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Abstract: With the rising focus on building energy big data analysis, there lacks a framework for 
raw data preprocessing to answer the question of how to handle the missing data in the raw data 
set. This study presents a methodology and framework for building energy consumption raw data 
forecasting. A case building is used to forecast the energy consumption by using deep recurrent 
neural networks. Four different methodologies to impute missing data in the raw data set are 
compared and implemented. The question of sensitivity of gap size and available data percentage 
on the imputation accuracy was tested. The cleaned data were then used for building energy 
forecasting. While the existing studies explored only the use of small recurrent networks of 2 layers 
and less, the question of whether a deep network of more than 2 layers would be performing better 
for building energy consumption forecasting should be explored. In addition, the problem of 
overfitting has been cited as a significant problem in using deep networks. In this study, the deep 
recurrent neural network is then used to explore the use of deeper networks and their regularization 
in the context of an energy load forecasting task. The results show a mean absolute error of 2.1 can 
be achieved through the 2*32 gated neural network model. In applying regularization methods to 
overcome model overfitting, the study found that weights regularization did indeed delay the onset 
of overfitting. 
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1. Introduction 

According to the US Department of Energy, Energy Information Administration, the residential 
and commercial sectors account for 36% of total energy consumption [1]. This substantial level of 
energy usage has focused research efforts into energy conservation in these two sectors. One energy 
conservation strategy lies in active demand and supply management which in turn relies on accurate 
energy consumption predictions. 

 In recent years, with the introduction of smart metering infrastructure which provided energy 
consumption data for research, data-driven approaches for energy consumption prediction using 
various methods have proliferated [2,3] At the same time, the rise of deep learning in the machine 
learning world led to dramatic improvements in many classical machine learning tasks in speech 
recognition, visual object recognition and detection, and other domains [4]. Coupled with the 
availability of large energy datasets which satisfies the key prerequisite for deep learning, its 
application to energy consumption prediction was matter-of-course and its promise of vastly 
improved prediction accuracy led to a growing research direction in big data energy analytics [5]. 
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To enable big data analytics, a high-quality data set is necessary as the algorithm would learn 
from the existing and past data. However, the raw data from energy meters are usually full of outliers 
and missing values where preprocessing is always required for big data analytics [6]. There lacks a 
framework for raw data preprocessing to answer the question of how to handle the missing data in 
the raw data set. 

In a survey of the state of the art in load forecasting, Fallah et al. [7] noted that deep learning 
approaches are known to suffer more from overfitting issues than shallow machine learning models. 
Powerful deep models with a large learning capacity easily learn incidental patterns in the training 
data which do not appear in other data, causing it to underperform more simple models. There also 
lacks a study to explore the use of deeper networks and their regularization in the context of an 
energy load forecasting task to reduce the overfitting issue. 

Existing studies explored only use small recurrent networks of 2 layers and less, and therefore, 
the question of whether a deep network of more than 2 layers would be performing better for 
building energy consumption forecasting should be explored. Secondly, the problem of overfitting 
has been cited as a significant problem in using deep networks. This study aims to explore the use of 
deeper networks and their regularization in the context of an energy load forecasting task to reduce 
the overfitting issue. 

The structure of the paper is arranged as following, section 2 will review the state-of-the-art on 
electrical grid load prediction, Building Energy Consumption Prediction, household energy 
consumption, and the Deep Learning in Energy Consumption Prediction. Section 3 will state the case 
building and case data set, followed by section 4 on Forecasting Methodology. Section 5 will illustrate 
the results and section 6 will show the discussion. 

2. State of the Art 

Studies in energy consumption prediction differ in the scope of the energy consumption 
predicted. Energy consumption can be predicted for an electrical grid, a building, or an individual 
household. 

2.1. Electrical Grid Load Prediction 

At the electrical grid level, to achieve efficiencies in grid operations, electricity suppliers 
implement demand side management programs to moderate consumption patterns [5]. Demand 
response (DR) achieved through real-time pricing and load curtailment programs allows electricity 
suppliers to avoid high generation, transmission and distribution costs at demand peaks, and reduces 
overall capital investments in network reinforcements and capacity reserves required for maintaining 
grid reliability. Generation and load characterization and forecasting are key functions in a typical 
DR system. 

Macedo et al. [6] presented a load curve pattern classifier using neural networks which 
characterized a load according to 4 different profiles. Daily consumer loads are first classified and 
grouped. The load profiles determine the best control actions in system management at the secondary 
system level for transformers and also substations at the primary system level. The classifier, a self-
organizing neural network of 10 hidden nodes, was trained using learning vector quantization, a 
supervised learning algorithm. 

In the study by Ding et al. [8] on short-term load forecasting model for distribution systems 
using neural networks, they focused on feature engineering and model parameter selection, having 
found in a survey that most works, while showing success using neural networks, lacked clear 
explanation about their choice of input variables and model parameters. Two single-layer 
feedforward neural network of up to 10 hidden nodes were trained to predict the daily average power 
and intra-day power variation respectively which were combined to obtain the 24-hour ahead 
forecast at a 30-minute frequency. Different variable sets from load, temperature, and date/time 
variables were used in each model. The best neural network model was found to out-perform a 
variant of the time series decomposition method using additional weather forecast variables in trend 
regression and spectral analysis for cycle regression. 
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Liu et al. [9] used long and short-term memory (LSTM) recurrent neural networks (RNN) on 
hourly frequency grid load data with multiple cyclical components for forecasting a 24-hour load 
profile. The single layer LSTM network had 256 hidden nodes processing sequences of length 28. 
Better accuracy was obtained in comparison to a feedforward network. 

2.2. Building Energy Consumption Prediction 

While energy consumption is obviously aggregated across many individual dwellings at the 
building level which lessens its inherent volatility, forecasting nonetheless remains a challenging task 
due to the wide-ranging factors which affect consumption such as the weather, equipment, number 
of occupants and their energy-use behavior [3]. Notwithstanding the task complexity, prediction 
models which achieve even a small percentage of improvement can reap large economic and social 
benefits when applied to high levels of energy consumption in large buildings, wherein lies the 
attraction of forecasting building energy consumption as a topic for research [10] 

Zheng et al. [11] reported using a LSTM network on a school’s engineering building energy 
consumption sampled at 15-minute frequency for forecasting with a forecast horizon of 24 hours 
using a lookback of 10 days. While the study results showed that the LSTM network outperforms 
traditional forecasting methods such as support vector regression (SVR) and seasonal auto-regressive 
integrated moving average (SARIMA), few details of the LSTM network was provided.  

Nichiforov at al. [12] applied deep recurrent neural networks for load forecasting in large 
commercial buildings using long and short-term memory (LSTM) networks. Several LSTM networks, 
comprising a single LSTM layer of varying size and a single fully-connected layer, were tested on the 
one-year energy consumption data of two university campus buildings, collected at a 60-minute 
frequency.  

Amber et al. [10] reported the use of multi-layer feedforward (MLFF) neural network and deep 
learning for predicting the daily electrical consumption of an administrative building in London. The 
building data used comprised daily electricity usage, daily mean surrounding temperature, daily 
mean global irradiance, daily mean humidity, daily mean wind velocity, and weekday index. The 
MLFF neural network used had 10 hidden layers each of 100 nodes which qualifies it as a deep 
network. No description of the other deep neural network used in the study was provided. The study 
found that the MLFF neural network performed best overall in comparison to the deep neural 
network and other shallow machine learning and regression methods used in the study. 

Zheng et al. [13] compared the performance of single and two-layer 20-node LSTM and gated 
recurrent unit (GRU) RNNs for forecasting residential community load using a dataset of hourly 
loads. The study found that GRU and LSTM networks gave similar accuracy but the former incurred 
shorter training time. 

Jiao et al. [14] investigated the energy consumption of non-residential consumers in business 
and industry. The dataset comprised electrical load data from 48 non-residential customers sampled 
at 15-minute intervals. This study is notable for using feature engineering together with deep 
networks. Three separate LSTM networks were trained using the 15-minute frequency load sequence 
and two other load sequences at the timescale of day and week respectively. A day-scale sequence 
comprised the loads at the same time point on consecutive days; a week-scale sequence has the loads 
at the same time point, day of the week on contiguous weeks. A range of 3–10 time steps were used 
for the 3 LSTM networks. Time and day of the week indices and binary holiday indications together 
with the load sequences were also fed to each LSTM network with hidden nodes ranging from 32 to 
64. The study found that the multiple sequence LSTM solution performed best in general compared 
to random forest, SVR, and single layer feedforward network. 

Rahman et al. [15] proposed a neural network based on an encoder–decoder architecture for 
building energy load forecasting. The encoder was a 2 or 3-layer LSTM network coupled to a single-
layer feedforward network in two variants of the proposed neural network explored. All the layers 
both recurrent and feedforward had 24 hidden nodes. The input sequences comprised energy load 
values for a single-day duration at 1-hour intervals. To overcome model overfitting, weights 
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regularization was applied. The study found that the proposed neural networks performed better 
than a 3-layer feedforward model. 

2.3. Household Energy Consumption Prediction 

At the household level, unlike aggregated energy consumption, energy loads exhibit much more 
variability in patterns which hamper accurate forecasting. In households, daily routines, the lifestyle 
of its members, and the ownership of types of appliances all have substantial impact on the short-
term energy load. Using the half-hourly energy load readings for a dataset of 96 households, Kong at 
al. [16] showed that daily household energy load profiles vary greatly from household to household. 
While some households have daily profiles which can be organized into major clusters with few 
outliers, others show no clusters at all. To handle this complexity, a deep LSTM neural network with 
lookback of 2–12 time steps, two hidden layers of 20 nodes each was used for a 1-step ahead 
household energy load forecast. The study found that in general the LSTM network performed best 
in comparison with a MLFF neural network and other shallow machine learning methods. 

In another study, Kong et al. [17] used a larger 2-layer 512-node LSTM network with a lookback 
of 2–12 time intervals to predict household energy consumption using the energy consumption data 
from individual household appliances. The study again found that the LSTM network outperforms 
other forecasting methods. 

In addition to using LSTM networks, Hossen et al. [18] tested 2-layer recurrent networks of 50 
to 100 nodes using GRU nodes for forecasting on a dataset of individual sub-meter readings using 
varying lookback of 30 to 50 time intervals. The LSTM network performed better than the GRU 
network while both recurrent networks were superior to other conventional time series methods. 

Shi et al. [19] proposed a pooling method to overcome a lack of training data which led to 
overfitting in deep LSTM networks. By pooling energy consumption data from multiple households 
in the same locality during model training, the study found that deep LSTM networks of up to 5 
layers of 30 hidden units each can be successfully trained to outperform smaller LSTM networks as 
well as shallow machine learning models in forecasting individual household energy consumption. 
The authors attributed the success of the pooling approach to the fact that energy consumption was 
driven by factors common to all households such as ambient temperature, day of the week, etc. 
Pooling the energy consumption data hence allowed the model to learn these patterns across 
households in addition to providing more training data to the deep network which rendered it less 
susceptible to overfitting. 

Due to the limited training data available, Belyaev et al. [20] used a simple RNN instead of more 
complex LSTM or GRU networks. The dataset comprised of data from 47 households sampled only 
once or twice a day. The best model was a single-layer RNN network of 10 hidden nodes in 
comparison with classical polynomial regression. 

In their study on building energy load forecasting, Rahman et al. [15] also applied their proposed 
encoder–decoder RNN to aggregate energy consumption of households. While the performance of 
the RNN was better than a regular feedforward neural network at building level, the feedforward 
network outperformed the RNN for aggregated household energy consumption.  

2.4. Deep Learning in Energy Consumption Prediction 

Several studies have already explored the use of deep learning in the form of deep feedforward 
as well as recurrent networks as shown in table 1. In most of these studies, while there is some 
exploration of the parameter space to find the set of network parameters which gives the best forecast 
accuracy, there is little mention of how network parameters are selected in relation to the problem on 
hand as has already been noted by Ding at al. [8]. 

The LSTM and GRU networks explored are all single or two-layer networks with up to a 
maximum of 512 nodes per layer. Only Zheng et al. [13] and Shi et al. [19] explored the use of long 
sequence lengths. 

Table 1. Neural networks in energy load forecasting (??? = information not provided in paper). 



Buildings 2019, 9, 204 5 of 17 

S/No. 
Authors Year System 

Level 

Network type Size 

(#layers × 

#nodes per layer) 

Sequence 

length 

1.  Macedo et al. 2015 grid Self-organizing 1 × 10 - 
2.  Ding et al. 2016 grid Feedforward 2 × (1–10) - 
3.  Liu et al. 2017 grid LSTM 1 × 256 28 
4.  Zheng et al. 2017 building LSTM ??? 960 
5.  Nichiforov at al. 2018 building LSTM 1 × ??? ??? 
6.  Amber et al. 2018 building Feedforward 10 × 100 - 
7.  Zheng et al. 2018 building LSTM / GRU 2 × 20 ??? 
8.  Jiao et al. 2018 building 3 x LSTM 1 × (32–64) 3–10 
9.  Kong at al. 2017 household LSTM 2 × 20 2–12 
10.  Kong at al. 2018 household LSTM 2 × 512 2–12 
11.  Hossen et al. 2018 household LSTM/GRU 2 × (50–100) 30–50 
12.  Shi et al. 2018 household LSTM (1–5) × (5–100) 48–336 
13.  Rahman et al. 2018 Building/ 

household 

LSTM (3–4) × 24 24 

A key concept in deep learning is the learning of deep distributed representations in which high 
level features in the data are learned through the progressive composition of many non-linearities 
learned in each layer of the network. While it may not be impossible for a shallow network to learn 
the same, given that a single layer network is shown to be a universal approximator, it will require 
likely a large number of hidden nodes. It has also been proven that a deeper network of more layers 
can represent a function using a smaller number of hidden nodes compared to a shallow model, 
achieving a higher statistical economy [21]. Deeper networks hold the potential to achieve better 
performance over large shallower networks. 

The sequence length processed by the network determines the high-level features which can be 
learned in sequential data. A suitable sequence length which covers the period of the cycles expected 
in the data (e.g., weekly) enhances the learning ability of the network. It should also obviate the need 
for manual feature engineering of the type seen in Jiao et al. [14] where time and day indices are 
provided as input to the recurrent network. A suitably long sequence length amplifies the ability of 
the network to independently learn deep distributed representations and avoid brittle manual feature 
engineering which is a key reason for employing a deep learning approach over shallow models. 

In a survey of the state of the art in load forecasting, Fallah et al. [7] had noted that deep learning 
approaches are known to suffer more from overfitting issues than shallow machine learning models. 
Powerful deep models with a large learning capacity easily learn incidental patterns in the training 
data which do not appear in other data, causing it to underperform more simple models. However, 
apart from Shi et al., all cited studies using deep models did not mention overfitting as an issue and 
thereby also any measures taken to overcome it. The likely reason is that the models studied were 
not deep enough that their performance was degraded by overfitting. While Shi et al. [19] did explore 
overcoming overfitting in their 5-layer deep LSTM model, it was from the angle of increasing the size 
of the training data without the use of any regularization methods. Deep models require 
regularization measures to achieve good performance over shallower models. Among other 
developments, Lecun et al. [4] singled out the dropout regularization method as one key enabler in 
the rise of deep learning. 

3. Case Building and Case Dataset 



Buildings 2019, 9, 204 6 of 17 

The data comprises the electricity consumption and cooling thermal energy of a mixed function 
institutional building in a university campus in Singapore. Each data is measured at a half-hourly 
frequency from June 2015 to March 2017. As seen in the plots of the data (Figure 1), there is missing 
data in both datasets. 

 

 
Figure 1. Electricity consumption and cooling thermal energy consumption data from June 2015 to 
March 2017. 

The energy consumption data exhibits weekly cycles (Figure 2). The plot shows the energy 
consumption for a typical week. Energy consumption peaks during office hours and reduces to a 
minimum in the hours of the night and early morning. The energy consumption is also lower on 
Saturdays and lowest on Sundays. The plot also shows a clear correlation between the energy 
consumption and cooling capacity in use. 

Figure 2. Weekly cycles in the data. 

The energy consumption data also exhibits a longer-term trend over the period of an academic 
calendar year. The weekly cycles differ in amplitude during different phases in the year. The plot 
(Figure 3) shows the lower peaks in a typical week during the vacation compared to the instructional 
period. 

Figure 3. Trend in the data. 

3.1. Data Transformation 

Case building Energy Consumption 

Case building Cooling Capacity

Case building instructional period 22–28 Aug 2016 
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The plot in Figure 4 (left) shows missing data statistics for energy consumption data. Figure 4 
(right) shows the distribution of missing data in the energy consumption data. 

  
  

Figure 4. Missing data statistics for energy consumption data. 

There are 21 instances of a 2-time step gap, 3 instances of a gap of 6-time steps and single 
instances of large gaps in the data of sizes ranging from 9 to 660-time steps (Figure 5). 

Figure 5. Occurrence of gap sizes. 

In order to preprocess the raw data, 4 data imputation methods were tested on the data, 
structural model with Kalman smoothing, ARIMA model with Kalman smoothing, spline 
interpolation and exponential moving average. 

The exponential moving average and spline interpolation are relatively simple general 
mathematical methods using in data imputation. The ARIMA method is commonly use in the domain 
of financial and econometric analyses while the use of the structural model is typically seen in moving 
object trajectory tracking applications [22].  

Ten periods of time in which there were no missing data were extracted from the data. Missing 
data is next simulated on these 10 datasets using an exponential distribution with a range of values 
for the rate parameter λ (Figure 6). The rate parameter defines the average number of missing events 
per time step. As in most missing data methods, the simulation assumed that the missing data is 
missing completely at random (MCAR) [23]. Missing data which is generated by a systemic process 
requires an analysis of the generation process. 



Buildings 2019, 9, 204 8 of 17 

Figure 6. Distribution of simulated missing data. 

The missing data is imputed using the 4 imputation methods and the imputation error 
calculated. 

  

  
  

Figure 7. Distribution of data imputation errors. 

Imputation using AutoRegressive Integrated Moving Average (ARIMA) produced large errors 
in 3 of the data sets for λ = 0.25 (bottom right in Figure 7). The outliers produced are shown in together 
with correctly imputed data for comparison (Figure 8). 

  
Figure 8. Outliers and correctly imputed data using ARIMA method. 

A one-way ANOVA and pairwise T-test showed significant differences in the errors with the 
simple exponential averaging method performing worst for all the values of λ. For λ = 0.1, 0.15, and 
0.25, the other three methods did not perform differently (ARIMA was excluded from the comparison 
for lambda = 0.25 because of the large errors). For λ = 0.2, ARIMA and structural model performed 
significantly better than spline interpolation. 
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Table 2. Root mean square error (RMSE) for data imputation (lowest RMSE highlighted). 

λ Structural 
Model 

ARIMA Spline 
interpolation 

Exponential 
moving average 

0.10 2.497596 2.524483 2.801944 3.687430 
0.15 3.096260 3.259848 3.446748 4.962951 
0.20 3.020435 3.141991 4.027506 5.230314 
0.25 3.296376 27.560808 3.453490 5.008605 

The sensitivity of gap size and available data percentage on the imputation accuracy has been 
tested in Figure 9. It shows the accuracy reduces with the increase of gap size for most of the time. 
There is no clear elbow point to determine when to stop the imputation. Since the data imputation 
will use the existing data to impute the missing data, Figure 9 shows the sensitivity of exsiting data 
percentage on the data imputation accurancy. The results shows the accuracy does not change with 
the decrease of available data percentage. 

  

  
Figure 9. Sensitivity of gap size/existing data percentage on the data imputation accurancy. 

3.2. Missing Values in the Training Data Set 

SVR is used as the benchmarking base model for comparison of the gated neural network, where 
SVR is unable to handle missing values in training data. Discarding data has two disadvantages. A 
resulting smaller training dataset may adversely affect the performance of the trained model. In 
addition, if the missing data mechanism is not MCAR [24], its removal will introduce biases into the 
training data. Given the results in Table 2 root mean square error (RMSE) for data imputation (lowest 
RMSE highlighted), the structural model method was selected for missing data imputation. A 
conservation value for the maximum missing data gap size of 3-time steps was also selected to 
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minimize imputation error. Only missing data of gap size less than this value was subject to data 
imputation. Missing data of larger gap size were not imputed. 

Neural network models handle missing input data in another way. In this phase of modeling, 
the remaining missing data were replaced by a value not observed in the data. The selected value is 
–1 as the input data was normalized to [0, 1] using min–max scaling during pre-processing. Only data 
samples in which the label or all the inputs are missing, were discarded [25]. During training of the 
neural network, it will both learn the meaning of the value –1 and learn to ignore the value [26], as 
shown in table 3. 

Table 3. Handling of missing data in neural networks. 

Input Data Label Accept / Discard 

Some values are -1 Valid value  Valid data sample 

Any sequence of values -1 Discarded 

All values are -1 Valid value Discarded 

4. Forecasting Methodology 

4.1. Machine Learning Workflow 

The typical machine learning workflow comprises the following steps: 
1. Define problem and measure of success; 

2. Define an evaluation protocol; 

3. Prepare data; 

4. Develop benchmark and base models; 

5. Scale up and regularize base model. 

This basic workflow applies to both shallow models as well as deep. Steps 1 and 2 are largely 
self-explanatory. In this study, the problem is energy load forecasting and a suitable metric is 
specified in a later section, 4.4 Forecasting Task. The standard evaluation protocol used in machine 
learning is cross-validation [27]. In this study, due to limitations in the availability of computation 
resources, an out-of-sample or last-block evaluation approach is used instead. The time series dataset 
is partitioned using a simple 2:1 split with the larger split forming the training split and the other the 
validation split. 

The main difference in workflow between shallow and deep models lies in the data preparation 
step. In this step, carefully crafted manual features which help shallow models perform well are 
introduced into the modeling process. Deep learning model obviate the need for such intensive and 
manual feature engineering work by learning the requisite higher-level representations for 
successfully performing the machine learning task automatically and independently. 

The benchmark models serve as a baseline to demonstrate that the base machine learning model 
which uses default parameters and hyper-parameters is capable of making reasonably accurate 
predictions. The base model is gradually scaled-up to increase its predictive power until overfitting 
sets in and adversely affects its performance. To reduce the effects of overfitting and improve the 
performance of the base model, network regularization methods are employed together with fine-
tuning of the network hyper-parameters. 

4.2. Gated Recurrent Units 

RNNs are neural networks specialized for processing sequential data [21]. However, simple 
RNNs perform poorly in the learning of long-term dependencies between an input and the predicted 
output. In 1997, Hochreiter et al. [28] introduced a gated RNN based on the LSTM unit to greatly 
improve the performance of RNNs in learning such dependencies. The gates in the LSTM unit are 
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themselves fully-connected feedforward neural networks. Proposed more recently by Cho et al. [29], 
the GRU is an RNN hidden unit selected in this study for its simplicity to implement and to compute 
in comparison with the LSTM. The GRU consolidates the three input, output, and forget gates in the 
complex LSTM architecture [30], whose design rationale is not totally clear as noted, into two reset 
and update gates while retaining an ability to learn dependencies over different time scales. 

4.3. Regularization Methods 

The network regularization methods used are dropouts [31] and weights regularization [32]. 
Dropouts can be applied to the outputs of any layer in the network. A fraction of the outputs of a 
layer are randomly zeroed out by the applied dropouts according to the specified dropout rate. This 
effectively adds noise into the network during training so that overfitting does not set in easily. 

Weights regularization accomplishes the same effect by adding a penalty term to the loss 
function proportional to the value of the weights in the network. This prevents the weights from 
growing too quickly and also decays weights which are not updated to zero, both of which aids in 
delaying the onset of overfitting. There are two types of weight regularization functions. The L1 
function is the sum of all the absolute value of the weights while the L2 function is the sum of all the 
square of the weights.  

4.4. Forecasting Task 

The forecasting task for this analysis is a one-step or 30-minute ahead energy consumption 
forecast using a 5-day lookback which is a sequence of 240-time steps (i.e., 48-time steps per day x 5 
days). 

The sequence length is selected given the weekly cycle seen in the data. Intuitively, looking back 
at least 5 days will allow the current day of the week to be determined given the weekly cycle of H-
H-H-H-H-L-LL where H is high consumption, L is low, and LL lowest. For example, for a sequence 
H-H-H-H-H, the next value in the sequence is L. 

The metric used in the comparison analysis is mean absolute error (MAE). 

5. Results 

5.1. Benchmarking Base Model 

To obtain a benchmark for comparison against the performance of the recurrent network 
models, two models were developed. The first is the last observation carry forward (LOCF). It is a 
naïve model in which the one-step ahead prediction is the last observed value in the sequence. The 
MAE calculated for the LOCF model on the validation split using a simple 2:1 split is 3.983. Despite 
being extremely simple, the LOCF model otherwise also known as simple persistence forecasting, is 
nonetheless a credible benchmark as research in forecasting has shown. Outperforming the LOCF 
model when the variation in the data is high is in reality difficult. The second benchmarking base 
model is support vector regression. Since the method of support vector machines(SVR) was proposed 
in 1995 [33], SVR is a popular machine learning model proposed for forecasting tasks even recently 
[34–36]. It has also been used as a benchmark for comparison in various studies in the survey of 
related works [14,18]. 

The SVR benchmark model was implemented using the sci-kit learn machine learning library 
[37]. The model parameters were selected using grid search on a 5-fold time series split using 240 lag 
values as input data. Samples with missing data after imputation were discarded as the SVR training 
algorithm did not handle missing values. The parameters were a gamma value of 1e-3 for the radial 
basis function kernel and a value of 100 for the C parameter. When trained using a simple 2:1 split, 
the validation MAE for the best SVR model was 4.388. The LOCF model outperformed the SVR model 
in MAE which showed that it set a high bar despite being a naïve model, as shown in figure 10. 
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Figure 10. Comparison of LOCF forecasting, SVR forecasting, and measured data. 

5.2. Base Recurrent Neural Network Models 

All neural network models were implemented on the Keras [38] and Tensorflow [39] machine 
learning libraries. The following 4 base models (Table 4) were trained on the data:  

Table 4. Base models (FF = feedforward). 

S/No. Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

1 128 GRU 128 GLRU 128 GRU 128 GRU 32 FF 32 FF 

2 64 GRU 64 GRU 64 GRU 64 GRU 32 FF - 

3 32 GRU 32 GRU 32 GRU 32 GRU - - 

4 32 GRU 32 GRU - - - - 

 
Figure 11. Base model training curves (training curves are smoothed using 20-epoch moving average; 
the background plot is the actual training curve of the best model). 

The training curves (Figure 11) show that the two deeper networks overfit quicker than other 
networks. Without overfitting badly, the smaller networks achieve a better performance in MAE, the 
best of which is 2.122 (in actual units) from the smallest two-layer model (model s/n 4 in Table 4). All 
the base models outperformed the benchmark LOCF model MAE of 3.983. 

5.2.1. Dropout Regularization 
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Dropouts were used without any success on the deepest model. Dropouts of different rates from 
0.05 to 0.2 were used on the GRU layers for both input and recurrent state. The validation MAE 
achieved was worse than that of the base model. 

5.2.2. Weights Regularization 

4 x 128 GRU, 2 x 32 FF Model 

L1 and L2 weights regularization were used on the model. Various values of the regularization 
parameters were explored to determine the best value as shown in Figure 12. The best set of 
parameters found while training using the default learning algorithm RMSPROP [33] was also re-run 
using ADAM [40,41]. The best MAE of 2.146 is achieved using both L1 and L2 regularization with a 
parameter value of 3e-7 on all the weights (bias, kernel, and recurrent) of all the recurrent layers using 
ADAM. However, this best model is still outperformed by the base model with a MAE of 2.122. 
Regularization prevented overfitting from setting in early but failed ultimately to achieve a better 
performance over the base model. 

 
Figure 12. Deepest model (4 × 128 GRU, 2 × 32 FF) with weights regularization. 

4 x 64 GRU, 1 x 32 FF Model 

The next smaller base model after the largest was selected for regularization as shown in Figure 
13. A smaller model has less learning capacity which also means it overfits less, increasing the chance 
that regularization can produce higher performance than the base model. The same L1 and L2 
weights regularization was applied, using the training algorithm ADAM which showed produced 
better results for the larger model. 



Buildings 2019, 9, 204 14 of 17 

Figure 13. Second deepest model (4 x 64 GRU, 1 x 32 FF) with weights regularization. 

The training curve above clearly showed that regularization delayed the onset of overfitting in 
the base model. The model was trained with a L1 and L2 regularization parameter of 3e-7 on all the 
weights (bias, kernel, and recurrent) of all the recurrent layers and also those on the single fully-
connected layer (bias, kernel) achieved a MAE of 2.141 which beats the base model MAE of 2.149. 
However, this still does not outperform the smallest model with a MAE of 2.100. The summary of the 
results are shown in Table 5. 

Table 5. Summary of results (energy consumption data range is ~40–170; * performance of best 
recurrent neural networks model). 

Network 
Base Model 

Run #1 

Base Model 

Run #2 

Base Model 

Run #3 

Base Model 

Best MAE 

Regularized 

Model MAE 

4 × 128 GRU, 2 

× 32 D 

2.159 2.169 2.122 2.122 2.146 

4 × 64 GRU, 1 × 

32 D 

2.205 2.155 2.149 2.149 2.141 

4 × 32 GRU 2.124 2.174 2.110 2.110 - 

2 × 32 GRU 2.100 2.176 2.124 2.100* - 

6. Discussion 

All the tested base recurrent network models performed better than the benchmark model 
(Figure 14). 
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Figure 14. Performance of base models vs. LOCF benchmark; all the base model forecasts fit closer to 
the actual data than the LOCF forecast. 

In applying regularization methods to overcome model overfitting, the study found that weights 
regularization did indeed delay the onset of overfitting. However, although overfitting set in later in 
the model training process, this did not always bring produce higher performance relative to the base 
model. Weights regularization improved on the performance of the base model in only one of the 
two deeper models in which it was applied. In both models, regularization did not produce a higher 
performance than the best base model which was the smallest model. 

There are two possible reasons for this finding. First, the search space for a set of parameters and 
hyper-parameters for a model is large and further fine-tuning may yet produce better results. New 
directions of exploration include tuning the learning rate such as using cyclical rates and warm 
restarts [41] sharing state across mini-batches during training. A new network architecture can also 
be explored by adding convolution 1D and max-pooling layers to pre-process the data. Simply 
training with more data if available will also alleviate model overfitting and may produce better 
results. Secondly, the other reason is that the best model may already have sufficient learning capacity 
for the problem and therefore any scaling up of the model will not further improve on its 
performance. For any specified problem, there is no known method to determine the right size of 
model in terms of layers and hidden nodes which is why models are developed according to the 
machine learning workflow. 

7. Conclusion and Future Work Recommendation  

This study presents a deep recurrent forecasting model while dealing with raw metered energy 
data with missing values of institutional buildings. The sensitivity study on data imputation and the 
comparison of different imputation method has provided a fundamental basis for detailed big data 
analysis. After data pre-processing, deep recurrent models are discussed in the domain of improving 
forecasting accuracy and how to address the issue of overfitting in deep learning recurrent model. 
Compared with the benchmarking base model where MAE of 3.983 is achieved by LOCF, and a MAE 
of 4.388 can be achieved by SVR, the deep recurrent model is able to achieve a MAE of 2.10. 
Overfitting in deep models occurs in the course of model training and will adversely impact 
performance if a model is over trained. In the domain of neural networks, regularization methods 
exist which aid deep networks in overcoming overfitting to achieve higher performance. In addition 
to a set of optimal network parameters and hyper-parameters, the search for a best model includes 
regularization parameters. While this work has raised questions regarding building energy data 
forecasting, it is computationally intensive to test on each model, especially when more data will be 
used to train the model. One future work is to look at the application of transfer learning in the 
building energy data forecasting to reduce the computational time when applying the same method 
to more buildings or meters. Another direction is to de-trend, or de-seasonalize data according to 
building function and occupancy patterns, which could increase the accuracy and reduce additional 
computational time. 
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