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Abstract: An accurate cost estimate not only plays a key role in project feasibility studies but also
in achieving a final successful outcome. Conventionally, estimating cost typically relies on the
experience of professionals and cost data from previous projects. However, this process is complex
and time-consuming, and it is challenging to ensure the accuracy of the estimates. In this study,
the bivariate and multivariate transfer function models were adopted to estimate and forecast the
building costs of two types of residential buildings in New Zealand: Low-rise buildings and high-rise
buildings. The transfer function method takes advantage of the merits of univariate time series
analysis and the power of explanatory variables. In the dynamic project conduction environment,
simply including building cost data in the cost forecasting models is not valid for making predictions,
because the change in demand must be considered. Thus, the time series of house prices and work
volume were used to explain exogenous effects in the transfer function model. To demonstrate the
effectiveness of transfer function models, this study compared the results generated by the transfer
function models with autoregressive integrated moving average models. According to the forecasting
performance of the models, the proposed approach achieved better results than autoregressive
integrated moving average models. The proposed method can provide accurate cost estimates that
can help stakeholders in project budget planning and management strategy making at the early stage
of a project.

Keywords: ARIMA; transfer function model; time series analysis; short-term forecasts; residential
building costs

1. Introduction

Th preliminary cost estimation for building projects are usually the basis of project financial
feasibility and cost budgeting in the early stages of planning and for effective and efficient project
control, monitoring and execution [1]. Reliable and accurate cost estimation of building projects is very
important for project stakeholders. However, it is common that the final project cost greatly exceeds
the initial cost estimates [2]. According to the findings of [3], nine out of ten cost overrun projects were
caused by inaccurate cost estimates in the early stages. A fast, inexpensive and comparatively accurate
early-stage cost estimation is nevertheless essential in project decision-making and project feasibility
studies [4]. However, owing to the level of project uncertainty and relative short time for preparing
cost estimates with relative limited data and information, cost estimates are highly subject to a wide
array of inaccuracies. Conventionally, the cost estimates mainly depend on experience of industry
professionals and unit cost rate from previous projects. However, the process is complex, and it is
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challenging to ensure accuracy. Hence, this study introduces the transfer function model to estimate
building costs.

A review of the published research and studies on the performance of the forecasting models
explored that the efficiency of the univariate model approaches is limited. The accuracy of the
forecasting models has been improved when other explanatory variables are included. In this
study, three forecasting models, namely, autoregressive integrated moving average (ARIMA) model,
bivariate transfer function model (one explanatory variable), multivariate transfer function model (two
explanatory variables), were applied to residential building costs of New Zealand. The performance
of the forecasting models is determined by the error measures of the models. According to [5], the
ARIMA model was used as a benchmark model because of its standard modelling process and good
forecasting performance.

At present, there is a limited number of empirical research and studies focused on building cost
predication, particularly for residential building costs. However, the construction sector is important to
the economy due to its strong backward and forward linkage with other sectors [6–8]. The residential
sector was selected due to residential construction represents an average of 38% of the total construction
output in New Zealand [9]. Moreover, transfer function models including two explanatory variables
for forecasting building costs remain unexplored. In the current study, time-series data on building
costs of low-rise residential buildings (house and town house) and high-rise buildings (apartments) in
New Zealand were used as representative cases to fill this gap in knowledge. Thus, the study illustrates
both univariate model and multivariate model approaches to forecasting of two different time-series
data on residential building costs.

The remaining of the study is organised as follows: Section 2 summarizes the related literature,
and Section 3 presents the data and methodology that are used in the study. The univariate models,
bivariate models and multivariate models for residential building costs were developed in Section 4,
and the forecasting performance of them was also compared in Section 5. Section 6 discusses the
results, and Section 7 summarises and concludes the findings and implications.

2. Literature Review

2.1. The Factors Impact Building Costs

Building cost estimates traditionally include expenditures for labor, material, equipment and
construction method, but they are also impacted by many other factors such as industry factors, market
conditions, and macro-economic environment. The fluctuation of variables, such as interest rates, the
consumer price index, house prices and the building service index may influence the cost [10]. In order
to accurately estimate the building cost, it is necessary to identify the main determinant factors. Some
studies have been conducted in this area. For example, [11] found that the construction cost can be
impacted by factors such as gross domestic product (GDP), crude oil prices, consumer price index
(CPI), unemployment rate, producer price index (PPI), number of building permits and money supply.

In [12], a study was conducted in the relationship between the real estate sector and construction
industry and highlighted that increasing the price for real estate has created a favourable investment
climate and pushed the building cost up. Furthermore, [13] also addressed that building costs will
rise and fall, with time-lags, in relation to changes in work volume. According to [14], building costs
are determined by short-run resource costs plus a mark-up that is a positive function of general level
of construction activity. [15] also stated that the existence of a competitive environment significantly
increases building costs due to prices in goods and service sectors that are sensitive to changes
in the demand. The increased work volume in the construction industry also imposes increasing
pressure on the supply chain. Indeed, unavailability of resources and unreliable distributions are
usually considered as the main reasons of project delays leading to additional costs [16]. This study
incorporates two variables in the transfer function modelling process as they may have more direct
effects on movements of building costs.
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2.2. Estimating Methods

According to the study by [17], developing an accurate forecasting model for the cost index would
be useful for both decisionmakers and policy analysts. The estimating method also plays a key role
in estimating accuracy. As a common practice, cost estimating is usually based on the experience of
industry professionals, and the unit cost rate from previous projects. However, the process is complex
and time-consuming, and it is challenging to ensure the accuracy. Some studies have proposed methods
for forecasting building costs. Many methods have been employed to forecast the construction cost
index, including time series methods [18,19], multiple liner regression [20,21], support vector machines
(SVM) [22,23] and ANNs [24–26].

Univariate time series methods, including seasonal ARIMA models and the exponential smoothing
method, have been compared in a study by [27], in order to select a forecasting model for the construction
cost index. [19] developed an interrupted time-series model for forecasting construction cost. The cost
forecasts are more accurate and reliable than the forecasts obtained from the conventional ARIMA
model, since the 2008 economic regression is considered. However, the univariate time series methods
only examine the cost trend, they are unable to model the explanatory power of cost-influencing factors.

Multiple regression analysis has been used to forecast construction cost, since the construction cost
index may be influenced by several financial and macro-economic variables. The multiple regression
analysis was considered as a reliable and powerful parametric estimating approach and has a great
potential for cost estimating [4]. However, this approach requires clear understanding of the modelling
technique and collinearity problem. Moreover, in study [26], the authors addressed the advantages of
the multivariate models as they can explain the impact of the independent variables on the dependent
variable and have relative robust theoretical framework compared with univariate models. However,
identifying the appropriate independent variable in multivariate models is difficult. [21] used multiple
regression analysis (MRA) and ANNs for estimating the construction cost at the early stage of a project,
the better to budget for it. The forecasting performance of the models indicates that the multiple
regression model can generate better cost estimates than the ANN model.

Furthermore, some studies have been performed to forecast the construction cost by using
other variables that are assumed to have an explanatory relationship with the construction cost. For
example, [28] built a vector error correction (VEC) model for forecasting the tender price index by
incorporating financial and macroeconomic variables, such as gross domestic product (GDP), bank
interest rate, consumer price index, money supply, and unemployment rate. The support vector
machine (SVM) technique has been used to forecast cost index in some studies [22,23]. The core of SVM
is the kernel function. The performance of the kernel function is greatly associated with the values of
important parameters. However, an appropriate technique for selecting the parameters is lacking.

Study [29] indicated that one of the main disadvantages of the forecasting models is the assumption
of linear relationships between variables; thus, techniques that can model non-linear relationships are
necessary. The use of artificial neutral networks (ANNs) method has received increasing attention
during the last two decades [30]. Therefore, the ANN model has been widely used in some studies,
as it can model non-linear relationships. ANNs approach that simulates the learning process of the
human brain has been widely used in many fields [31]. It usually produces a more accurate result
than conventional estimation methods such as expert judgment and regression analysis that due to it
can describe uncertain and non-linear relationships [32–34]. For example, [35] developed a model for
forecasting the construction site cost index by using artificial neutral networks (ANNs). Additionally,
study [36] provided a hybrid model, which combines both multivariate regression method and ANNs,
to forecast construction cost. [24] combined ANN with the principal component analysis (PCA) to
develop a model for estimating the project cost of residential buildings. Although ANN can model the
cost properly, the model is unstable. Moreover, the modelling process of ANN is fuzzy and more like a
black box, since it cannot provide any relationship between the cost and explanatory variables.
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Recently, a case-based reasoning method was used to forecast construction cost, as it can include
both quantitative and qualitative variables. The case-based reasoning method copes with a new case
by using previous experience and knowledge and similar cases. It is a radical departure from the
methods discussed above, which only incorporate quantitative variables. Some studies [37,38] have
been conducted using the case-based reasoning method. Although the case-based reasoning (CBR)
method has been increasingly used in estimating construction cost, there exist some challenging issues,
including parameter selection, weight assignment, and the rules of reuse case [39,40]. CBR highly
depends on similar case data. If the similar data is not sufficient, the inaccurate results of new cases
will be generated [41].

2.3. Gaps in the Existing Literature

Although the studies and research about cost modelling have been undertaken extensively in the
literature, there are limited studies about the transfer function modelling which include the effects of
other variables on the building costs. In previous studies, both univariate time series methods and
multivariate regressive methods were used to develop an appropriate model for forecasting building
costs. Each has its own advantages and disadvantages. Univariate time series methods can fit the
changes and trends in the variables but overlook the impacts of the macro-environment. For example,
the impacts of supply and demand on the building cost index are not captured in the univariate
techniques. The univariate models lack explanatory ability. Multivariate causal methods incorporate
explanatory variables to account for the influencing effects, in order to provide more accurate forecasts.
However, the correlation between the explanatory variables may affect the accuracy of the forecasts. In
this study, the transfer function method is used to combine the merits of both univariate time series
methods and multivariate causal methods. By using this method, the changes and trends of the variable
can be modelled, and the exogenous effects were modelled by incorporating explanatory variables.
Moreover, the transfer function model used in this study incorporates explanatory variables and their
past values that contain useful information for forecasting the future values of the construction cost
index. It can model the time-lag relationship between building cost and explanatory variables by using
CCF analysis. In addition, the existing literature about forecasting residential building costs for New
Zealand is rare. This study provides the first foundation for studying the movement of building cost,
which may help stakeholders in decision-making.

3. Research Methodology

3.1. The Data

The data set consists of quarterly observations for the period 2001:Q1–2018:Q4 for residential
building costs of low-rise and high-rise buildings in New Zealand, and two explanatory variables
including housing prices and work volume. The training sample is from 2001:Q1 to 2014:Q4, a total of
56 observations. The validation sample used the remaining 16 observations, from 2015:Q1 to 2018:Q4.
The cost data is the approximate cost per building type per square meter in New Zealand.

Note that, this study categorised residential building costs into two major segments, namely,
low-rise building and high-rise building costs. The low-rise residential building is believed to be the
most representative of the general house type prevailing in New Zealand, while high-rise residential
buildings are apartments or retirement villages. LBC and HBC are the building cost indexes of
residential low-rise and high-rise buildings, respectively, which are obtained from the QV cost builder
that is widely used in the construction industry of New Zealand. Cost estimation at the early stage is
highly based on the use and availability of historical cost data and information [42].

As a measure of house prices (HP), the study employed house price index is quarterly data and
spans from 2001:Q1 to 2018:Q4 obtained from Reserve Bank of New Zealand (RBNZ). The annual
number of building consents issued is the major indicator of new building projects in New Zealand.
The number of building consents is a significant indicator of construction work volume which can
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be used as a proxy of construction work volume in the present study. Building consent series (BC)
indicates the quarterly number of building consents awarded in New Zealand officially reported by
Statistics of New Zealand, from 2001:Q1 to 2018:Q4. A complete set of descriptive statistics is available
upon request.

3.2. ARIMA Model

The ARIMA model is a combination of the autoregressive (AR) model, differencing of time series,
and moving average model (MA). The modelling process of the ARIMA technique was proposed
by [43]. The model ARIMA (p,d,q)(P,D,Q)L can be expressed in Equation (1). The basic steps of
applying an ARIMA model include identification, estimation, diagnosis checking, and forecasting.
The examination of the autocorrelation function (ACF) and partial autocorrelation function (PACF) to
gain insights into the characteristics of the time series is the first stage of the approach. The series is
differenced to attain stationarity. The ACF and PACF plots of the stationary series are examined to
identify an appropriate model. At the estimation and diagnostic checking stages, the portmanteau test
is used to evaluate the identified model. The process is repeated until a reliable model is obtained.
Finally, the selected model is used to yield out-of-sample forecasts.

∅p(B)ϕP
(
BL
)
∇

D
L ∇

dyt = δ+ θq(B)ϑQ
(
BL
)
at, (1)

where B is the backshift operator; L is the number of seasons in a year (L = 4 for quarterly data and
L = 12 for monthly data); δ is a constant term; at is a random shock; ∅p is a non-seasonal autoregressive
parameter; ϕP is a seasonal autoregressive parameter; θq is a non-seasonal moving average parameter,
ϑQ is a seasonal moving average parameter.

3.3. Bivariate Transfer Function Model

The transfer function approach is a time series model that involves more than one time series and
explains explicitly the dynamic characteristics of the process [44]. The general form of the function can
be written in Equation (2).

Yt = v(B)Xt + Nt, (2)

where

v(B) =
ω(B)
δ(B)

Bb, (3)

ω(B) = ω0 −ω1B−ω2B2
− · · · −ωsBs, (4)

δ(B) = 1− δ1B− δ2B2
− · · · − δrBr, (5)

whereω(B) is the numerator polynomial, δ(B) is the denominator polynomial, and Xt is the explanatory
variable, Nt is the independent noise term generated by an ARIMA process. However, if the time
series exhibits non-stationarity, an appropriate degree of differencing should be applied to the series
to achieve stationarity. In reality, stationary dependent and explanatory variables are necessary to
develop a transfer function model. As a result, the transfer function model can be more generally
expressed in Equation (6).

yt =
ω(B)
δ(B)

Bbxt +
θ(B)ϑ(B)
ϕ(B)∅(B)

at (6)

where
yt = (1− B)d

(
1− Bl

)D
Yt, (7)

xt = (1− B)d′
(
1− Bl

)D′
Xt, (8)

where D and d are orders of regular and seasonal differencing that transform non-stationary Yt to
stationary yt; D′ and d′ are orders of regular and seasonal differencing that transform non-stationary
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Xt to stationary xt; l is the period of seasonality; θ(B)ϑ(B)
ϕ(B)∅(B) is an ARIMA process that transfer noise term

Nt to white noise at.
According to [43], a comprehensive procedure to develop a transfer function model is displayed.

The cross-correlation function (CCF) was introduced to identify the model orders such as delay order b,
numerator polynomial order s, denominator polynomial order r. However, the spurious effects usually
appear due to the autocorrelation in the input series. Thus, a pre-whiten filter is introduced to alleviate
this spurious effect. The main principle of the pre-whiten filter transfers the input variable to a white
noise process. In other words, the autocorrelation in the input variable series was removed.

The first step in pre-whitening is to identify and fit an ARIMA model to the stationary input data
xt. An appropriate ARIMA model for the input data might be written in Equation (9).

ϕp(B)∅P
(
Bl
)
xt = θq(B)ϑQ

(
Bl
)
at, (9)

Rewriting Equation (6), the residuals at are given in Equation (10).

αt =
ϕp(B)∅P

(
Bl
)

θq(B)ϑQ(BL)
xt (10)

After pre-whitening the input data, the next step is to pre-whiten the stationary output data yt. This is
to filter the output data through the same ARIMA model with the same model parameters fitted to the
input data. In other words, xt is substituted by yt in Equation (10) to obtain the filtering equation for
the pre-whitened output, as shown in Equation (11).

βt =
ϕp(B)∅P

(
Bl
)

θq(B)ϑQ(BL)
yt (11)

The next step is to compute the cross-correlation function between the pre-whitened input αt and the
pre-whiten output βt. It should be emphasised here that all the cross-correlation for negative should be
insignificant. Since the model assumed that the input variable has effects on the output variable, no
feedback effects exist. The first significant spike lag indicates a time delay order b. Then the damping
pattern of the cross-correlation function can be used to identify the denominator polynomial order
r. If the CCF fades out in an exponential decay pattern, this suggests r = 1. If the CCF damp down
in an oscillating pattern, this indicates r = 2. While the numerator polynomial order s is equal to the
number of lags that exist between the first spike in the CCF and the beginning of the clear damping
down pattern. For example, if the first spike starts at lag 2 and the CCF exhibits decay after lag 4,
this suggests s = 4 − 2 = 2. At this point, it should be noted that the study does not attempt to search
the right values of the model orders. The models are only tentatively identified, further diagnostics
checking should be performed to obtain adequate models.

The transfer function model parameters are estimated based on the identified model orders
at this step. After the model has been identified, the error term should be checked. If significant
autocorrelation exists in the error series, an ARIMA model should identify and fit to the error series
and then be incorporated into the overall model in Equation (2). The model can be identified by
examining the auto-correlation function (ACF) and partial auto-correlation function (PACF) of the error.
In this study, SPSS 23 was used to develop the transfer function models. The parameter estimates and
standard errors suggest whether the parameters should be omitted from the model.
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For diagnostics checking, the cross-correlation between the residuals from the developed transfer
function model and the residuals of the ARIMA model that used to pre-whiten the input variable. If
there is no significant spike that exists in the CCF, indicating there is no significant cross-correlation left
between the input and output variables, the transfer function model is correctly identified. If that is not
the case, this indicates that some information still exists in the output variable that can be explained
by the input variable. Moreover, the autocorrelation function (ACF) of the residuals of the transfer
function model should also be checked. If the model is appropriately identified, there should be no
significant autocorrelation in the residuals.

3.4. Multivariate Transfer Function Model

The transfer function model can be further expanded to include multivariate, explaining
variables [25]. If there are two or more independent variables, the cross-correlation to identify a transfer
function relating the dependent variable to each independent variable. The model development
process follows the strategy described by [43].

So, in this study, the two time series (input X1t and X2t) to estimate the dependent variable of
another time series (output Yt) is applied. This is done by modelling a linear system, which takes the
form in Equation (12).

yt =
ω1(B)
δ1(B)

Bbt x1t +
ω2(B)
δ2(B)

Bbtx2t + at (12)

where ω(B) and δ(B) are, respectively, the polynomials of the s and r orders; ω1(B) and δ1(B) can be
identified by examining the cross-correlation between pre-whitened yt and x1t; ω2(B) and δ2(B) can be
identified by examining the cross-correlation between pre-whitened yt and x2t. The transfer function
in this study used the house price and work volume for the primary series (x1t and x2t).

4. The Forecasting Models

4.1. ARIMA Model for Building Costs

In this part, some important features of the individual time series were described and used to
specify and estimate univariate ARIMA models for the building costs of residential low-rise (LBC)
and the building cost of high-rise buildings (HBC). The period 2001:Q1–2014:Q4 was used to specify
univariate ARIMA models for the cost series.

Prior to fitting time-series data to an ARIMA model, the data must be stationary. As explained in
the preceding section, the ACF and PACF plots are used to check for stationarity. The ACF of the cost
series dying down very slowly indicates that the series is non-stationary, as shown in Figure 1. Hence,
the series is transformed into a stationary one using differencing. The cost series features suggest that
the LBC series requires a regular and a seasonal difference to become stationary. In addition, the HBC
series should be stationary after one regular difference. The ACF and PACF plots of the stationary
series are used to identify the orders of the ARIMA model. The model parameters for both cost series
are shown in Table 1. The ARIMA model for building cost of low-rise residential building is ARIMA
(0,1,1) (0,1,1)4 with moving average parameter θ1 = 0.317 and seasonal moving average parameter ϑ1

= 0.294. The ARIMA model for building cost of the high-rise residential building is ARIMA (0,1,0)
(1,0,0)4. The seasonal autoregressive parameter φ1 = 0.594.
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building is significant at lag 3 (b = 3). Based on Figure 2b1, the number of building consents greatly 
impact the cost of a low-rise residential building at lag 4 (b = 4). Similarly, based on the results shown 
in Figure 2a2, the house price significantly affected the building cost of a high-rise residential building 
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Figure 1. (a1) Autocorrelation function (ACF) plot of residential low-rise (LBC); (b1) partial
auto-correlation function (PACF) plot for LBC; (a2) ACF plot of HBC; (b2) PACF plot of high-rise
buildings (HBC).

Table 1. Autoregressive integrated moving average (ARIMA) models for LBC and HBC.

Cost Series Model Parameter Estimate SD t-Statistics p-Value

LBC ARIMA (0,1,1) (0,1,1)4
θ1 0.317 0.147 2.160 0.036 **
ϑ1 0.294 0.152 1.933 0.059 **

HBC ARIMA (0,1,0) (1,0,0)4 φ1 0.594 0.108 5.483 0.0 ***

** Significant at 0.05 level; *** Significant at 0.01 level.

The ARIMA approach only considers information related to the cost series own lagged values.
However, some exogenous shocks that can marginally affect the residential building costs should also
be considered, for example, house price and work volume. In order to take into account some of these
effects, the transfer function models were specified.

4.2. Transfer Function Model for Building Costs

The study used the modelling process suggested by [43] to develop a transfer funciton model.
After some initial analysis, the average house price and work volume were used as the independent
variables, respectively and collaboratively. The iterative model development process, as described
in the last section was adopted in the development of the transfer function models. The ARIMA
models for the independent variables were used to filter the residential building costs and then the
pre-whitened series are analysed by using the cross-correlation function (CCF). The lag parameter
(b) can be directly identified based on CCF graph. The CCFs for the residential building costs and
the input variables are shown in Figure 2. Following the Box-Jenkins transfer function modelling
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strategy and the graph shown in Figure 2a1, the effect of house price on the building cost of low-rise
residential building is significant at lag 3 (b = 3). Based on Figure 2b1, the number of building consents
greatly impact the cost of a low-rise residential building at lag 4 (b = 4). Similarly, based on the results
shown in Figure 2a2, the house price significantly affected the building cost of a high-rise residential
building at lag 1 (b = 1) and lag 3 (b = 3). According to a transfer function modelling rule that only
allows incorporation of the first significant lag effect into the model, the lag effect at lag 1 (b = 1)
was modelled in this model. As shown in Figure 2b2, the number of building consents significantly
impacted the cost of a high-rise residential building at lag 3 (b = 3). The final estimates of the bivariate
and multivariate transfer function models of residential low-rise and high-rise buildings are provided
in Tables 2 and 3, respectively. The bivariate transfer function model for LBC with HP involved as an
independent variable is indicated as BTF-LBC1; while the bivariate transfer function model for LBC
with BC involved as an independent variable is indicated as BTF-LBC2. In addition, the multivariate
transfer function model for LBC with both HP and BC involved as independent variables is indicated as
MTF-LBC. The bivariate transfer function model for HBC with HP involved as an independent variable
is indicated as BTF-HBC1, while the bivariate transfer function model for HBC with BC involved as an
independent variable is indicated as BTF-HBC2. The multivariate transfer function model for HBC
with both HP and BC involved as independent variables is indicated as MTF-HBC.Buildings 2019, 9, x FOR PEER REVIEW 10 of 17 
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Table 2. Transfer function model parameters for LBC.

Model Independent Variable Parameter Estimate SD t-Statistics p-Value

BTF-LBC1 HP
ω0 0.488

0.152 3.211 0.002 ***B 3

BTF-LBC2 BC
ω0 0.691

0.251 2.756 0.008 ***B 4

MTF-LBC HP & BC

ωHP
0 0.312

0.141 2.210 0.032 **
bHP 3
ωBC

0 0.575
0.249 2.312 0.025 **

bBC 4

** Significant at 0.05 level; *** Significant at 0.01 level.

Table 3. Transfer function model parameters for HBC.

Model Independent Variable Parameter Estimate SD t-Statistics p-Value

BTF-HBC1 HP
ω0 0.302 0.125 2.410 0.020 **
δ1 0.741 0.147 5.034 0.0 ***
B 1

BTF-HBC2 BC
ω0 0.232

0.110 2.101 0.038 **B 3

MTF-HBC HP & BC

ωHP
0 0.452 0.102 4.431 0.001 ***
δ1 0.706 0.302 2.338 0.027 **

bHP 1
ωHP

0 0.313 0.151 2.078 0.040 **
bBC 3

** Significant at 0.05 level; *** Significant at 0.01 level.

An examination of the plots of ACF and PACF of the residuals of the BTF-LBC1, BTF-LBC2,
MTF-LBC, BTF-HBC1, BTF-HBC2, MTF-HBC models are shown in Figure 3. All the residuals fall
inside the scope, which indicates that the residuals are white noise and thus the models are adequate.
The performance of the models has been evaluated in terms of model evaluation parameters such
as coefficients of determination (R2), mean average percentage error (MAPE), and root mean square
error (RMSE). The performance measures of the developed models for a cost series based on the data
from 2001:Q1 to 2014:Q4 are shown in Table 4. An inspection of Table 4 suggests some important
points. A significant improvement in the performance was observed with the inclusion of house price
as an independent variable compared with the univariate ARIMA model for both building cost series.
However, the inclusion of work volume series as an input does not provide a significant improvement
in the performance of the model for the building cost of residential high-rise buildings (HBC). The
inclusion of the work volume makes the transfer function model more complicated without much
improvement in the forecasting performance, for the cost series of residential high-rise buildings (HBC).
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Table 4. Model performance parameters for the fitted models.

Cost Series Model Statistics ARIMA
Bivariate TF Multivariate TF

HP BC HP & BC

LBC

R2 0.955 0.935 0.934 0.942
RMSE 41.96 36.58 34.77 33.58
MAPE 1.846 1.814 1.776 1.755
MAE 28.79 28.67 28.10 26.87

HBC

R2 0.969 0.942 0.919 0.927
RMSE 52.87 37.88 45.75 36.33
MAPE 1.944 1.796 1.836 1.676
MAE 37.03 34.32 35.48 32.92

5. Forecasting Results

To evaluate the forecasting performance of the transfer function model, forecasts were made for
both cost series (LBC & HBC) ranging from 2015:Q1 to 2018:Q4. A summary of forecasting performance
measures for the ARIMA models and transfer function models is shown in Table 5. For the building
cost series of residential low-rise buildings (LBC), the lowest RMSE is given from the MTF model, for a
31% reduction over the ARIMA model. The bivariate transfer function models for LBC (BTF-LBC1 &
BTF-LBC2) also perform better than the ARIMA model with an RMSE reduction of about 16% and
20%, respectively. For the LBC series, the reduction in RMSE from ARIMA to the bivariate transfer
function models is not as strong as the reduction from ARIMA to the multivariate transfer function
model. Again, from a dynamic and uncertain point of view, an appropriate forecasting model for the
LBC series is the multivariate model and not the univariate model.

Table 5. Forecasting performance parameters for the models.

Cost Series Model Statistics ARIMA
Bivariate TF Multivariate TF

HP BC HP & BC

LBC

R2 0.955 0.935 0.934 0.942
RMSE 48.00 40.43 38.34 33.13
MAPE 2.190 2.012 1.956 1.847
MAE 40.00 36.49 29.88 28.01

HBC

R2 0.969 0.942 0.919 0.927
RMSE 56.23 42.55 47.36 41.88
MAPE 2.159 1.861 1.942 1.795
MAE 44.32 36.93 38.84 35.76

For the building cost series of residential high-rise buildings (HBC), the transfer function models
yield RMSE improvements over the univariate ARIMA model. See the results in Table 4. The bivariate
transfer function models (BTF-HBC1 & BTF-HBC2) gives a 24% and 16% RMSE reduction, respectively,
and the multivariate transfer function model (MTF-HBC) gives a 26% RMSE reduction over the
ARIMA model. In particular, the MTF-HBC model gives an additional RMSE reduction over the
bivariate transfer function models (BTF-HBC1 & BTF-HBC2). The results shown in Table 5 indicate that
the multivariate transfer function model (MTF-HBC) did not significantly reduce the out-of-sample
forecasting errors relative to BTF-HBC1. The multivariate transfer function model produced lower
mean square errors than the bivariate transfer function model BTF-HBC1, but this was not significant.
The BTF-HBC1 model improves upon the ARIMA model. However, the BTF-HBC2 model was not
improved as much as the BTF-HBC1 model. These results indicate that the building cost of a high-rise
building may be more influenced by house prices than the number of building consents.

The results show that the transfer function models perform better over univariate ARIMA models
for all lead times. The gain from including explaining variables in the transfer function model is
obvious. For example, the MAPE and RMSE for the multivariate transfer function model (MTF-LBC)



Buildings 2019, 9, 152 13 of 17

are reduced significantly. The transfer function model including exogenous variables is expected to
predict the residential building costs more accurately than the univariate ARIMA model. Owning
to the inherent complexity in the construction industry and property market, the transfer function
models with two independent variables is better at forecasting than the transfer function models with
one independent variable.

6. Results Discussion

Both the ARIMA models and the transfer function models have been proven reliable in this
study. However, transfer function models can obtain efficiency gains, especially the transfer function
models with two independent variables. The results indicate that the simple models are not always the
most appropriate for forecasting, especially when additional information is available. The univariate
ARIMA models were primarily used as benchmarks in comparing forecasting performance. Efficiency
gains can be realised when explanatory variables are available in the forms of other time series. The
forecasting performance can be improved by using transfer function models. It was found that the use
of the explanatory variables significantly reduces the forecasting error in building costs, relative to a
univariate ARIMA model. In fact, some macro-economic indicators significantly impact building costs,
but they do not have temporal effects on building cost. They usually have time-lag effects. In this
study, the time-lag effects were identified by using the cross-correlation function (CCF) and transfer
function model can model the time-lag effects of explanatory variables on building costs.

Furthermore, changes in the housing prices lead to changes in residential building costs of New
Zealand. This result was supported by the findings of [45], which addressed that the construction
activities are more sensitive to the house price. In addition, the finding of the significant correlation
between residential building costs and house prices in New Zealand is consistent with the results
of [46], which indicated that the upswing in residential building costs is related to the strong rise
in house price. The causal relationship is also supported by the connection between the property
market and construction industry and also the boom and bust cycles in the construction industry. The
house price can influence the demand for housing. Increasing house prices offer the possibility of
obtaining capital gains, which contributes to market expansion. This exerts a significant pulling effect
on construction activity. The demand for housing is impacted by the macro-economic environment.
The supply of housing is determined by the capacity of the construction industry. The gaps between
supply and demand are absorbed by prices.

Moreover, an increase in the number of residential building consents indicates that more residential
building activity is occurring and increased demand for resources. Under this condition, the purchase
of materials and hiring of labour and equipment may cost more as compared to purchase and hiring
during normal market conditions. Hence, the fluctuation in costs of resources (labour, materials, and
equipment) may have a significant effect on building cost.

Residential high-rise buildings in New Zealand are usually delivered by large construction
organisations because they seek to expand into areas where scale economies are present, and their
advantages are the greatest. The change in work volume cannot significantly influence the large
construction companies since they usually can effectively and strategically manage their supply chain
with long-term relationships and partnering and collaborative procurement system. Furthermore,
large construction organisations benefit from technology innovations that help them to better meet
client needs and achieve competitive advantages by reducing costs and enhancing differentiation.
However, small construction firms are subject to constraints on their competitiveness since significant
technological lags in their deliver process and shortcomings in their management procedures. The
existing literature indicated that a significant difference exists in the innovation capability and output
of small construction firms compared to large construction organisations. In fact, small construction
companies are more exposed to the change in market conditions than large construction companies
and face fierce competition.
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7. Conclusions

This study has developed models for estimating building costs of low-rise and high-rise residential
buildings in New Zealand. In the quest to generate accurate cost forecasts, modelling techniques is
one of the key challenges that need to overcome. In this study, explanatory variables were included in
transfer function models. The house price was first involved into the model. The results indicate that
the house price has a significant effect on both cost series (LBC & HBC). Additionally, the work volume
was also included in the models. The results indicated that the transfer function model with two
independent variables can generate better forecasts for both cost series. By including work volume, the
performance of the cost model for low-rise buildings improved more than that for high-rise buildings,
which indicates that work volume has more effects on the building cost of low-rise residential buildings
than that on the building cost of high-rise residential buildings. When the input variables have
explaining power for the dependent variable, appropriate application of the transfer function model
can greatly improve forecasting accuracy.

The findings of this study contribute to the body of knowledge by exploring significant time-lag
effects of house prices and work volume on building costs of low-rise and high-rise residential buildings
in New Zealand. Moreover, the developed transfer function models provide an effective modelling
technique for residential building costs in New Zealand. The forecasting models can be considered as
contingency plans for cost estimates and management. Therefore, clients and stakeholders can use the
information provided by the models to evaluate financial decisions regarding a proposed construction
project. Additionally, the forecasting models can provide accurate estimates for the building costs of
low-rise and high-rise residential buildings, which can help industry professionals to better understand
future trends in the construction market, and thus improve their strategic planning.

The proposed models were developed for building costs of residential buildings in New Zealand,
and hence its results and findings may not directly apply to other cost series or residential building
costs of other countries. Future studies should focus on more building categories (commercial and
industrial building costs) and employ other modelling techniques in order to obtain accurate cost
forecasts. The current study can also be extended to investigate the relationships between building
costs and other variables. More hidden links between the building costs and environment are waiting
for further investigation.
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Abbreviations

ACF Auto-Correlation Function
ANNs Artificial Neutral Networks
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
BC Building Consents
BTF-LBC1 Bivariate Transfer Function Model for Low-rise Residential Building Cost involved

House Prices as explanatory variable
BTF-LBC2 Bivariate Transfer Function Model for Low-rise Residential Building Cost involved

Building Consents as explanatory variable
BTF-HBC1 Bivariate Transfer Function Model for High-rise Residential Building Cost involved

House Prices as explanatory variable
BTF-HBC2 Bivariate Transfer Function Model for High-rise Residential Building Cost involved

Building Consents as explanatory variable
CBR Case-Based Reasoning
CCF Cross-Correlation Function
CPI Consumer Price Index
GDP Gross Domestic Product
HBC High-rise Residential Building Cost
HP House Prices
LBC Low-rise Residential Building Cost
MAPE Mean Absolute Percentage Error
MRA Multiple Regression Analysis
MTF-LBC Multivariate Transfer Function Model for Low-rise Residential Building Cost involved

House Prices and Building Consents as explanatory variables
MTF-HBC Multivariate Transfer Function Model for High-rise Residential Building Cost involved

House Prices and Building Consents as explanatory variables
PACF Partial Auto-Correlation Function
PCA Principal Component Analysis
PPI Producer Price Index
RBNZ Reserve Bank of New Zealand
RMSE Root Mean Square Error
SVM Support Vector Machine
VEC Vector Error Correction
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