et al. 2017) or agents which translate text prompts into plausible images (see
“Dall-E” or Ramesh et al. (2022)) this would allow for end-to-end machine art.

Additionally, classification of regions from semantics and structural hints would
significantly improve painting quality: different objects might have similar colors, such
as a blue-hulled ship on the water. Such features could be contrast-enhanced or painted
with different structures to allow for a distinction. Identifying and replicating structural
differences, like in all-green tree structures goes in a similar direction.

On an artisanal level, we intend to include more considerations about tool effects into
the paint plan and also add a temporal component to watch for drying times. Painting
next to dries areas will keep region boundaries crisp, while deliberately painting onto wet
regions will allow on-canvas paint mixing or color redistribution. Furthermore, the plan
should include washing the brush after potentially contaminating it in a wet area.
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The methods to realize TSCRs and SSRCs presented in this paper are quite specific to
the given task. Finding a more general solution to such action planning would be beneficial
to expanding the capabilities of the painting system and making it easier to adapt to other
aspects of painting.

Finally, the data we accumulate from the feedback of isolated regions could be used
by searching for areas in new images which are similar to previously painted features. This
would allow us to build a knowledge database over time.
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TCP Tool Center Point
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Appendix A

(a)
Figure A1. Cont.
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(b) (c)
Figure A1. Images of our robot system in various settings. (a) The robotics lab with both robots in
use for the e-David system (ABB IRB 1660ID left, ABB IRB 1200 right); (b) e-David painting during
an exhibition in Zürich; (c) e-David painting during an exhibition in Konstanz.

Note
1 The formula for the line–circle intersection used in Equations (6)–(9) has been taken from (Rhoad et al. 1991).
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