
buildings

Article

A Generalized Adaptive Framework (GAF) for
Automating Code Compliance Checking

Nawari O. Nawari

School of Architecture, College of Design, Construction, and Planning, University of Florida, Gainesville,
FL 32611, USA; nnawari@ufl.edu

Received: 30 March 2019; Accepted: 13 April 2019; Published: 16 April 2019
����������
�������

Abstract: Building design review is the procedure of checking a design against codes and standard
provisions to satisfy the accuracy of the design and identify non-compliances before construction
begins. The current approaches for conducting the design review process in an automatic or
semi-automatic manner are either based on proprietary, domain-specific or hard-coded rule-based
mechanisms. These methods may be effective in their specific applications, but they have the
downsides of being costly to maintain, inflexible to modify, and lack a generalized framework of
rules and regulations modeling that can adapt to various engineering design realms, and thus don’t
support a neutral data standard. They are often referred to as ‘Black Box’ or ‘Gray Box’ approaches.
This research offers a new comprehensive framework that reduces the limitations of the cited methods.
Building regulations, for instance, are legal documents transcribed and approved by professionals to
be interpreted and applied by people. They are hardly as precise as formal logic. Engineers, architects,
and contractors can read those technical documents and transform them into scientific notations
and software applications. They can extract any data they need, reason about it, and apply it at
various phases of the project. How these extraction and use are carried out is a critical component
of automating the design review process. The chief goal is to address this issue by developing a
Generalized Adaptive Framework (GAF) for a neutral data standard (Industry Foundation Classes
(IFC)) that enables automating the code compliance checking processes to achieve design efficiency
and cost-effectiveness. The objectives of this study comprise i) to develop a theoretical background
to an adaptive framework that supports a neutral data standard for transforming the written code
regulations and rules into a computable model, and ii) to define the various modules required for
computerizing of the code compliance verification process.

Keywords: BIM; IFC; automated code compliance checking; generalized adaptive framework

1. Introduction

Design review is the process of evaluating a design against its requirements to verify the quality
and performance of the design and identify issues before construction takes place. In the Architecture,
Engineering, and Construction (AEC) industry, this process is referred to as the Code Compliance
Checking (CCC) process. The main goals of this process are to ensure quality, cost-effectiveness
and prevent failure of the designed system. Presently AEC industries are becoming increasingly
sophisticated, thus, the issue of identifying design defects and shortcomings before assembly and
implementation is becoming even more problematic. This is true almost for all engineering design
domains, from urban design, aerospace, mechanical, to building and construction engineering. The CCC
Process is the primary method used to address this problem by critically assessing all aspects of the
design through careful examination of requirements compliance, verification, and analyses.

The design review process is normally conducted at each phase of the design, from the conceptual
to the final stage of construction documents. These series of reviews or CCC processes take a

Buildings 2019, 9, 86; doi:10.3390/buildings9040086 www.mdpi.com/journal/buildings

http://www.mdpi.com/journal/buildings
http://www.mdpi.com
http://dx.doi.org/10.3390/buildings9040086
http://www.mdpi.com/journal/buildings
https://www.mdpi.com/2075-5309/9/4/86?type=check_update&version=3

Buildings 2019, 9, 86 2 of 17

considerable amount of time and effort for both designers and building authorities. For building
officials, the CCC is even more critical since they are responsible for issuing building permits to start the
construction process. Thus, there were some efforts cited in the literature that aimed to automate some
of the CCC process [1–3]. Most of these efforts are either based on proprietary schemas, domain-specific
or hard-coded rule-based representations, which may be successful in their implementations, but
they have the shortcomings of being expensive to maintain, inflexible to modify, lack a generalized
framework of rules and regulations modeling. They are often referred to as ‘Black Box’ or ‘Gray
Box’ approaches.

Advancement of technology has continuously engaged the building design profession over the
past several centuries. From the ancient Egyptian models in the form of drawings and physical
objects as demonstrated in the plans of the Tomb of Rameses IV and the drawing of the shrine from
Ghorâb, four thousand years ago, to the use of the mouse in the early 1970s, to the development of
Building Information Modeling (BIM) technology in the mid-nineties, all indicate the radical impact of
technology on building design and construction [4].

The last challenging global economic downturn in 2008 accompanied by the continued growth
of complexity of building regulations and standards in a fragmented construction industry make
designing and delivering of a facility that meets the owner’s objective within budget and schedules
into a cumbersome task. The notion of computerization within the context of facility design in the
21st century offers promising solutions in optimizing the building design process. By providing more
accurate information in an open and asynchronous data format, computerization offers engineers,
architects, and contractors efficient and innovative methods to collaborate, investigate many design
alternatives, and validate design assumptions and requirements against code specifications in a virtual
environment before construction to achieve optimum design objectives.

The concept of automating the CCC process described in this paper focuses on building regulations
compliance checking mechanisms that are defined by the relationship among various design and
engineering information management systems and the Building Information Modeling (BIM) and how
this computerization will assist in streamlining communication and dissemination of building design
review information amongst breadth of stakeholders.

In the AEC industry, specifications and regulations typically take the form of written texts, tables,
charts, and equations. These rules, in general, have lawful status. However, the cognitive and analytic
ability of the human brain is dissimilar to anything implemented in a computer environment. Thus,
the automation of this process poses a real challenge to the AEC industry [5]. For example, how can the
interpretation of these rules into a computer interpretable format be performed, in a manner that the
implementation can be validated as consistent with the written regulations? Quite often, the process
counts on the computer programmer’s interpretation and translation of the written rules into computer
code. In other cases, the logic of the human language statements is formally interpreted and then
encoded into computer instructions.

Recently, new developments in Artificial Intelligence (AI) research and Building Information
Modeling (BIM) could offer practical concepts to resolve some of the current major problems with
automating CCC. Building standards and regulations commonly endeavor to organize, categorize,
label, and define the rules, actions, and patterns of the built environment to attain safety against
any failure, efficiency, and the overall economy. Nevertheless, their best-laid plans are overwhelmed
by the inevitable change, growth, innovation, progress, evolution, diversity, and entropy [2]. Quite
often regulations can amend provisions and interpretive standards, which generally leads to massive
volumes of semi-structured documents that alter, complement and potentially conflict with one
another. These issues, which indicate complications for both young designers and engineers as well as
experienced professionals, are also far more disorderly for the fragile traditional knowledge bases in
computer systems. Notwithstanding that precise definitions and specifications are essential for solving
encoding design regulations, many building code provisions aren’t precisely defined and are often
characterized by high subjectivity. Furthermore, some code provisions are characterized by continuous

Buildings 2019, 9, 86 3 of 17

progressions and open-ended range of exceptions that make it difficult to give exact definitions for any
concepts that are learned through experience.

2. A Brief Review of Recent Researches

This issue of automating rules and regulations checking has interested many researchers and
practitioners over the years. The first successful effort to automate design compliance is demonstrated
by the work of Fenv [6], when he investigated the application of decision tables to represent the AISC
(American Institute of Steel Construction) standard specifications. He remarked that decision tables,
If-Then-novel programming, and the program documentation technique, could be used to represent
design standard provisions in a precise and unambiguous form. The concept was set to practical
application in the 1969 AISC Specification. It was expressed as a set of interrelated decision tables.
Later, other researchers tried to build on Fenv work such as Lopez et al., who implemented the SICAD
(Standards Interface for Computer Aided Design system [7,8]). The SICAD system was a software
prototype developed to demonstrate the checking of designed components as described in application
program databases for conformance with design standards. The SICAD concepts were in production
use in the AASHTO Bridge Design System [9]. Garrett developed the Standards Processing Expert
(SPEX) system [10] using a standard-independent approach for sizing and proportioning structural
member cross-sections. The system reasoned with the model of a design standard, represented using
SICAD system representation, to generate a set of constraints on a set of essential data items that
describe the attributes of a design to be determined.

In summary, over 400 relevant research studies are focusing on automating building codes
compliances for design review, traversing more than 40 decades that can be identified. Some of the
key recent investigations are summarized in Table 1. Most of these suggested methods are backbox or
gray-box approaches. Some of these studies are generally associated with a specific domain, such as
spatial assessment, structural integrity, safety, energy usage and so on. Some of them offer a certain
degree of customization to modify the parameters of each rule to match specific local regulations.
Once the rule structure has been encoded, it is available for multiple similar projects. In general,
these systems can be classified into three main types of platforms for automated code compliance
checking systems:

- As a software application integrated with a specific design tool, such as a plug-in. It is accessible
to verify current model during the design process;

- As a stand-alone software application detached from the modeling tools. An example of this
platform would be Solibri Model Checker (SMC), which has its rule engine that can work on
multiple models;

- As a web-based application which can be available to verify designs from various sources.

Buildings 2019, 9, 86 4 of 17

Table 1. Summary of recent studies related to automating design rules compliance checking.

Reference Method Description Limitations

[11–13] Domain-specific approaches for automatic review
of building models.

Domain-specific. No support for the open
standard. No methods to deal with

ambiguous information.

[14,15]
Proposed Deontic conceptualization and logic for

representing regulations along with Natural
Language Processing (NLP).

No support for the open standard. No
methods to deal with ambiguous information.

[16] AI approach based on NLP techniques for
Turkish fire egress codes.

Only applicable for fire egress code. Does not
support IFC data schema.

[1,17–24]

Logic rules for expression shared ontologies for
semantic representation of building regulations.
They proposed the integration and validation of

logical rules, RDF and OWL (Web Ontology
Language) concepts, N’Logic rules.

Limited expressiveness to cover various parts
of the building specifications. No methods to

deal with ambiguous information.

[25,26]

Semantic rules for logical expression, Semantic
Web Rule Language (SWRL). Feature extraction
from building energy analysis sim, integration,

validation, mapping data exchanges using SWRL.

No methods to deal with ambiguous
information. Domain-specific

[27–29] Used Dynamo plug-in for Autodesk Revit, Visual
Programming Languages (VPL) for Automation.

No methods to deal with ambiguous
information. Requires programming

knowledge. Platform-specific

[30,31]
Semantic rules for logical expression for

Evacuation regulation checking according to
Korean codes, CORENET.

No generalized approach. No support for
open standard. No methods to deal with

ambiguous information.

[28,32–34]

AI approach based on NLP techniques, semantic
NLP-based information extraction from

construction regulatory documents through
machine learning and text processing.

Back-box approach. No support for open
standard. No methods to deal with

ambiguous information.

As evident from the literature review, most of the proposed systems for automated code compliance
auditing are based on proprietary or hard-coded rule-based representations, which may be successful
in their domain implementations, but they have many drawbacks related to cost, maintenance and
flexibility when used in automating building design review process. This project seeks to develop a
new framework that addresses the shortcomings of the existing approaches by providing a computable
model with explicit syntax and semantics that can be used to represent and reason about building
regulations and provisions based on the neutral data format. Furthermore, the framework offers an
object-based representation of building regulations, defines the minimum amount of data required to
enable optimum Automatic CCC (ACCC) process.

3. Statement of Purpose

Currently, the manual design review process is time-consuming, error prone, and becoming very
costly to sustain. The reasons behind these issues include: (a) increase rate of updates of regulations
and standards with new knowledge and research outcomes; (b) new, state of the art technologies,
equipment and devices; (c) higher amount of data and its multidisciplinary nature; and (d) increase in
hardware/software communications complexity. Moreover, in building design, other issues associated
with the manual CCC are lack of consistency in interpretation of regulatory provisions, the ability
to properly self-check required aspects before bidding, and the long time needed for approvals of
construction permits by building authorities that can have adverse financial impacts on projects.

The cited methods for automated rules compliance auditing in building design are either based
on proprietary frameworks, domain-specific areas, or hard-coded rule-based representations. These
approaches may be useful in their specific implementations. Nonetheless, they have the disadvantages
of being costly to maintain, difficult to change, and the absence of a generalized framework of rules
and regulations modeling that can adapt to various domains, and thus don’t support an open neutral

Buildings 2019, 9, 86 5 of 17

standard. Furthermore, the current methods lack the means to deal with subjective and ambiguous
building regulations. Most of these systems have not endured the test of industry applications.

4. Goals and Objectives

This research proposes a new approach that addresses the shortcomings of the cited methods.
The primary goal is the development of a Generalized Adaptive Framework (GAF) that enables
ACCC. The objectives of this research comprise: (1) the development of the theoretical background of
a framework that is adaptive to the target domain and supports an open standard for transmuting
the written code provisions into computable representations; (2) generating algorithms for the data
exchanges between the components of the framework to execute the virtual review process of a building
design in order to achieve design accuracy and cost-effectiveness.

5. Methodology: The ACCC Model

Figure 1 depicts the components and stages of the framework development process. In particular,
the framework centers on the following levels of development for the ACCC process:Buildings 2019, 9, x FOR PEER REVIEW 6 of 17

Model View
Definition

(MDV)

IFC object
model

National or International BIM
Standard Specifications

+

High-Order Level II

High-Order Level III:
Objective data rules

Regulations and Rules

Encoding:
ifcXML

Feature
Extraction

Manual
Interpretation

Lower-Order Level:
Uncertain data

Encoding:
Formal

Language
Encoding: Fuzzy

Logic
Encoding:
ifcXML

Feature
Extraction

<ifcASCE7-2010>
<ifcProvision id=”3.2.1”>
…

</ifcProvision>
</ifcASCE7-2010>

Taxonomy, Analysis,
Transformation Logic

Algorithm

 BIM Model

<xs:element name="IfcActorRole" type="ifc:IfcActorRole"

 substitutionGroup="ifc:Entity" nillable="true"/>

<xs:complexType name="IfcActorRole">

 <xs:complexContent>

 <xs:extension base="ifc:Entity">

 <xs:attribute name="Role" type="ifc:IfcRoleEnum" use="optional"/>

 <xs:attribute name="UserDefinedRole" type="ifc:IfcLabel" use="optional"/>

 <xs:attribute name="Description" type="ifc:IfcText" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType> Output
Reports

High-Order Level I

Figure 1. The Generalized Adaptive Framework for Automated Code Compliance Checking.

6. Transformation Reasoning Algorithm (TRA)

The TRA introduces the taxonomy for the building regulations knowledge followed by the
conceptualization process. Subsequently, knowledge created will be transformed to a new formalized
form to deduce various facts to carry out automated reasoning. For example, regulation or provision
Xi will be transformed into a concept Yi using TRA principles [3]. TRA taxonomy describes the
following major concepts: Content (Ci); Provisory (Pi); Dependent (Di); Ambiguous (Ai) Exceptions
(Ei); and Alternatives (Alti).

Contents (Ci… Cn) are the sections of the building codes and regulations that cannot be
transformed into object rules. These clauses are usually devoted to definitions, such as the definition
of types of loads, firewall, fire rate, smoke evacuation, high-rise building, etc. For instance, the live
load is defined by the ASCE7-10 standard as: “A load produced by the use and occupancy of the
building or other structure that does not include construction or environmental loads, such as wind
load, snow load, rain load, earthquake load, flood load, or dead load”.

Provisory (Pi… Pn) are clauses of the regulations that can be transformed from the textual format
into a set of object rules. Examples of such clauses are prevalent, and typical structures include rules
with specific values such as those given in tables or equations in the building regulations.

Dependent (Di… Dn) clauses specify that one clause is reliant on one or more other provisions.
This means that some requirements are only appropriate for a specific condition when other clauses
are satisfied. These clauses generally contain provisory clauses (Pi … Pn) and are often challenging to
transform into sets of immediate object rules. These sections quite often may require manual checking
for compliance. For instance, in Florida Building Code (FBC 2017), Section 503.1 regarding building
height and area, states that “The building height and area shall not exceed the limits specified in Table
503 based on the type of construction as determined by Section 602 and the occupancies as

Figure 1. The Generalized Adaptive Framework for Automated Code Compliance Checking.

(A) High-Order Level I: Taxonomy formation, knowledge conceptualization, modification,
integration, and decomposition of the design regulations and rules. This includes data analysis,
partitioning and classification of regulatory text into broad categories. This phase is referred to as
Transformation Reasoning Algorithm (TRA) and delineated in Figures 2 and 3.

Buildings 2019, 9, 86 6 of 17

Buildings 2019, 9, x FOR PEER REVIEW 7 of 17

determined by Section 302 except as modified hereafter. Each portion of a build separated by one or

more firewalls complying with Section 706 shall be a separate building.”.

Ambiguous (Ai … An) clauses are the vague or inexact provisions that would need an expert

judgment to be evaluated. They usually include words such as: approximately, about, relatively, close

to, far from, maybe, etc. An example of such a provision is the footnote of the design lateral soil

pressure for the clause given in ASCE 7-10: “For relatively rigid walls, as when braced by floors, the

design lateral soil load shall be increased for sand and gravel type soils to 60 psf (9.43 kPa) per foot

(meter) of depth. Basement walls extending not more than 8 ft (2.44 m) below grade and supporting

light floor systems are not considered as being relatively rigid walls.” This concept covers all

regulations that are not capable of being computerized and some of them may have to be rewritten

to enable implementation in an automated compliance auditing environment. Interpretation and

rewriting both must adhere to understanding terms from both the legal and construction

perspectives.

Exceptions (Ei … En) are the clauses that a specific provision excludes. For example, in Florida

Building Code 2017-Residential (FBC 2017-R), Section 305.1 (minimum room heights) apply for

habitable spaces with three exceptions covering rooms with a sloped roof, the ceiling height above the

bathroom, and obstructions in basements containing habitable spaces.

Alternatives (Alti … Altn) are the alternative code provisions that may apply to a specific

regulations. For instance, in the FBC 2017-R, the requirements in Section 301.1 (design criteria

application) have the following alternative standards (subject to FBC limitations):

1. AF&PA Wood Frame Construction Manual (WFCM).

2. AISI Standard for Cold-Formed Steel Framing-Prescriptive Method for One- and Two-

Family Dwellings (AISI S230).

3. ICC Standard on the Design and Construction of Log Structures(ICC 400).

that can be used.

These concepts can then be modified, combined or decomposed to enable a computable

depiction of design regulations and standards. Knowledge concepts Xi can be transformed or

integrated with another concept into Yi, and then Yi can be transmuted into Zi to enable efficient

computable representation. Thus, the TRA is defined as the conceptualization of knowledge

representation by mapping design regulations into sets of object rules. Figures 2 and 3 are pictorial

descriptions of the TRA for building design regulations.

Contenets

Conditional

Ambigous

Dependent

Conceptualization Transformation

FOL

Fuzzy Logic

Inegration

Decomposition

Unstructured

Figure 2. Overview of the Transformation Reasoning Algorithm (TRA).
Figure 2. Overview of the Transformation Reasoning Algorithm (TRA).

Buildings 2019, 9, x FOR PEER REVIEW 8 of 17

Provisory (Pi)

Has Exception (Ei)

Dependent (Di)

Provisory (Pi)

Has Alternative (Alti)
Contents (Ci)

Ambigous (Ai)

Figure 3. An example of the conceptualization of building regulation provision.

Building design regulations will be classified using the taxonomy defined earlier and can also

be translated into conceptual representations that closely approximate the meaning of the building

code provision. These figurative structures can then be transformed and manipulated to deduce

various facts and rules to carry out automated compliance validation. The TRA is partially driven

from the first-order logic calculus. Table 1 depicts a summary of the syntax for the TRA.

Table 1. The syntax of the Transformation Reasoning Algorithm (TRA).

Symbol Definition

::= Is defined as

:: Has Exceptions

:: Has Alternatives

 Conjunction

 Disjunction

 Subset of

 Negation

 Universal Quantifier

 Existential Quantifier

 Belongs to

→ Implication

 Biconditional

 Transform into

:: Depends upon

Constant String starting with an uppercase letter

Variable String starting with a lowercase letter

Pred (arg1, arg2, …) Predicate

Fun (arg1, arg2, …) Function

Pred1 (arg1,arg2, …)  Pred2 (arg1,arg2, …)  … Rule

7. Example

The TRA can be exemplified further by considering the Florida Building Code 2017 – Residential

(FBC 2017 - R). Figure 4 depicts a section from the FBC 2017-Residential. The provision shown in

Figure 4 can be transformed into computable representations using the TRA as follows:

Let REGi = “Section R305”; Where i varies from 1 to n number of code provisions. Then we have

REGi  Pi  Yi  Xi (1)

Figure 3. An example of the conceptualization of building regulation provision.

(B) High-Order Level II: Requires the Development Model View Definition (MVD), leading to
Industry Foundation Classes (IFC) schema of the information obtained from phase A. The final data
format is ifcXML representation. IfcXML is defined as the XML equivalent to the EXPRESS based
specification of the IFC data model.

(C) Higher-order level III: The development of feature extraction algorithm for all objective
data (unambiguous data) leading to full translation into the object-based model. This extraction and
transformation will lead to ifcXML data object model (see Figure 1).

(D) Lower-order level: Necessitates feature extraction of uncertain data, then employing an
algorithm for partial translation using fuzzy logic and approximate reasoning methods. Fuzzy logic
provides a means of expressing linguistic rules in such a form that they can be combined into a coherent
reasoning model. Such a model consists of three main parts: (i) fuzzification, (ii) inference engine
(fuzzy rule base), and (iii) defuzzification (the process of transforming the aggregation result into a
crisp output). The resulting data model from this phase is projected to be in ifcXML.

(E) The execution phase, which carries out the communications between the different layers of
development. This encompasses the design of algorithms linking the data from (B), (C), (D) and the
BIM model. These algorithms will be based on Language-integrated Query (LINQ) programming
objects to extract, access and link BIM and regulations data via ifcXML [2]. Also, this phase will
produce various output reports such as 2D, 3D views showing objects that are in noncompliance along
with the detailed information about the regulation.

The theoretical development of the proposed GAF is based on the framework depicted in Figure 1.
The objectives of the framework involve determining the requirements for an interpretation process
where the semantic structure of each rule is translated into object expressions or parametric models

Buildings 2019, 9, 86 7 of 17

using the Transformation Reasoning Algorithm (TRA) that would lead to neutral data format such as the
Industry Foundation Classes (IFC) data schema. Moreover, the framework outlines the development
of algorithms to link these representations and relate to the BIM data being examined.

6. Transformation Reasoning Algorithm (TRA)

The TRA introduces the taxonomy for the building regulations knowledge followed by the
conceptualization process. Subsequently, knowledge created will be transformed to a new formalized
form to deduce various facts to carry out automated reasoning. For example, regulation or provision Xi

will be transformed into a concept Yi using TRA principles [3]. TRA taxonomy describes the following
major concepts: Content (Ci); Provisory (Pi); Dependent (Di); Ambiguous (Ai) Exceptions (Ei); and
Alternatives (Alti).

Contents (Ci . . . Cn) are the sections of the building codes and regulations that cannot be
transformed into object rules. These clauses are usually devoted to definitions, such as the definition of
types of loads, firewall, fire rate, smoke evacuation, high-rise building, etc. For instance, the live load
is defined by the ASCE7-10 standard as: “A load produced by the use and occupancy of the building
or other structure that does not include construction or environmental loads, such as wind load, snow
load, rain load, earthquake load, flood load, or dead load”.

Provisory (Pi . . . Pn) are clauses of the regulations that can be transformed from the textual format
into a set of object rules. Examples of such clauses are prevalent, and typical structures include rules
with specific values such as those given in tables or equations in the building regulations.

Dependent (Di . . . Dn) clauses specify that one clause is reliant on one or more other provisions.
This means that some requirements are only appropriate for a specific condition when other clauses
are satisfied. These clauses generally contain provisory clauses (Pi . . . Pn) and are often challenging to
transform into sets of immediate object rules. These sections quite often may require manual checking
for compliance. For instance, in Florida Building Code (FBC 2017), Section 503.1 regarding building
height and area, states that “The building height and area shall not exceed the limits specified in Table
503 based on the type of construction as determined by Section 602 and the occupancies as determined
by Section 302 except as modified hereafter. Each portion of a build separated by one or more firewalls
complying with Section 706 shall be a separate building.”.

Ambiguous (Ai . . . An) clauses are the vague or inexact provisions that would need an expert
judgment to be evaluated. They usually include words such as: approximately, about, relatively, close
to, far from, maybe, etc. An example of such a provision is the footnote of the design lateral soil pressure
for the clause given in ASCE 7-10: “For relatively rigid walls, as when braced by floors, the design
lateral soil load shall be increased for sand and gravel type soils to 60 psf (9.43 kPa) per foot (meter)
of depth. Basement walls extending not more than 8 ft (2.44 m) below grade and supporting light
floor systems are not considered as being relatively rigid walls.” This concept covers all regulations
that are not capable of being computerized and some of them may have to be rewritten to enable
implementation in an automated compliance auditing environment. Interpretation and rewriting both
must adhere to understanding terms from both the legal and construction perspectives.

Exceptions (Ei . . . En) are the clauses that a specific provision excludes. For example, in Florida
Building Code 2017-Residential (FBC 2017-R), Section 305.1 (minimum room heights) apply for habitable
spaces with three exceptions covering rooms with a sloped roof, the ceiling height above the bathroom,
and obstructions in basements containing habitable spaces.

Alternatives (Alti . . . Altn) are the alternative code provisions that may apply to a specific
regulations. For instance, in the FBC 2017-R, the requirements in Section 301.1 (design criteria
application) have the following alternative standards (subject to FBC limitations):

1. AF&PA Wood Frame Construction Manual (WFCM).
2. AISI Standard for Cold-Formed Steel Framing-Prescriptive Method for One- and Two-Family

Dwellings (AISI S230).
3. ICC Standard on the Design and Construction of Log Structures (ICC 400).

Buildings 2019, 9, 86 8 of 17

that can be used.
These concepts can then be modified, combined or decomposed to enable a computable depiction

of design regulations and standards. Knowledge concepts Xi can be transformed or integrated
with another concept into Yi, and then Yi can be transmuted into Zi to enable efficient computable
representation. Thus, the TRA is defined as the conceptualization of knowledge representation by
mapping design regulations into sets of object rules. Figures 2 and 3 are pictorial descriptions of the
TRA for building design regulations.

Building design regulations will be classified using the taxonomy defined earlier and can also be
translated into conceptual representations that closely approximate the meaning of the building code
provision. These figurative structures can then be transformed and manipulated to deduce various
facts and rules to carry out automated compliance validation. The TRA is partially driven from the
first-order logic calculus. Table 2 depicts a summary of the syntax for the TRA.

Table 2. The syntax of the Transformation Reasoning Algorithm (TRA).

Symbol Definition

::= Is defined as

::∃ Has Exceptions

::♦ Has Alternatives

∧ Conjunction

∨ Disjunction

⊂ Subset of

¬ Negation

∀ Universal Quantifier

∃ Existential Quantifier

∈ Belongs to

→ Implication

↔ Biconditional

⇒ Transform into

::⇒ Depends upon

Constant String starting with an uppercase letter

Variable String starting with a lowercase letter

Pred (arg1, arg2, . . .) Predicate

Fun (arg1, arg2, . . .) Function

Pred1 (arg1, arg2, . . .) ∧ Pred2 (arg1, arg2, . . .) ∨ . . . Rule

7. Example

The TRA can be exemplified further by considering the Florida Building Code 2017 – Residential
(FBC 2017 - R). Figure 4 depicts a section from the FBC 2017-Residential. The provision shown in
Figure 4 can be transformed into computable representations using the TRA as follows:

Buildings 2019, 9, 86 9 of 17

Buildings 2019, 9, x FOR PEER REVIEW 10 of 17

Figure 4. Section R305 of Florida Building Code 2017– Residential.

An example of imprecise building code provisions can be found in section R322.1 of FBC 2017-
Residential (see Figure 5). In this provision, the regulations states: “Buildings and structures
constructed in whole or in part in flood hazard areas, including A or V Zones and Coastal A Zones,
as established in Table R301.2(1), and substantial improvement and restoration of substantial damage
of buildings and structures in flood hazard areas, shall be designed and constructed in accordance
with the provisions contained in this section.” The word substantial is not defined precisely. Using
the TRA, then we have

REG2 = “Section R322”; then we have: REG2 ∈ (C2 ∧ A2)  Y2  X2 (16)

(C2 ∧ A2) designates that this is a content clause with ambiguous statements describing flood
resistance construction (Y2) which is given by X2 that describes the several conditions unfolding Y2.

X2 = {R1, R2, …Rm} (17)

Where, R1, R2, …Rm are the rules defining X2.

Let Z2j = {z21, …, z2q}; z = IfcBuilding; z21 = “FBC 2017 - R322”; z22 = “ASCE 24” (18)

REG2 :: z22 (19)

R1: ∀ z (InFloodZone(z) → RequiredProvision (z, z21)) (20)

R2: ∀ z (InFloodWays(z) → RequiredProvision (z, z22)) (21)

Next step is to conceptualize the term “substantial damage.” The TRA proposes fuzzy logic and
predicates to transmute the concept into a rule expression. A fuzzy set is described by reference [35]

SECTION R305
MINIMUM ROOM AREAS

R305.1 Minimum height.
Habitable space, hallways and portions of basements containing these spaces shall have a ceiling height of

not less than 7 feet (2134 mm). Bathrooms, toilet rooms and laundry rooms shall have a ceiling height of not

less than 6 feet 8 inches (2032 mm).

Exceptions:
1. For rooms with sloped ceilings, the required floor area of the room shall have a ceiling height of not

less than 5 feet (1524 mm) and not less than 50 percent of the required floor area shall have a ceiling
height of not less than 7 feet (2134 mm).

2. The ceiling height above bathroom and toilet room fixtures shall be such that the fixture is capable
of being used for its intended purpose. A shower or tub equipped with a showerhead shall have a
ceiling height of not less than 6 feet 8 inches (2032 mm) above an area of not less than 30 inches
(762 mm) by 30 inches (762 mm) at the showerhead.

3. Beams, girders, ducts or other obstructions in basements containing habitable space shall be
permitted to project to within 6 feet 4 inches (1931 mm) of the finished floor.

R305.1.1 Basements.
Portions of basements that do not contain habitable space or hallways shall have a ceiling height of not less

than 6 feet 8 inches (2032 mm).

Figure 4. Section R305 of Florida Building Code 2017—Residential.

Let REGi = “Section R305”; Where i varies from 1 to n number of code provisions. Then we have

REGi ∈ Pi⇒ Yi⇒ Xi (1)

where the subscript i stands for the counts of the code sections being processed and varies from 1 to n
sections. Pi designates that this is a provisory clause, and describes the minimum room area (Yi) which
is given by Xi that expresses the various Rules describing Yi:

Xi = {R1, R2, . . . Rm} (2)

where, R1, R2, . . . Rm are the rules defining Xi.

Let Z1j = {z11 . . . z1q} (3)

z = IfcSpace; z11 = “R305.1”; (4)

z11 ::∃ SlopedCeiling(z) ∧ SpaceName(z, BATHROOM) ∧ ((AtBeamElevation(z) ∨ AtDuctElevations(z))) (5)

Equation (15) expresses the exceptions stated in the provision of section R305.1 of FBC 2017-R.

z12 ::= ≥ 7 ft ; z13 ::= ≥ 6.667 ft ; z14 ::= ≥ 6.333 ft ; z15 ≥ 5 ft (6)

R1: ∀ z (REGi (z)→ CeilingHeight(z, z12) ∧ HabitableSpace(z) ∧ ¬ SpaceName(z, BATHROOM) ∧ ¬

SpaceName(z, TOILETROOM) ∧ ¬ SpaceName(z, LAUNDRYROOM) ∧ ¬ SlopedCeiling(z)
(7)

R2: ∀ z (REGi (z)→ CeilingHeight(z, z13) ∧ HabitableSpace(z) ∧ (SpaceName(z, BATHROOM) ∨

SpaceName(z, TOILETROOM) ∨ SpaceName(z, LAUNDRYROOM)) ∧ ¬ SlopedCeiling(z)
(8)

Buildings 2019, 9, 86 10 of 17

A = FloorArea(z); z16 ::= ≥ 0.5 ∗ A (9)

R3: ∀ z (REGi (z)→ CeilingHeight(z, z15) ∧ SlopedCeiling(z, z16) (10)

Let Z2j = {z21, . . . , z2q}; z = IfcSpace; z21 = “R305.1.1” (11)

z23 ::= ≥ 6.667 ft ; z24 ::= ≥ 6.333 ft; z25 = IfcBeam; z26 = IfcDuct; (12)

R4: ∀ z (REGi (z)→ CeilingHeight(z, z23) ∧ ¬ (AtBeamElevation(z, z25) ∨

AtDuctElevations(z, z26)) ∧ ¬ HabitableSpace(z)
(13)

R5: ∀ z (REGi (z)→ CeilingHeight(z, z24) ∧ (AtBeamElevation(z, z25) ∨ AtDuctElevations(z, z26) (14)

Xi = {R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5} (15)

Equation (15) expresses section R305 of FBC 2017 - R using TRA.
An example of imprecise building code provisions can be found in section R322.1 of FBC

2017-Residential (see Figure 5). In this provision, the regulations states: “Buildings and structures
constructed in whole or in part in flood hazard areas, including A or V Zones and Coastal A Zones, as
established in Table R301.2(1), and substantial improvement and restoration of substantial damage of
buildings and structures in flood hazard areas, shall be designed and constructed in accordance with
the provisions contained in this section.” The word substantial is not defined precisely. Using the TRA,
then we have

REG2 = “Section R322”; then we have: REG2 ∈ (C2 ∧ A2)⇒ Y2⇒ X2 (16)

Buildings 2019, 9, x FOR PEER REVIEW 11 of 17

as: A is a fuzzy subset of the universe of discourse U, is characterized by a membership function μA:
U [0…1] which associates with each element u of U a number μA (u) in the interval [0,1]. This
definition can be employed to define a fuzzy predicate. The truth-value of any proposition can be
evaluated as the degree of membership of the responding fuzzy relation. Thus, a fuzzy predicate can
be considered as the membership function of a fuzzy relation over individual variables' universe of
discourse. Each fuzzy predicate characterizes a concept in the TRA. For instance, the building damage
stated in section R322 can be represented as a fuzzy variable taking values delineated in Figure 6. In
this figure, the x-axis is the degree of building damage (u), while the y-axis represents the
membership functioning values μA (u). These variables comprise small damage, medium damage,
and substantial damage. These descriptions can be determined from experience or given by local
guidelines. Now, let z23 = a fuzzy variable defined by

μA (u) = 0 80% <= u >=0
 = (1/15) u − 25/15 80% < u >=90%
 = 1 u > 90%

(22)

where, 0 ≤ µA(u) ≤ 1
Next, section R322 of FBC 2017-Residential is transformed into the following rule:

R3: ∀ z (InFloodZone(z) ∧ Damage (z, z23) → RequiredProvision (z, z21)) (23)

and finally,

X2 = {R1 ∧ (R3 ∨ R2)} (24)

Equation (24) signifies section R322 of FBC 2017 - R using the TRA.

Figure 5. Part of Florida Building Code 2017 – Residential 2017 (FBC 2017-R).

Engineering design codes do rather frequently use such vague terms to describe certain
conditions. Table 2 recapitulates some of these terms and their transformation using a fuzzy
predicate. For example, the fuzzy term “very little damage” in Table 2 is represented graphically by
Figure 6a. This figure describes building damages in the range of 0% to 20%. The membership
function has a maximum value of 1.0 for the degree of damages from 0% to 10% and then decreases
linearly to 0 for a degree of damage of 20%.

SECTION R322
FLOOD-RESISTANT CONSTRUCTION

R322.1General.
Buildings and structures constructed in whole or in part in flood hazard areas, including A or V Zones and

Coastal A Zones, as established in Table R301.2(1), and substantial improvement and restoration of substantial

damage of buildings and structures in flood hazard areas, shall be designed and constructed in accordance with

the provisions contained in this section. Buildings and structures that are located in more than one flood hazard

area shall comply with the provisions associated with the most restrictive flood hazard area. Buildings and

structures located in whole or in part in identified floodways shall be designed and constructed in accordance

with ASCE 24.

R322.1.1Alternative provisions.
As an alternative to the requirements in Section R322, ASCE 24 is permitted subject to the limitations of this

code and the limitations therein.

Figure 5. Part of Florida Building Code 2017—Residential 2017 (FBC 2017-R).

(C2 ∧ A2) designates that this is a content clause with ambiguous statements describing flood
resistance construction (Y2) which is given by X2 that describes the several conditions unfolding Y2.

X2 = {R1, R2, . . . Rm} (17)

where, R1, R2, . . . Rm are the rules defining X2.

Let Z2j = {z21, . . . , z2q}; z = IfcBuilding; z21 = “FBC 2017 - R322”; z22 = “ASCE 24” (18)

Buildings 2019, 9, 86 11 of 17

REG2 ::♦ z22 (19)

R1: ∀ z (InFloodZone(z)→ RequiredProvision (z, z21)) (20)

R2: ∀ z (InFloodWays(z)→ RequiredProvision (z, z22)) (21)

Next step is to conceptualize the term “substantial damage.” The TRA proposes fuzzy logic and
predicates to transmute the concept into a rule expression. A fuzzy set is described by reference [35] as:
A is a fuzzy subset of the universe of discourse U, is characterized by a membership function µA: U→
[0 . . . 1] which associates with each element u of U a number µA (u) in the interval [0,1]. This definition
can be employed to define a fuzzy predicate. The truth-value of any proposition can be evaluated as
the degree of membership of the responding fuzzy relation. Thus, a fuzzy predicate can be considered
as the membership function of a fuzzy relation over individual variables’ universe of discourse. Each
fuzzy predicate characterizes a concept in the TRA. For instance, the building damage stated in section
R322 can be represented as a fuzzy variable taking values delineated in Figure 6. In this figure, the
x-axis is the degree of building damage (u), while the y-axis represents the membership functioning
values µA (u). These variables comprise small damage, medium damage, and substantial damage.
These descriptions can be determined from experience or given by local guidelines. Now, let z23 = a
fuzzy variable defined by

uA (u) = 0 80% <= u >= 0
= (1/15) u − 25/15 80% < u >= 90%
= 1 u > 90%

 (22)

where, 0 ≤ µA(u) ≤ 1.
Next, section R322 of FBC 2017-Residential is transformed into the following rule:

R3: ∀ z (InFloodZone(z) ∧ Damage (z, z23)→ RequiredProvision (z, z21)) (23)

and finally,
X2 = {R1 ∧ (R3 ∨ R2)} (24)

Equation (24) signifies section R322 of FBC 2017 - R using the TRA.
Engineering design codes do rather frequently use such vague terms to describe certain conditions.

Table 3 recapitulates some of these terms and their transformation using a fuzzy predicate. For example,
the fuzzy term “very little damage” in Table 3 is represented graphically by Figure 6a. This figure
describes building damages in the range of 0% to 20%. The membership function has a maximum
value of 1.0 for the degree of damages from 0% to 10% and then decreases linearly to 0 for a degree of
damage of 20%.

Buildings 2019, 9, 86 12 of 17Buildings 2019, 9, x FOR PEER REVIEW 12 of 17

(u) -Degree of Damage (%)

M
em

be
rs

hi
p

0 10 20 30 40 50 60 70 80 90 100

 0
.2

 0

.4

0.

6

 0
.8

 1
.0

(a) (b) (c) (d) (e) (f) (g)
μ A

 (u
)

Figure 6. The concept of fuzzy transformation of building damages. (a) Very little damage; (b) Small

damage; (c) Some damage; (d) Moderate damage; (e) Large damage; (f) Substantial damage; (g)
Extreme damage.

Table 2. Common ambiguous terms in building regulations.

No Uncertain building code Terms Conceptualization
1 The building has Some damage Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5c
2 The building has a good amount of damage Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5d
3 Building damage is extreme Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5g
4 A substantial amount or a sizable amount Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5f
5 A fair amount or Moderate amount Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5d
6 Large value Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5e
7 Small amount Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5b
8 Very little or a little bit Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5a

8. Implementation Algorithms

This phase addresses designing and implanting data communicating algorithms for exchanging
and presenting the results of the proposed GAF framework. It utilizes Language-integrated Query
(LINQ) programming objects to extract, access and link BIM and regulations data via ifcXML [2].
Figure 7 delineates a part of the proposed algorithms. The implementing of the IFC standard using
XML (eXtensible Markup Language) technologies is known as ifcXML. It is an extension of the
existing IFC data format. It focuses on the specifics of the ifcXML specification compared to the
standard EXPRESS based IFC object data model. The ifcXML data files are given the extension “.xml”
or alternatively “.ifcxml”. Figure 8 depicts the process of generating an ifcXML data file.

Figure 6. The concept of fuzzy transformation of building damages. (a) Very little damage;
(b) Small damage; (c) Some damage; (d) Moderate damage; (e) Large damage; (f) Substantial damage;
(g) Extreme damage.

Table 3. Common ambiguous terms in building regulations.

No Uncertain Building Code Terms Conceptualization

1 The building has Some damage Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5c

2 The building has a good amount of damage Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5d

3 Building damage is extreme Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5g

4 A substantial amount or a sizable amount Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5f

5 A fair amount or Moderate amount Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5d

6 Large value Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5e

7 Small amount Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5b

8 Very little or a little bit Fuzzy predicate, 0 ≤ µA(u) ≤ 1; Figure 5a

8. Implementation Algorithms

This phase addresses designing and implanting data communicating algorithms for exchanging
and presenting the results of the proposed GAF framework. It utilizes Language-integrated Query
(LINQ) programming objects to extract, access and link BIM and regulations data via ifcXML [2].
Figure 7 delineates a part of the proposed algorithms. The implementing of the IFC standard using
XML (eXtensible Markup Language) technologies is known as ifcXML. It is an extension of the existing
IFC data format. It focuses on the specifics of the ifcXML specification compared to the standard
EXPRESS based IFC object data model. The ifcXML data files are given the extension “.xml” or
alternatively “.ifcxml”. Figure 8 depicts the process of generating an ifcXML data file.

Buildings 2019, 9, 86 13 of 17

Buildings 2019, 9, x FOR PEER REVIEW 13 of 17

Figure 7. A part of the implementation code using C# programing language.

MVD IFC Model ifcXML XSD Model ifcXML data

ISO 10303-28
Configuration

Settings

Figure 8. The general process of creating an ifcXML data file.

To provide evidence for the Proof of Concept (POC), a two-story building is considered in a
typical design review process examining regulations and provisions from FBC-R 2017. The building
is the duplex apartment model that is provided by the BuildingSmart Alliance website and delineated
in Figure 9. Some of the Ifc objects that will be involved in this example are illustrated in Figure 10.

In this construction, the ifcSpace functions as the primary object and is essential to configure the
spatial structure of a building. The spatial structure elements are connected by using the object
relationship ifcRelAggregates. Moreover, it offers additional functions such as serving as the spatial
container for space-related elements. Space is normally linked to a building storey (or in case of
exterior spaces to a site). Space can cover several connected spaces. Thus, a space group provides a
collection of spaces included in a building story. Space may also be fragmented into elements, where
each element defines a partial space. This is defined by the composition type attribute of the
supertype ifcSpatialStructureElement.

1. XElement CodeCheck = XElement.Load("C:\BIM\Books\IfcXMLFile1.xml");
2. int NoOfStoreies = 0;

3. decimal tHeight= 0.0; decimal totalgrossArea=0.0; totalGrossArea =0.0; totalNetArea =0.0;
5. public struct SpaceProperties {

6. public int StoreyID, SpaceID;

7. public decimal NetFloorArea, GrossFloorArea; Height,Volume; }

8. public struct StoreyProperties {

9. public int StoreyID;

10. public decimal netFloorArea, grossFloorArea; Height; }

11. SpaceProperties spaceProp; StoreyProperties levelProp;
12. var bsID = new List<int>(); var spaceID = new List<int>();
13. var sProp = new List<SpaceProperties>(); var storeyProp = new List< StoreyProperties>();
14. foreach (XElement x in CodeCheck.Elements("IfcBuildingStorey") {

15. int NoOfStoreies +=1;

16. tHeight += (decimal) x.Element("Elevation");

17. bsID.Add((int) x.Attribute("id")); }

Figure 7. A part of the implementation code using C# programing language.

Buildings 2019, 9, x FOR PEER REVIEW 13 of 17

Figure 7. A part of the implementation code using C# programing language.

MVD IFC Model ifcXML XSD Model ifcXML data

ISO 10303-28
Configuration

Settings

Figure 8. The general process of creating an ifcXML data file.

To provide evidence for the Proof of Concept (POC), a two-story building is considered in a
typical design review process examining regulations and provisions from FBC-R 2017. The building
is the duplex apartment model that is provided by the BuildingSmart Alliance website and delineated
in Figure 9. Some of the Ifc objects that will be involved in this example are illustrated in Figure 10.

In this construction, the ifcSpace functions as the primary object and is essential to configure the
spatial structure of a building. The spatial structure elements are connected by using the object
relationship ifcRelAggregates. Moreover, it offers additional functions such as serving as the spatial
container for space-related elements. Space is normally linked to a building storey (or in case of
exterior spaces to a site). Space can cover several connected spaces. Thus, a space group provides a
collection of spaces included in a building story. Space may also be fragmented into elements, where
each element defines a partial space. This is defined by the composition type attribute of the
supertype ifcSpatialStructureElement.

1. XElement CodeCheck = XElement.Load("C:\BIM\Books\IfcXMLFile1.xml");
2. int NoOfStoreies = 0;

3. decimal tHeight= 0.0; decimal totalgrossArea=0.0; totalGrossArea =0.0; totalNetArea =0.0;
5. public struct SpaceProperties {

6. public int StoreyID, SpaceID;

7. public decimal NetFloorArea, GrossFloorArea; Height,Volume; }

8. public struct StoreyProperties {

9. public int StoreyID;

10. public decimal netFloorArea, grossFloorArea; Height; }

11. SpaceProperties spaceProp; StoreyProperties levelProp;
12. var bsID = new List<int>(); var spaceID = new List<int>();
13. var sProp = new List<SpaceProperties>(); var storeyProp = new List< StoreyProperties>();
14. foreach (XElement x in CodeCheck.Elements("IfcBuildingStorey") {

15. int NoOfStoreies +=1;

16. tHeight += (decimal) x.Element("Elevation");

17. bsID.Add((int) x.Attribute("id")); }

Figure 8. The general process of creating an ifcXML data file.

To provide evidence for the Proof of Concept (POC), a two-story building is considered in a typical
design review process examining regulations and provisions from FBC-R 2017. The building is the
duplex apartment model that is provided by the BuildingSmart Alliance website and delineated in
Figure 9. Some of the Ifc objects that will be involved in this example are illustrated in Figure 10.Buildings 2019, 9, x FOR PEER REVIEW 14 of 17

Figure 9. Building model used in the example (buildingSMART International).

Figure 10. Main Ifc objects referenced in the example.

Figure 7 displays a part of the C# code of the proposed GAF. Line 1 in Figure 6 reads the data
from the ifcXML file of the BIM model of the building shown in Figure 9. Lines 8 to 17 determine the
floor and areas and the height of each space in the building. Line 19 in Figure 11 reads the code
provisions from the ifcXML data file of the FBC 2017. In figure 11, line 22 to line 31 deals with
examining the compliance of the areas of the spaces as well as the net and gross floor areas according
to the FBC-2017.

18. string VerifigyArea, VerifyHeight, VerifyNoOfStories;

19. XElement bCode = XElement.Load("C:\BIM\Books\IfcXMLbCode.xml");

20. from node in bCode.Elements("IfcSectionNumber")

21. where (string) node.Attribute("SectionNumber") == "503"

22. select node;

23. String sectionName = (string) node.Element("SectionTitle")

24. String Clause = (string) node.Element("Clause")

25. foreach (var story in storeyProp) {

26. int id = (int) storey.StoreyID;

27. decimial gArea = (decimal) story.StoreyID;

28. decimial nArea = (decimal) stoey.StoreyID;

29. if CheckArea (id, gA, ConstType, OccuType) {

Figure 9. Building model used in the example (buildingSMART International).

Buildings 2019, 9, 86 14 of 17

Buildings 2019, 9, x FOR PEER REVIEW 14 of 17

Figure 9. Building model used in the example (buildingSMART International).

Figure 10. Main Ifc objects referenced in the example.

Figure 7 displays a part of the C# code of the proposed GAF. Line 1 in Figure 6 reads the data
from the ifcXML file of the BIM model of the building shown in Figure 9. Lines 8 to 17 determine the
floor and areas and the height of each space in the building. Line 19 in Figure 11 reads the code
provisions from the ifcXML data file of the FBC 2017. In figure 11, line 22 to line 31 deals with
examining the compliance of the areas of the spaces as well as the net and gross floor areas according
to the FBC-2017.

18. string VerifigyArea, VerifyHeight, VerifyNoOfStories;

19. XElement bCode = XElement.Load("C:\BIM\Books\IfcXMLbCode.xml");

20. from node in bCode.Elements("IfcSectionNumber")

21. where (string) node.Attribute("SectionNumber") == "503"

22. select node;

23. String sectionName = (string) node.Element("SectionTitle")

24. String Clause = (string) node.Element("Clause")

25. foreach (var story in storeyProp) {

26. int id = (int) storey.StoreyID;

27. decimial gArea = (decimal) story.StoreyID;

28. decimial nArea = (decimal) stoey.StoreyID;

29. if CheckArea (id, gA, ConstType, OccuType) {

Figure 10. Main Ifc objects referenced in the example.

In this construction, the ifcSpace functions as the primary object and is essential to configure
the spatial structure of a building. The spatial structure elements are connected by using the object
relationship ifcRelAggregates. Moreover, it offers additional functions such as serving as the spatial
container for space-related elements. Space is normally linked to a building storey (or in case of
exterior spaces to a site). Space can cover several connected spaces. Thus, a space group provides
a collection of spaces included in a building story. Space may also be fragmented into elements,
where each element defines a partial space. This is defined by the composition type attribute of the
supertype ifcSpatialStructureElement.

Figure 7 displays a part of the C# code of the proposed GAF. Line 1 in Figure 6 reads the data from
the ifcXML file of the BIM model of the building shown in Figure 9. Lines 8 to 17 determine the floor
and areas and the height of each space in the building. Line 19 in Figure 11 reads the code provisions
from the ifcXML data file of the FBC 2017. In Figure 11, line 22 to line 31 deals with examining the
compliance of the areas of the spaces as well as the net and gross floor areas according to the FBC-2017.

Buildings 2019, 9, x FOR PEER REVIEW 14 of 17

Figure 9. Building model used in the example (buildingSMART International).

Figure 10. Main Ifc objects referenced in the example.

Figure 7 displays a part of the C# code of the proposed GAF. Line 1 in Figure 6 reads the data
from the ifcXML file of the BIM model of the building shown in Figure 9. Lines 8 to 17 determine the
floor and areas and the height of each space in the building. Line 19 in Figure 11 reads the code
provisions from the ifcXML data file of the FBC 2017. In figure 11, line 22 to line 31 deals with
examining the compliance of the areas of the spaces as well as the net and gross floor areas according
to the FBC-2017.

18. string VerifigyArea, VerifyHeight, VerifyNoOfStories;

19. XElement bCode = XElement.Load("C:\BIM\Books\IfcXMLbCode.xml");

20. from node in bCode.Elements("IfcSectionNumber")

21. where (string) node.Attribute("SectionNumber") == "503"

22. select node;

23. String sectionName = (string) node.Element("SectionTitle")

24. String Clause = (string) node.Element("Clause")

25. foreach (var story in storeyProp) {

26. int id = (int) storey.StoreyID;

27. decimial gArea = (decimal) story.StoreyID;

28. decimial nArea = (decimal) stoey.StoreyID;

29. if CheckArea (id, gA, ConstType, OccuType) {

Figure 11. A part of the implementation algorithm.

Figure 12a delineates the results of checking the areas of the spaces in the example building shown
in Figure 9 using the GAF. Figure 12b illustrates the floor plan view of level 1 of the duplex apartment

Buildings 2019, 9, 86 15 of 17

building (see Figure 9) being used for this example of automated compliance verification of Florida’s
residential building regulations.

Buildings 2019, 9, x FOR PEER REVIEW 15 of 17

Figure 11. A part of the implementation algorithm.

Figure 12a delineates the results of checking the areas of the spaces in the example building
shown in Figure 9 using the GAF. Figure 12b illustrates the floor plan view of level 1 of the duplex
apartment building (see Figure 9) being used for this example of automated compliance verification
of Florida’s residential building regulations.

(a) (b)

Figure 12. Results example of checking compliance with the space areas regulations of FBC 2017-R.
(a)ACCC results; (b)Floor plan of level 1 of the case study model.

9. Conclusions

The computerization of the code compliance checking process presents a challenge for the AEC
industry. This is greatly attributed to the fact that many sections of the building rules take the form
of written texts. The present approaches for computerization or semi- computerization of rules
compliance verification used in a design review are either based on proprietary, domain-specific or
hard-coded rule expressions, which can be successful in their specific applications. Nonetheless, most
of these methods are expensive to maintain, inflexible to change, the absence of a comprehensive
framework of regulations modeling that can adapt to various domains, and thus they lack IFC
standard support.

This paper offers a generalized adaptive framework (GAF) for automating or semi-automating
the code compliance verification process which is based on an object-driven representation of
building rules that can deal with certain and uncertain data and transform code and standards

Level Number Name Area
Compliance

Check
Level 1 A101 Foyer 193.064 SF PASS

Level 1 A102 Living Room 324.442 SF PASS

 Level 1 A103 Kitchen 149.591 SF PASS

Level 1 A104 Bathroom 1 43.031 SF PASS

Level 1 A105 Stair 52.982 SF N/A

Level 2 A201 Hallway 83.958 SF PASS

Level 2 A202 Bedroom 1 281.146 SF PASS

Level 2 A203 Bedroom 2 281.778 SF PASS

Level 2 A204 Bathroom 2 58.295 SF PASS

Level 2 A205 Utility 18.880 SF N/A

Level 1 B101 Foyer 193.064 SF PASS

Level 1 B102 Living Room 324.442 SF PASS

Level 1 B103 Kitchen 149.591 SF PASS

Level 1 B104 Bathroom 1 43.031 SF PASS

Level 1 B105 Room 52.982 SF PASS

Level 2 B201 Hallway 83.958 SF PASS

Level 2 B202 Bedroom 1 281.146 SF PASS

Level 2 B203 Bedroom 2 281.778 SF PASS

Level 2 B204 Bathroom 2 58.572 SF PASS

Level 2 B205 Utility 18.604 SF N/A

Roof R301 Roof 1568.535 SF N/A

Figure 12. Results example of checking compliance with the space areas regulations of FBC 2017-R.
(a) ACCC results; (b) Floor plan of level 1 of the case study model.

9. Conclusions

The computerization of the code compliance checking process presents a challenge for the AEC
industry. This is greatly attributed to the fact that many sections of the building rules take the form of
written texts. The present approaches for computerization or semi- computerization of rules compliance
verification used in a design review are either based on proprietary, domain-specific or hard-coded
rule expressions, which can be successful in their specific applications. Nonetheless, most of these
methods are expensive to maintain, inflexible to change, the absence of a comprehensive framework of
regulations modeling that can adapt to various domains, and thus they lack IFC standard support.

This paper offers a generalized adaptive framework (GAF) for automating or semi-automating
the code compliance verification process which is based on an object-driven representation of building
rules that can deal with certain and uncertain data and transform code and standards regulations into
computable expressions using the Transformation Reasoning Algorithm (TRA). The framework is
flexible and can adapt to various engineering design disciplines.

Buildings 2019, 9, 86 16 of 17

The paper introduces and delineates the various constituents of the proposed GAF and their
relationships. The TRA introduces the taxonomy for the building regulations knowledge along
with the conceptualization and transformation processes. Subsequently, knowledge created is a new
formalized object representation that models objective and ambiguous building regulations and can
deduce various facts to carry out automated reasoning. This approach minimizes the shortcomings of
the cited methods by transforming objective and vague data of building code into a concise formal
representation that can be mapped into IFC data schema.

The GAF provides communicating algorithms for exchanging data between the main components
of the framework. It utilizes Language-integrated Query (LINQ) programming objects to extract,
access and link BIM and regulations data via ifcXML. The application of the proposed GAF has been
demonstrated using an example of a two-story building that is considered in a typical design review
process, examining regulations and provisions from FBC-R 2017. Thus, it is expected that the research
results will have broader impacts that include the enormous benefits to the AEC industry due to the
consistency of the interpretation of regulatory provisions, the ability to self-check required aspects
before bidding, the time and resources saved during design review, the optimum design, the quicker
turnaround in feedback, and faster approvals for construction permits by building authorities.

Funding: This research was supported by the College of Design, Construction, and Planning (DCP) at the
University of Florida. The author would like to extend his sincere gratitude to DCP for providing the seed fund
for this research project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eastman, C.M.; Lee, J.; Jeong, Y.; Lee, J. Review Automatic rule-based checking of building designs. J. Autom.
Constr. 2009, 18, 1011–1033. [CrossRef]

2. Nawari, N. Automating Codes Conformance. J. Arch. Eng. 2012, 18, 315–323. [CrossRef]
3. Nawari, N.O. A Generalized Adaptive Framework for Automating Design Review Process: Technical

Principles. In Proceedings of the 35th CIB W78 Conference, Chicago, IL, USA, 1–3 October 2018; pp. 405–414.
4. Nawari, N.O.; Kuenstle, M. Building Information Modeling: Framework for Structural Design; CRC Press: Boca

Raton, FL, USA, 2015.
5. Nawari, N.O.; Adel, A. Practical Approaches for Computable Building Codes. In Proceedings of the 32nd

CIB W78 Conference, Eindhoven, The Netherlands, 27–29 October 2015; pp. 569–576.
6. Fenves, S.J. Tabular decision logic for structural design. J. Struct. Eng. 1966, 92, 473–490.
7. Lopez, L.A.; Wright, R.N. Mapping Principles for the Standards Interface for Computer—Aided Design; National

Bureau of Standards: Gaithersburg, MD, USA, 1985; Volume NBSIR 85-3115.
8. Lopez, L.A.; Elam, S.; Reed, K. Software concept for checking engineering designs for conformance with

codes and standards. Eng. Comput. 1989, 5, 63–78. [CrossRef]
9. AASHTO. AASHTO Guide for Design of Pavement Structures, 4th ed.; American Association of State Highway

and Transportation Officials: Washington, DC, USA, 1998.
10. Garrett, J.H.; Fenves, S.J. A knowledge-based standards processor for structural component design. Eng.

Comput. 1987, 2, 219–223. [CrossRef]
11. Lee, J.K. Building Environment Rule and Analysis (BERA) Language And Its Application for Evaluating

Building Circulation and Spatial Program. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA,
2011.

12. Lee, J.K.; Eastman, C.M.; Lee, Y.C. Implementation of a BIM Domain-specific Language for the Building
Environment Rule and Analysis. J. Intell. Robot Syst. 2015, 79, 507–522. [CrossRef]

13. Sherif, A.; Jinkook, L.; Chuck, E. Automated Cost Analysis of Concept Design BIM Models. In Proceedings
of the 14th International conference on Computer Aided Architectural Design, Liege, Belgium, 4–8 July 2011;
pp. 403–418.

14. Salama, D.M.; El-Gohary, N.M. Semantic modeling for automated compliance checking. J. Comput. Civ. Eng.
2011, 641–648. [CrossRef]

http://dx.doi.org/10.1016/j.autcon.2009.07.002
http://dx.doi.org/10.1061/(ASCE)AE.1943-5568.0000049
http://dx.doi.org/10.1007/BF01199070
http://dx.doi.org/10.1007/BF01276414
http://dx.doi.org/10.1007/s10846-014-0117-7
http://dx.doi.org/10.1061/41182(416)79

Buildings 2019, 9, 86 17 of 17

15. Zhang, J.; El-Gohary, N. Automated Information Extraction from Construction-Related Regulatory Documents
for Automated Compliance Checking. In Proceedings of the 28th International Conference of CIB W78,
Sophia Antipolis, France, 25–28 October 2011.

16. Ozgun, B.; Kilimci, E.S.Y.; Çağdaş, G. Automated Code Compliance Checking Model for Fire Egress Codes.
Digit. Appl. Constr. 2012, 2, 1–10.

17. Nguyen, T.H.; Kim, J.L. Building code compliance checking using BIM technology. In Proceedings of the
2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011.

18. Pauwels, P.; Van Deursen, D.; Verstraeten, R.; De Roo, J.; De Meyer, R.; Van de Walle, R.; Van Campenhout, J.
A semantic rule checking environment for building performance checking. Autom. Constr. 2011, 20, 506–518.
[CrossRef]

19. Solihin, W.; Eastman, C.; Lee, Y.C. Toward robust and quantifiable automated IFC quality validation. Adv. Eng.
Inform. 2015, 29, 739–756. [CrossRef]

20. Venugopal, M.; Eastman, C.M.; Teizer, J. An ontology-based analysis of the industry foundation class schema
for building information model exchanges. Adv. Eng. Inform. 2015, 29, 940–957. [CrossRef]

21. Malsane, S.; Matthews, J.; Lockley, S.; Love, P.E.; Greenwood, D. Development of an object model for
automated compliance checking. Autom. Constr. 2015, 49, 51–58. [CrossRef]

22. Niknam, M.; Karshenas, S. Integrating distributed sources of information for construction cost estimating
using Semantic Web and Semantic Web Service technologies. Autom. Constr. 2015, 57, 222–238. [CrossRef]

23. Hjelseth, E.; Nisbet, N. Exploring semantic based model checking. In Proceedings of the 2010 27th CIB W78
International Conference, Cairo, Egypt, 16–19 November 2010.

24. İlala, S.M.; Günaydın, H.M. Computer representation of building codes for automated compliance checking.
Autom. Constr. 2017, 82, 43–58. [CrossRef]

25. Cheng, J.C.P.; Das, M. A BIM-based web service framework for green building energy simulation and code
checking. J. Inf. Technol. Constr. 2014, 19, 150–168.

26. Kim, H.; Shen, Z.; Kim, I.; Kim, K.; Stumpf, A.; Yu, J. BIM IFC information mapping to building energy
analysis (BEA) model with manually extended material information. Autom. Constr. 2016, 68, 183–193.
[CrossRef]

27. Preidel, C.; Borrmann, A. Towards code compliance checking on the basis of a visual programming language.
J. Inf. Technol. Constr. 2016, 21, 402–421.

28. Patlakas, P.; Livingstone, A.; Hairstans, R.; Neighbour, G. Automatic code compliance with multi-dimensional
data fitting in a BIM context. Adv. Eng. Inform. 2018, 38, 216–231. [CrossRef]

29. Nour, M. Using Bounding Volumes for BIM based electronic code checking for Buildings in Egypt. Am. J.
Eng. Res. 2016, 5, 91–98.

30. Lee, H.; Lee, J.-K.; Park, S.; Kim, I. Translating building legislation into a computer-executable format for
evaluating building permit requirements. Autom. Constr. 2016, 71, 49–61. [CrossRef]

31. Zhang, J.; El-Gohary, N. Semantic NLP-Based Information Extraction from Construction Regulatory
Documents for Automated Compliance Checking. J. Comput. Civ. Eng. 2013, 30, 1943–5487. [CrossRef]

32. Zhang, J.; El-Gohary, N. Automated information transformation for automated regulatory compliance
checking in construction. J. Comput. Civ. Eng. 2015, 29, b4015001. [CrossRef]

33. Zhang, J.; El-Gohary, N.M. Extending building information models semi automatically using semantic
natural language processing techniques. J. Comput. Civ. Eng. 2016, 30, C4016004. [CrossRef]

34. Lu, Q.; Lee, S.; Chen, L. Image-driven fuzzy-based system to construct as-is IFC BIM objects. Autom. Constr.
2018, 92, 68–87. [CrossRef]

35. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.autcon.2010.11.017
http://dx.doi.org/10.1016/j.aei.2015.07.006
http://dx.doi.org/10.1016/j.aei.2015.09.006
http://dx.doi.org/10.1016/j.autcon.2014.10.004
http://dx.doi.org/10.1016/j.autcon.2015.04.003
http://dx.doi.org/10.1016/j.autcon.2017.06.018
http://dx.doi.org/10.1016/j.autcon.2016.04.002
http://dx.doi.org/10.1016/j.aei.2018.07.002
http://dx.doi.org/10.1016/j.autcon.2016.04.008
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000346
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000427
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000536
http://dx.doi.org/10.1016/j.autcon.2018.03.034
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Brief Review of Recent Researches
	Statement of Purpose
	Goals and Objectives
	Methodology: The ACCC Model
	Transformation Reasoning Algorithm (TRA)
	Example
	Implementation Algorithms
	Conclusions
	References

