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Abstract: Urbanization trends have changed the morphology of cities in the past decades. Complex 
urban areas with wide variations in built density, layout typology, and architectural form have 
resulted in more complicated microclimate conditions. Microclimate conditions affect the energy 
performance of buildings and bioclimatic design strategies as well as a high number of engineering 
applications. However, commercial energy simulation engines that utilize widely-available 
mesoscale weather data tend to underestimate these impacts. These weather files, which represent 
typical weather conditions at a location, are mostly based on long-term metrological observations 
and fail to consider extreme conditions in their calculation. This paper aims to evaluate the impacts 
of hourly microclimate data in typical and extreme climate conditions on the energy performance 
of an office building in two different urban areas. Results showed that the urban morphology can 
reduce the wind speed by 27% and amplify air temperature by more than 14%. Using microclimate 
data, the calculated outside surface temperature, operating temperature and total energy demand 
of buildings were notably different to those obtained using typical regional climate model (RCM)–
climate data or available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 
21%, respectively. The difference in the hourly peak demand during extreme weather conditions 
was around 13%. The impact of urban density and the final height of buildings on the results are 
discussed at the end of the paper. 

Keywords: urban microclimate; extreme weather conditions; energy performance; urban areas; CFD 
simulations 

 

1. Introduction 

According to the UN [1], about 55% of the world’s population live in cities, and this number is 
projected to increase to over 67% in 2050. In developed countries (Europe and Northern America), 
the urban population is even higher (78%) and expected to increase to 81% in 2050 [2]. This rapid 
urbanization has resulted in more complex urban morphologies with a wide range of built density, 
layout, and forms. This complexity in urban morphologies has created several challenges in 
designing bioclimatic buildings that support the progression toward climate-resilient urban 
neighborhoods. Global energy consumption in urban areas is more than 70% [3] as a result of the 
convoluted microclimate conditions in cities, with most of this driven by the demands of the building 
sector [4]. Office buildings (including 23% of nonresidential buildings) are responsible for more than 
48% of the annual energy demand (heating and cooling) in urban areas [5,6]. It is commonly accepted 
that urban microclimate conditions have a significant impact on urban climates [7,8], urban comfort 
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[9,10], and the energy performance of buildings [11,12]. At the urban microscale level, the average 
wind speed is lower, with more complex flow patterns as compared to rural areas [13]. Moreover, 
due to the urban heat island (UHI) effect, the average air temperature is higher in urban areas [14]. 
The fluctuations in wind speed and air temperature affect a wide range of engineering applications 
in urban areas and buildings.  

Hence, these impacts tend to be underestimated when energy performance simulation (EPS) 
studies adopt widely-available climatic data such as weather files with an EPW (EnergyPlus Weather 
file) format.. These weather files are usually based on locally recorded weather data for typical years, 
such as the Typical Meteorological Year (TMY) and the Weather Year for Energy Calculation (WYEC), 
to represent the long-term average climate conditions at a location [15]. However, these weather files 
fail to represent local microscale data and extreme weather conditions, which can introduce large 
peak loads and cause higher total energy demand on average [16]. Due to the budget and time 
limitations of construction projects, it is not possible to generate weather datasets by means of 
Computational Fluid Dynamics (CFD) simulations or long-term local measurements for a whole 
urban area with hourly time-step. On the other hand, architects and urban designers frequently make 
use of commercial building energy simulation tools in the early stage design process; thus, it would 
be helpful if they could adopt more design-based methods and user-friendly procedures based on 
existing simulation engines. Hence, researchers and energy experts need to develop a method to 
normalize widely-available weather files in regular EPS tools based on local microclimate conditions 
in relation to the urban morphology. These normalized weather files can be easily adopted by 
designers to obtain more accurate estimations of microclimate conditions and, consequently, more 
reliable energy demand calculations.  

The novelty of this paper is that it investigates the fluctuations of seven main climate variables 
(wind speed, wind direction, air temperature, air pressure, relative humidity, global radiation, and 
cloud coverage) at microscale with an hourly time-step to generate microclimate weather data 
through a comprehensive CFD study coupled with energy performance simulations. Moreover, a 
detailed comparison is made between mesoscale weather files and microclimate data in terms of 
surface temperature, operative temperature, and energy demand. The paper is structured as follows: 
First, the numerical model and adopted weather datasets are discussed thoroughly; then, the inputs 
and setting for CFD and energy performance simulations are presented in the Methodology section. 
Third, the results of the CFD simulations and generated microclimate weather data for energy 
simulation are discussed in Section 3.1. Using fifteen sets of 24-hour continuous weather data, the 
results of surface temperature, operative temperature and energy demand for both urban models are 
assessed. Finally, a summary of the main findings, with the focus on urban design strategies, is 
presented in the Conclusions section. 

2. Background 

It is crucial to develop a method that considers microclimate data in both typical and extreme 
conditions in regular EPS studies as it affects several engineering applications in buildings. In this 
regard, there have been some attempts to develop a multiscale method that takes into account 
microscale data by comparing the results of high-resolution metrological mesoscale models (such as 
Weather Research and Forecasting (WRF) model [17] and remote sensing methods [18]) at the near-
surface ground level [19,20]. These models [21] have usually focused on non-urban areas or have not 
focused on evaluating the energy performance of urban areas, and consequently, they cannot be 
directly applied in the current commercial BES tools. A comprehensive review on the main 
approaches for modeling and simulating urban areas and microclimate conditions can be found in 
[22]. There are several challenges in modeling and simulating urban microclimate conditions, even 
though it is commonly accepted that urban morphology has a major impact on microclimate 
conditions [23]. To overcome the limitations and complexities of modeling urban microclimates, 
experimental methods (for models with low temporal and spatial resolutions) [24], 
mathematical/analytical methods [25], numerical methods [26] or a combination of these methods 
[27] have usually been adopted in the current literature. Numerical methods, due to their flexibility 
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and accuracy in predicting local-scale phenomena in urban areas, have been widely used to study 
microclimate conditions and urban wind comfort [28]. Several research works have adopted 
numerical methods to study microclimate conditions by means of computational fluid dynamics 
(CFD) with detailed approaches (for small-scale cases or a limited number of iterations) [29] or with 
more simplified approaches (for larger urban areas and a higher number of iterations) [30]. It is 
commonly accepted that the urban geometry or form can change microclimate conditions [31]. Thus, 
most studies have used generic configurations [32] or real-site cases [33] as urban areas, and some 
have adopted a combination of these models [34]. The main factors in the urban microclimate that 
have been investigated include air temperature [35], surface temperature [36], solar radiation [37], 
wind flow variations [38], and air humidity [39]. Many works have studied the UHI effect on the 
energy performance of buildings [40,41] and its impacts on higher cooling demand in cold regions 
and lower heating demand in hot–arid regions [42,43] in urban areas.  

Except for a few studies [44], research on wind flow at the urban scale is mostly limited to urban 
comfort studies [45]; these have evaluated a limited range of constant average values [46] or urban 
wind at the pedestrian level around buildings regardless of energy demand simulations [47]. There 
are several studies which have used coupled CFD–BES models to evaluate microclimate conditions 
considering wind and temperature variations [48]. However, in these studies urban areas are mostly 
defined as a shading object or obstacle on the building in the regular energy simulation engines. In 
other words, the fluctuations of the local microclimate data are ignored in the process of urban 
morphology modeling and weather data generation. Particularly in regions with several frequent 
extreme wind conditions, these impacts can induce undesired variations in the average and peak 
energy loads. In this regard, this paper aims to evaluate the microclimate conditions of two detailed 
urban areas by means of CFD simulations with an hourly time-step to assess the outside surface 
temperature, operative temperature, and total energy demand of buildings. The urban models 
represent the major high- and low-density areas of Stockholm. The surface temperature, operative 
temperature, and energy demand of the buildings in the urban models were evaluated adopting 
fifteen 24-hour continuous weather data based on typical and extreme wind conditions out of three 
sources, including a regular TMY file, a synthesized metrological regional climate model (RCM)–
climate dataset, and microclimate data, using the results of the CFD simulations. 

3. Methodology 

This section gives an overview on the urban models as well as energy performance evaluations. 
Section 3.1 discusses the process of generating two high-density and low-density urban models to 
represent major urban morphologies of Stockholm. Section 3.2 presents the adopted methods to 
generate hourly RCM–climate weather datasets for typical and extreme conditions in additions to 
extracted TMY-based weather files. Finally, the defined computational domain and boundary 
conditions of CFD simulations and EPS inputs are presented in Section 3.3.  

3.1. Modeling Urban Areas 

Two simplified urban models in two areas with high and low densities were generated based 
on a technique called “building modular cell” (BMC), in accordance with a comprehensive 
parameter, namely, urban density (including layout density, building form, and height). The BMC 
technique is based on an 8 × 8 × 8 m cube as the basic module. Using this module, thousands of 
building forms and urban areas were generated and verified to assess the impacts of urban 
morphology on energy demand and microclimate conditions. The generated and verified urban 
morphologies are hypothetical configurations based on statistics out of real urban areas such as 
various site coverages, overall forms, and urban patterns. In this study, based on major urban 
morphology parameters, three urban layouts were selected out of this database to be considered as 
urban models. For a more detailed description of this technique, readers are referred to [49]. These 
urban models consist of eight building blocks as urban roughness and a public green space in the 
top-left corner of the model. For the high-/low-density urban models, total site coverage of 87.5% and 
35.8% are defined to generate seven building blocks around the central twelve-story buildings. These 
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models were generated using a Grasshopper algorithm with similar streets (width = 30.9) and urban 
canopies (width = 6 m) between buildings (40% of the total area of the site is open spaces). The total 
area of each model is 24,000 m2 with similar physical properties. The distinct forms of buildings in 
each model with rectangular geometries are designed to identify complex wind flow and air 
temperature profiles around them. The number of urban models is limited to two due to required 
computational power for hourly-resolution CFD simulations for three days. Figure 1a,b shows the 
3D visualization of low-density (LD) and high-density (HD) urban models in this study. The 
schematic section of the defined layers of the generated urban areas (based on definitions in [13]) is 
illustrated in Figure 1c.  

 

Figure 1. 3D visualization of generated urban models in this study: (a) low-density urban model (LD), 
(b) high-density urban model (HD), (c) schematic section of the generated urban models: RSL: 
roughness sublayer; SL: surface layer; UBL: urban boundary layer; ISL: inertial sublayer, ML: mixed 
layer; FA: free atmosphere. 

3.2. Weather Data Sets 

For metrological weather data, three 24-hour continuous data were generated based on a method 
introduced by Nik [50] to synthesize typical and extreme weather files based on the outdoor 
temperature, to be used in energy simulations. In this method, the representative and extreme months 
using Finkelstein–Schafer statistics are selected and verified for hygrothermal simulations [51]. In this 
paper, a similar logic was adopted based on the wind speed as the main indicator, instead of 
temperature to synthesize meteorological years with typical and extreme high and low wind speeds. 
In addition to wind speed, four other climate variables, including air temperature, wind direction, 
global radiation (direct and indirect), and cloud coverage, were combined to create weather data with 
an hourly time step. Thus, these typical and extreme weather conditions are divided into three sets 
of typical, high, and low wind speeds and synthesized for the 30-year period of 2010–2039, 
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considering six weather scenarios simulated by the RCA4 regional climate model (RCM) with a 
spatial resolution of 12.5 km.  

To consider microclimate conditions with the minimum number of simulations, one typical and 
two extreme days were selected from each extreme year. In this regard, 24-hour continuous data with 
typical average wind speed from the year with typical average wind speed, to be called ‘typical wind 
speed’ or ‘TWS’ (February 19th), 24-hour continuous data with the highest average wind speed from 
the year with the highest wind speed, to be called ‘highest wind speed’ or ‘HWS’ (January 13th), and 
24-hour continuous data with the lowest average wind speed from the year with the lowest wind 
speed, to be called ‘lowest wind speed’ or ‘LWS’ (October 4th), were collected. 

These weather datasets were used as inputs for boundary conditions in the CFD simulations in 
each hour. In a parallel process, the same period with a similar approach and method were extracted 
out of TMY weather files with EPW format for EnergyPlus [52] to evaluate the accuracy of the widely 
available weather files for energy simulation. Thus, three 24-hour continuous data in the same dates 
were generated out of the TMY files for Stockholm. For example, in low wind conditions, the weather 
data of October 4th were extracted. The weather data in these three days in the RCM and TMY files 
are notably different. In other words, typical and extreme low and high wind conditions in the TMY 
file occur on different days. Thus, to examine the accuracy of the TMY file in predicting typical and 
extreme conditions, the same logic used to generate RCM files was adopted to extract three other 
weather files based on absolute typical and extreme low and high wind conditions out of TMY files. 
These three 24-hour continuous data based on the TMY file for typical wind speed or ‘TMY-Typ’ 
(September 14th), the highest wind speed or ‘TMY-Max’ (January 13th), and the lowest wind speed 
or ‘TMY-Min’ (November 17th) were generated. In total, six 24-hour continuous weather data out of 
TMY files as well as three weather datasets from synthesized datasets as mesoscale data were 
generated. Figure 2 shows the boxplot of wind direction frequency in the generated RCM and TMY 
weather data. The typical and extreme low and high weather data out of RCM data were used as 
inputs for simulating microclimate conditions by means of CFD calculation, which resulted in three 
microclimate datasets (Section 3.1). Table 1 shows the details of each generated weather data in this 
study. 

 

Figure 2. Wind direction frequency in the generated weather datasets. 

Table 1. The details of fifteen generated weather datasets in the study for energy performance 
simulations (EPS); mesoscale data: regional climate models (RCM) and typical meteorological year 
(TMY), microscale data: micro in typical and extreme low and high wind conditions. 

Wind 
speed  Types Date Scale 

Generated 

weather data 
STDV Min Average Max 

T y p TWS 02.19 Meso (1) RCM–TWS 0.37 9.91 10.61 11.06 
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Micro 

(2) Micro-TWS 
(LD) 0.22 0.11 0.43 0.9 

(3) Micro-TWS 
(HD) 0.2 0.08 0.39 0.8 

Meso (4) TMY–TWS 2.62 1 4.58 8.2 

EPW-

TYP 
09.14 Meso (5) TMY–TYP 0.93 0.5 1.65 3.1 

Ex
tr

em
e 

lo
w

 

LWS 10.04 

Meso (6) RCM–LWS 0.28 0.16 0.56 1.14 

Micro 

(7) Micro-LWS 
(LD) 

0.26 7.6 8.12 8.33 

(8) Micro-LWS 
(HD) 

0.29 5.31 5.82 6.36 

Meso (9) TMY–LWS 0.28 0.2 0.57 1.2 

EPW-

Min 
11.17 Meso (10) TMY-Min 0.2 0 0.25 0.5 

Ex
tr

em
e 

hi
gh

 

HWS 01.15 

Meso (11) RCM–HWS 0.48 12.21 13.14 14.02 

Micro 

(12) Micro-HWS 
(LD) 

0.3 7.98 8.57 9.16 

(13) Micro-HWS 
(HD) 

0.2 6.45 6.95 7.29 

Meso (14) TMY–HWS 0.45 12.2 13.53 14 

EPW-

Max 
01.13 Meso (15) TMY-Max 4.46 6.2 12.55 18 

3.3. CFD and EPS  

The calculations in this study are divided into two sections: CFD simulations and EPS. For CFD 
simulations, in each urban model, ninety-nine calculation points were defined to simulate wind 
speed and air temperature in different locations of the site. These calculation points are located in 
eleven critical locations of each model, and in each location, nine points from 2 m to 66 m level are 
defined. The average values of all calculation points are considered as the local microclimate wind 
speed, air temperature, relative humidity, and air pressure for each hour in the roughness sublayer. 
To simulate turbulent flow conditions, the standard k-ɛ turbulence model was applied. In this model, 
k represents the turbulent kinetic energy equation and ɛ represents dissipation of kinetic energy [53]. 
The adopted model was validated through hundreds of iterations using ANSYS Fluent, Autodesk 
CFD, and measured data for the numerical models in an earlier work of the authors [49]. In this study, 
σk, σɛ, C1ɛ, C2ɛ, and 𝐶ఓ  as adjustable dimensionless values are set to 1, 1.30, 1.44, 1.92, and 0.09, 
respectively. To consider buoyancy effects, the Boussinesq approximation was applied, and the 
turbulent Prandtl number (𝑃𝑟௧) was considered as 1.0. The standard wall functions for the turbulent 
flow were considered next to the wall, and heat transfer by radiation was balanced with the heat 
transfer by convection using a radiation model based on true view factors calculation for geometries. 
Figure 3 illustrates the considered computations domains for the urban models. For each urban 
model, wind speed, wind direction, air temperature, global radiation (direct and indirect), and cloud 
coverage were applied to the defined boundary conditions (top and lateral) in each hour. The average 
values of all ninety-nine calculation points for wind speed, air temperature, air pressure, and relative 
humidity were considered as the microclimate data in each hour based on the adopted weather 
datasets. The results were used to generate three microclimate condition weather data as discussed 
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in the previous section, including ‘Micro-TWS’, ‘Micro -LWS’, and ‘Micro -HWS’ for typical, extreme 
low, and high conditions, respectively.  

 

Figure 3. Computational domain defined for the computational fluid dynamics (CFD) simulations. 
(a): plan view of computational domain; (b): section view of computational domain; (c): HD urban 
area. 

For energy performance simulations (EPS), cooling and heating demand were defined as the 
sum of the latent and sensible cooling and heating energy of the central twelve-story building 
through a validated approach in the earlier work of the authors [54]. Each floor consists of a private 
office zone and a shared space zone. The urban areas were in Rhinoceros/Grasshopper and converted 
to EnergyPlus models using Diva-for-Rhino and Archsim [55]. The sum of cooling and heating 
demand was calculated considering heat transfer through external surfaces of the central building as 
well as internal heat sources and infiltration through windows for fifteen 24-hour continuous day 
weather data. Table A1 shows the parameters and variable considered for EPS based on the optimal 
values for both urban models.  

Figure 4 illustrates the workflow of the paper from generating weather data to the analysis of 
the results. At the first step, based on the method introduced by Nik [50], the weather data were 
developed based on the typical and extreme weather conditions of Stockholm. Then, the urban 
models were generated in Rhinoceros/Grasshopper based on building modular cells or ‘BMC’ [42]. 
The models were transferred to Autodesk CFD using Autodesk Inventor to define computational 
domains and boundary conditions. Adopting mesoscale weather data, the hourly CFD simulations 
were run for three 24-hour continuous days using wind speed, wind direction, air temperature, global 
radiation, relative humidity, and cloud coverage as the inputs. The urban models were converted to 
thermal zone using Diva-for-Rhino and Archsim for EnergyPlus engine. Then, the outside surface 
temperature, operative temperature, and total energy demand of the central building in each urban 
model were evaluated with an hourly time-step.  
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Figure 4. The schematic workflow of the paper. 

4. Results and Discussion 

This section presents an overview of the main findings of the paper in two sections. The results 
of CFD simulations for microclimate conditions are presented and discussed for wind speed and air 
temperature in Section 3.1. Then, based on the acquired data, three 24-hour continuous weather data 
are generated based on the adopted synthesized mesoscale weather datasets. In Section 3.2, all 
generated weather datasets (RCM, Micro, and TMY data for TWS, LWS, and HWS conditions) are 
applied to the thermal model of the urban areas to simulate the hourly outside surface temperature, 
operative temperature, and the sum of the energy demand of the central building in each case.  

4.1. CFD Simulations 

Figure 5 shows the hourly air temperature and wind speed out of CFD simulations as 
microclimate data normalized by input values acquired out of RCM weather datasets. It is clear that 
the average wind speed in all hours in both urban areas is lower than the input value, while the air 
temperature in all weather conditions is mostly higher than the input values. The variations of air 
temperature in all three weather conditions are lower with similar trends, while the fluctuations of 
average wind speed due to its nature are considerably higher. Due to lower wind flow distribution 
in the urban fabrics of the HD model, the normalized wind speed is notably lower compared to that 
of the LD model. In the LD area, the approaching flows towards the windward buildings are 
distributed into the adjacent urban canopy axis and are directed toward other canopies. The lateral 
wind flows into the urban area in the LD are lower than into the denser urban area. In HD, higher 
WS and more intense turbulences are observed in the main streets compared to canopies. During 
other hours of the day in the HD area, a larger amount of flow approaches the eastern parts of the 
site, particularly when input wind speed is lower than 1 m/s. In cases where input wind speed is 
higher than 1 m/s, a stagnation point occurs at the façade and rooftop of the windward buildings as 
obstacles which direct the flow over the urban area at the higher heights and results in higher T at 
lower surfaces. 

The approach flow toward windward buildings with a high input wind speed (TWS and HWS) 
is distributed into the windward canopies in both urban models. However, due to high input wind 
speed magnitude, the approach wind is blocked by the windward buildings, and a large amount of 
flow skims over the top of the urban areas, instead of being distributed into the urban fabric. This 
causes lower average wind speed differences and ∆𝑇 between different locations in HD compared 
to the LD model. Moreover, in the denser urban areas, the blockage effect is notably higher. 
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Consequently, the average wind speed in the main streets and canopies is lower compared to LD at 
the near-ground surfaces. The buoyancy effect in the hours with wind speed lower than 1 m/s is much 
higher compared to high wind speeds in HWS and TWS, particularly in the urban canopies. Due to 
this high buoyancy effect, upward vortices occur in the canopies, which can cause lower air 
temperature by heat removal and thermal circulations. In the HD urban area, average wind speed 
out of all calculation points is considerably higher than in the LD area due to the channeling effect at 
urban canopies. In additions to urban comfort, this can affect total energy demand of the central 
building by changing average temperature (adjacent air to wall and surface) and heat transfer 
through walls, windows or infiltrations.  

 

Figure 5. Normalized hourly air temperature (T) and wind speed (WS) at microscale as a function of 
mesoscale data (as inputs for CFD simulations). Typical wind speed (TWS): February 19th; lowest 
wind speed (LWS): October 4th; and highest wind speed (HWS): January 15th. HD: High density; LD: 
Low density. 

The hourly results of CFD simulations (wind speed, air temperature, air pressure, and relative 
humidity) were used to generate three weather data files to represent the typical and extreme high 
and low wind conditions in EPS. Here, air temperature at the microclimate level in most hours was 
amplified by urban morphology. Moreover, wind speed magnitude at the microclimate level was 
dampened in all hours of the day by urban morphology. Figure 6 illustrates the boxplot of Micro, 
RCM, and TMY wind speed and air temperature based on the generated weather datasets. The 
fluctuations of both wind speed and air temperature in each weather dataset imply the importance 
of considering microclimate data in EPS. The distribution of the wind speed and air temperature as 
two main influencing variables on the EPS notably differs from RCM data and particularly the TMY 
weather file as the most frequent weather data in the regular energy simulations. In the next section, 
adopting all generated weather data, the BPS results are presented. 
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Figure 6. Boxplot of air temperature (up) and wind speed (down) out of Micro, RCM, and TMY data. 
TWS: February 19th; LWS: October 4th, HWS: January 15th; TMY-Typ: September 14th; TMY-Min: 
November 17th, and TMY-Max: January 13th. HD: High density; LD: Low density. 

4.2. Energy Performance Simulations (EPS) 

This section presents the results of the EPS out of Micro, RCM, and TMY weather data. For this 
purpose, the hourly outside surface temperature (𝑇௦), operative temperature (𝑇ை), and energy demand 
(heating and cooling) of the central building in both urban areas are presented. Figure 7 shows the 
hourly 𝑇௦ (average of all surfaces) of the central building based on the adopted weather data. In TWS, 
average 𝑇௦ adopting Micro data in LD (21.2 °C) and HD (20.8 °C) urban areas was 22% and 11% 
higher than with RCM data, while the average 𝑇௦ adopting the regular TMY file was 61% and 39% 
in the LD and HD areas, respectively, which is higher compared to Micro data. Moreover, the average 𝑇௦ in typical conditions in TMY data (TMY-Typ) was 89% and 82% higher than that of Micro data. 
These notable 𝑇௦ differences between TMY data and local microclimate data cause a high level of 
uncertainty in energy demand calculations. It can be noted that 𝑇௦ in typical conditions considering 
microclimate data is higher on average compared to other regular weather files. In LWS, average 𝑇௦ 
adopting Micro data (LD: 16.5 °C, HD: 15.1 °C) was slightly higher compared to the results with RCM 
and TMY data in LD (8%) and HD (6%) areas. The extreme low wind conditions in TMY (TMY-Min) 
showed a 28% and 26% lower 𝑇௦ compared to adopting Micro data in LD and HD areas, respectively. 
According to the results, the average 𝑇௦ in LD areas was higher than in HD areas due to higher heat 
removal by upward vortices of wind in the canopies around the central buildings, as it was clear at 
CFD contours.  

This is due to the higher buoyancy effect in the canopies around the central building in the HD 
area with the low-speed approaching wind. The 𝑇௦ difference between extreme low wind conditions 
in the local microclimate data and TMY-Min indicates that it is lower compared to that in TWS 
conditions. This can be due to differences between reference wind speed and wind direction in the 
RCM data used for CFD simulations. In HWS, microclimate data (LD: 10.5 °C, HD: 9.8 °C) caused 
over 19% and 13% higher average 𝑇௦ compared to the results with RCM or TMY data in LD and HD 
areas, respectively. The extreme wind conditions in TMY (TMY-Max) showed about 87% and 77% 
lower average 𝑇௦  compared to considering microclimate data in the simulation process. In both 
typical and extreme conditions, the average and peak 𝑇௦ in LD areas were higher than in HD areas 
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due to upward vortices in the northern and southern canopies around the central building. Moreover, 
the windward canopies amplify the approaching wind magnitude toward the center of the site, which 
also causes lower air temperature by heat removal. This air temperature is adjacent to the outside 
surface of the central building by changing the 𝑇௦ magnitude through convection heat transfer. 

 

Figure 7. Hourly 𝑇௦ of all elevations of the central building in the LD and HD areas adopting fifteen 
weather datasets. TWS: February 19th; LWS: October 4th, HWS: January 15th; TMY-Typ: September 
14th; TMY-Min: November 17th, and TMY-Max: January 13th. HD: High density; LD: Low density. 

The outside 𝑇௦ differences between adopting Micro data for running EPS compared to RCM or 
TMY data induced higher heat transfer rates and, consequently, a higher indoor temperature. Figure 
8 shows the hourly 𝑇ை of the central buildings (average of all thermal zones) in LD and HD areas. 
The results of the 𝑇ை were notably affected by the defined temperature set points of the Heating, 
Ventilation, and Air Conditioning (HVAC) system in the building (Section 2.3). In TWS, average 𝑇ை 
adopting Micro data is over 1% and 3% higher than the results with RCM data in LD and HD areas, 
respectively. However, considering Micro data, the average 𝑇ை is about 4% and 1% lower than the 
regular TMY file. The results showed over 7% lower 𝑇ை considering Micro data compared to the 
typical conditions of TMY data (TMY-Typ) in both areas. In response to higher 𝑇௦ in LWS conditions, 
the average 𝑇ை is slightly higher (about 1%) adopting Micro data compared to the RCM and TMY 
data. The 𝑇ை difference between Micro and TMY-Min data is a little bit higher, equivalent to 4%. A 
similar trend can be observed in the HWS conditions, where the average 𝑇ை  is about 2% higher 
considering Micro data compared to the Meso, TMY, and TMY-Max. A slightly difference in 𝑇ை 
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results causes notable variations in calculating indoor thermal comfort and the total energy demand 
of the buildings. By considering extreme microclimate conditions in the simulation, average 𝑇ை in 
all cases are higher compared to other regular weather datasets. Moreover, in response to higher 
outside air temperature and 𝑇௦ in most hours of the day, the average 𝑇ை in LD areas with similar 
conditions is higher than in HD areas.  

 

Figure 8. Hourly average 𝑇௢ of the central building in the LD and HD areas adopting fifteen weather 
datasets. TWS: February 19th; LWS: October 4th, HWS: January 15th; TMY-Typ: September 14th; 
TMY-Min: November 17th, and TMY-Max: January 13th. HD: High density; LD: Low density. 

Figure 9 illustrates the boxplot of total energy demand (cooling and heating) of the central 
building in LD and HD areas adopting fifteen weather datasets. In TWS, Micro data compared to 
RCM data showed 2% and 6% lower energy demand in LD and HD, respectively, while compared to 
the TMY file on the same day, energy demand adopting Micro data was about 18% and 13% higher. 
These results indicate the high uncertainty in using regular TMY files to calculate energy demand for 
typical days. In LWS, average daily energy demand considering Micro data was 17% and 21% lower 
compared to the adopted RCM data in LD and HD areas. A similar trend and absolute values can be 
observed compared to the regular TMY file. However, the extreme low wind conditions in TMY 
(TMY-Min) showed 58% and 50% higher energy demand compared to Micro data in LD and HD 
areas, respectively. Interestingly, in HWS, energy demand adopting Micro data was 10% and 14% 
lower compared to RCM data and 10% and 13% lower compared to the regular TMY file. Adopting 
TMY-Max, results showed 15% and 18% higher energy demand compared to Micro data. The reason 
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for lower energy demand in almost all cases using Micro data compared to RCM data (as input for 
the CFD simulations) was higher average outdoor air temperature and consequently higher 𝑇௦ and 𝑇ை. Moreover, energy demand in LD areas in almost all cases was higher than HD areas due to the 
heat removal in the canopies by higher wind speed around the central building.  

 

Figure 9. Boxplot of total energy demand (cooling and heating) of the central building in LD and HD 
areas adopting fifteen weather datasets. TWS: February 19th; LWS: October 4th, HWS: January 15th; 
TMY-Typ: September 14th; TMY-Min: November 17th, and TMY-Max: January 13th. HD: High 
density; LD: Low density. 

The hourly peak demand in extreme conditions adopting Micro data differed from RCM and 
TMY files. For example, in LWS, the hourly peak energy demand adopting Micro data (695.3 kWh) 
was 10%, 11%, and 13% lower compared to Meso, TMY, and TMY-Max, respectively, in the LD areas. 
These values in the HD areas were 4%, 2% and 15% (peak demand ith Micro data is 750.4 kWh). In 
HWS, peak energy demand with Micro data (1279.6 kWh) in the LD area was 6%, 5%, and 14% lower 
compared to Meso, TMY, and TMY-Max data, respectively. In the HD area, Micro data showed 1216.1 
kWh peak demand, which was 12%, 11%, and 5% lower compared to Meso, TMY, and TMY-Max 
data. The peak load directly affects the efficiency of HVAC systems and consequently the total energy 
performance of the buildings, particularly during long-lasting extreme conditions. Table 2 integrates 
the comparison between microscale, mesoscale, and TMY data in percentages. In this table, negative 
values show reduction and posotive ones indicate higher values of the parameters at microscale 
compared to the two other sources. The integrated results showed that in response to higher 𝑇௦ and 
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the simulations. 

Table 2. The comparison between Micro data with RCM data and the TMY file based on 
percentages. 

Weather condition at 
microscale 

Urban 

area 

RCM TMY (Typ, Min and Max) 
ED 𝑻𝒔 𝑻𝒐 ED 𝑻𝒔 𝑻𝒐 

TWS 
LD −2% +22% +1% −18% −61% −4% 
HD −6% +11% +3% −13% −39% −1% 

LWS 
LD −17% +8% +1% −58% +28% +4% 
HD −21% +6% +1% −50% +26% +4% 

HWS 
LD −10% +19% +2% −15% +87% +2% 
HD −13% +13% +2% −18% +77% +2% 

4.3. Limitations 

Typical and extreme wind speeds in Stockholm in this study occur mostly during the cold season 
(January, February, September, October, and November); thus, the heating demand was the major 
energy demand affecting the calculations. Due to heavy calculation loads, the urban models in this 
study were simplified to only represent some major urban morphologies in Stockholm with extreme 
high and low built density. To limit the number of uncertainties in the CFD simulations, all buildings 
in these urban models have rectangular layouts and flat roof shapes. More detailed urban models are 
required to explore more sophisticated microclimate conditions. Results may vary by taking into 
account circular forms, different roof geometries, and more complex overall forms. Moreover, 
detailed moisture boundary conditions and moist air are not considered in the heat transfer models 
in the CFD simulations due to the high number of iterations.  

5. Conclusions  

In this study, the impacts of the urban microclimate conditions on the main influencing climate 
variables in the energy performance of the buildings were investigated, and the acquired 
microclimate data were taken into account in the calculation of outside surface temperature, 
operative temperature, and energy demand in comparison with other regular weather data files. Two 
urban models with a total area of 24,000 m2 with low and high density were generated to represent 
the urban morphology of Stockholm. These urban models had a twelve-story building in the center 
of the site, seven surrounding buildings, and one public green space. The building density, site 
coverage, final height, and overall form of each model was different to include the most influencing 
interactions of climatic variables in the CFD simulations. The inputs for CFD simulation were based 
on three synthesized mesoscale weather data for typical and extreme low and high wind conditions 
in Stockholm developed by Nik [43]. The interactions of wind flow and air temperature were 
evaluated at the micro level using ninety-nine defined calculation points in eleven locations of each 
model in nine height levels. The average values of wind speed, air temperature, air pressure, relative 
humidity, and heat flux out of these calculation points were used to generate three weather data with 
an hourly time-step for typical and extreme low and high wind conditions.  

The generated weather data along with nine other weather datasets based on mesoscale 
metrological models and TMY file for EnergyPlus were adopted to study the overall energy 
performance of the buildings. In total, fifteen 24-hour continuous weather data were developed and 
adopted to assess the energy performance of the central building in each urban area. According to 
the results, wind speed gets dampened and the air temperature gets amplified over 27% and 14% in 
both urban areas, respectively. Moreover, air pressure, relative humidity, and heat flux in the models 
are notably affected by microclimate conditions. In the low-density urban area, the average wind 
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speed and turbulence intensity were lower compared to the high-density area. Moreover, air 
temperature in most hours was higher in the urban areas with lower density; however, in the dense 
urban area, due to the higher buoyancy effect in the low wind speeds, air temperature notably 
reduced by heat removal. By generating three weather datasets considering the fluctuations of these 
variables, the average and peak outside surface temperature and operative temperature showed over 
67% and 7% higher magnitude, respectively, compared to other regular weather files. In response to 
higher surface and operative temperature, the average and peak energy demand of the central 
building in both urban areas showed over 21% variations. Moreover, due to the higher temperature 
in LD areas in both typical and extreme wind conditions, the central building in this area showed 
lower energy demand compared to the HD area. Furthermore, a reason for lower energy demand in 
the warmer urban areas was the periods in which typical and extreme wind conditions occur. All 
fifteen weather data were during colder seasons.  

This work provided more evidence on the impacts of the microclimate conditions data on the 
average and peak energy performance of buildings by taking into account hourly microclimate data. 
Moreover, the simulations were conducted during several typical and extreme conditions, where 
notable differences were observed in extreme weather conditions compared to regular weather files. 
The developed method to generate hourly microclimate weather data for typical and extreme 
conditions has the possibility to reduce the calculation load while increasing the accuracy of the 
results. The generated weather datasets can represent microclimate conditions for noncomplex areas 
and can be adopted to normalize widely available weather files for Stockholm or cities with a similar 
climate for energy simulation studies. The database of the results, in addition to indicating the 
impacts of considering microclimate conditions on energy performance of buildings, can be used to 
design engineering applications such as HVAC systems based on more accurate estimations. The 
results can also initiate further investigations on the topic by considering more climate variables with 
an hourly time-step. As future research, more detailed urban models should take into account the 
detailed impacts of urban form on the microclimate conditions. Moreover, verifying the method with 
measured data in real urban areas is also targeted by the authors.  

Nomenclature  

BPS Building performance simulation HD High density 

BMC Building Modular Cells LD Low density 

CC cloud coverage LWS low wind speed 

CFD computational fluid dynamic RCM regional climate model 

TMY EnergyPlus Weather file RH Relative humidity  

ED Energy demand TWS Typical wind speed 

GR global radiation T Temperature [ ֯C] 

HWS high wind speed 𝑇௦ Surface temperature 
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Appendix A 

Table A1. the main variables applied in the energy performance simulations. 

variables Description 
Value 

 
Unit 

Loads 

People 
0.2 p/m2 

Schedule behavior 
As a simple 

office 

Equipment 
12 w/m2 

Schedule behavior 
As a simple 

office 

Lights 12 w/m2 
Illumination 500 lux 

Dimming continuous - 

Schedule 
behavior 

As a simple office - 

C
onditioning 

Heating (Set 
point: 20) 

100 w/m2 

Cooling (Set 
points: 25) 

100 w/m2 

Humidity 
control 

No - 

Fresh air 2.5 L/s/person 

Fresh air 0.3 
L/s/zone 
area m2 

Sensible 
recovery ratio 

0.7 - 

Heat recovery None - 

Scheduled None - 
Buoyancy 

driven flow 
18-30 C 

Rel. Humidity 80% - 
ACH 0.2 - 

H
ot w

ater 

Peak flow 0.03 m3/h/m2 
Supply Temp 65 C 
Main Temp 10 C 

Schedule 
behavior 

As a simple office - 

C
onstructio

n External walls 
Reinforced concrete, 

plaster, insulation, mortar, 
composite facade 

U=0.4 
polystyrene insulation 
according to NBC 19 

Iran 

W/m2K 
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Internal walls Bricks, plaster, plaster 
U=0.7 

No insulation 
W/m2K 

Roof 
Reinforced concrete, 

plaster, insulation, cement 
mosaic 

U=0.30 
polystyrene insulation 
according to NBC 19 

Iran 

W/m2K 

Frame Stainless steel U=0.9 W/m2K 

Glass 

Low-E U=1.70 (0.30) W/m2K 
SHGC 0.2 - 

Shading None - 

Projection Factor 50% - 

Glazing 

North facade 25% 9* (2*2) win 

South façade 15% 5* (2*2) win 
West façade 8% 3* (2*2) win 

East façade 8% 3* (2*2) win 
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