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Abstract: This paper presents possibilities for anti-seismic improvement of traditional timber
carpentry joints. It is known that the structural response of historical roof frameworks is highly
dependent on the behavior of their joints, particularly, their capacity for rotation and energy
dissipation. Any strengthening, or retrofitting, approach must take into account conservation
requirements, usually expressed as conditions involving minimal intervention. Several retrofitting
methods were tested on replicas of historical halved joints within various national and international
research projects. The joints were produced with traditional hand tools, and made using aged
material taken from a demolished building. The paper presents two approaches, each utilizing
different retrofitting technologies that avoid completely dismantling the joint and consequently
conserve frame integrity. The energy dissipation capacity is increased by inserting mild steel nails
around a wooden pin, and connecting the two parts of the halved joint. In the second case, two thin
plates made of a material with a high friction coefficient are inserted into the joint and fastened to the
wooden elements. This is done by removing the wooden connecting pin and slightly opening a slot
for the plates between the halved parts. In addition, the paper presents an application for disc brake
plates, as well as thin plates made of oak.

Keywords: carpentry halved joint; energy dissipation; seismic retrofitting

1. Introduction

The behavior of carpentry joints in historical timber structures plays an important role in their
overall structural response to applied loads, especially during seismic events. This has been the
subject of several research projects, mostly in countries with high seismic activity, such as in the
Mediterranean region. In these countries, roof framework joints employ a typical birdsmouth
connection for joined timber elements, as shown in Figure 1. For example, Parisi and Piazza [1]
tested the rotational capability of such carpentry joints retrofitted with various metal connectors. They
have also modeled friction joints in traditional timber structures [2]. Parisi and Cordié [3] further
studied the elastic rotational stiffness and post-elastic behavior of double-step timber joints, and the
reversed birdsmouth configuration.
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Branco et al. [4] performed a series of tests on joints subjected to static and repeated loading to
assess the impact of various strengthening methods. Palma et al. [5] published an extensive review of
references, as well as the results of their own experimental research in rotational behavior of rafter and
tie beam connections, including a study on the efficiency of some typical strengthening techniques.
Similarly, Poletti et al. [6] studied traditional timber joints under cyclic loading, and possibilities of
their repair or strengthening. All these works, for the most part, present techniques that are barely
applicable to the structural restoration of historic timber structures.

Low slope roofs are typical in the Mediterranean region, in contrast to Central and Northern
Europe, where steeper roofs are common and the roof framework structures use different details,
especially halved dovetail joints with a higher rotational stiffness. Real joints in historical structures
have many imperfections, for reasons ranging from low-quality carpentry work to material defects
and degradation. These imperfections substantially influence the stiffness of roof trusses [7], decrease
the safety of historical structures, and worsen the response of the roof frames in the event of seismic
loading. A study of ways to improve the energy dissipation of carpentry joints was, therefore, carried
out within the EC 7th Framework Programme NIKER project, which aimed to establish new integrated
knowledge-based approaches for the protection of cultural heritage from earthquake-induced risks.

The performance of roof framework systems under seismic or generally dynamic loading has
scarcely been studied even though roofs are sensitive to horizontal loads, especially those perpendicular
to the plane of the trussed frame [8], despite the importance of such research having been underlined [9].
The stable roof framework as a three-dimensional box, and its potential role in a seismic event, has
been analyzed by Giurani and Marini [10] but, again, only for low slope roofs. Steep roofs have not
usually been considered for seismic loadings. However, they are typically constructed in a much stiffer
way than low slope roofs, and do influence the building’s performance. Their role in this respect has
not been appropriately studied, and this is also not an aim of this paper.

With regard to historical structures, conservation requirements constrain retrofitting approaches
to minimize interventions. Intervention should not significantly alter the appearance and behavior
of a structure, and solutions that do not involve the complete disassembly of existing structures are
preferred. This is important in the case of structural restoration works.

During an experimental campaign, a number of retrofitting processes were adopted and tested on
replicas of historical halved joints that were made from old wood taken from a demolished building
and produced using traditional carpenters’ tools and techniques. Presented, here, are two approaches
that each utilized a different retrofitting technique.

2. Experiments

2.1. Test Specimens

The experiments were carried out on replicas of traditional halved dovetail joints made from
authentic timber (approximately 300 years old) taken from a demolished ancient building. The wooden
elements had not been attacked by wood-destroying fungi or by wood-boring insects. Only drying
fissures and cracks were present.
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2.1.1. Material Characteristics

After the experiments on the joints were complete, the material characteristics of the spruce
joint were determined by testing the standard coupons taken from the joint assemblies. The material
properties evaluated were wood density and strength properties. Material information, mainly
the coefficients of friction of the plates used for increasing energy dissipation, was taken from the
literature [11]. The mechanical quantities of the brake plates were taken from the manufacturer [12].
The mechanical properties of the materials are summarized in Table 1.

Table 1. Material characteristics.

Mechanical Property Spruce Oak Brake Plate

Density—ρ (kg/m3) 340–450 700–750 1950
Compression parallel to grain—R (MPa) 15.63 – –

Compression perpendicular to grain—R (MPa) 2.09 – –
Modulus of elasticity—E (MPa) – 12,000 –

Strength in compression—f (MPa) – – 180
Coefficient of friction—µ – 0.41 * 0.4

* Friction coefficient of the oak parallel to the grain 0.48, perpendicular to the grain 0.34.

2.1.2. Geometrical Characteristics

The geometry of the joint assemblies varied, as did the extent of the wood’s deterioration. An
angle of 45◦ between the joined members was adopted. This is close to the angles most widely used
in Central European roofing frames. The geometry of the specimens, the locations of the acting
forces, and the potentiometer are depicted in Figure 2. The specimens were produced with intentional
imperfections, as far as the tightness of the coupled elements was concerned, to model some degree of
joint degradation. For this research, only two types of imperfection were considered—perfect joints
with a tight connection between joined short struts in the overlap, and imperfect joints exhibiting
a slight loss of contact in the abutment of the joined elements. The imperfections were produced
during high-quality carpentry work and, therefore, their range was limited to local defects of 3 mm
maximum. The geometric imperfections exhibit rather high slippage during the change in direction of
the loaded arm rotation, as shown in Figure 8 and Figure 9, compared to a perfectly made joint, e.g., as
shown in Figure 13. The increase in overall deformation increment of a roof truss due to joint slippage
decreases with an increase of slippage value. This dependence is not linear, and the greatest difference
in the overall deformation has been analyzed only around the change from perfect to imperfect joint
geometry [7].
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2.2. Joint Retrofitting

Several retrofitting techniques for increased energy dissipation were suggested and tested, as
described above. However, for historic roof frameworks, only those which were acceptable from an
aesthetic point of view were relevant for further development, especially in cases where the historic
structures were exposed and accessible to visitors. Furthermore, the requirements of minimum
intervention, re-treatability, and easy implementation were decisive for the selection of the tested
techniques. Only the two most-suitable approaches for practical applications will be presented,
as follows.

2.2.1. Metal Nails around a Wooden Pin

In the first case, energy dissipation capacity was increased by inserting mild steel rods (nails)
around the wooden pin that connects the two parts of the halved joint, as shown in Figure 3a,b.
No dismantling was necessary for this retrofitting intervention. The 6 mm diameter (D) nails were
applied into pre-bored holes, which allowed for minimum spacing. When using six nails, the standard
recommendations (10 × D along grains, 3 × D across grains) were observed. When using eight nails,
due to the grain inclination, the distance along the grain was only 6 × D.
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2.2.2. Friction Joints

In the second retrofitting approach, the connecting wooden pin was removed from the joint, the
halved parts were slightly separated, and two thin plates were then inserted into the opened slot and
fastened to the wooden elements, as shown in Figures 4 and 5a,b. The plates were made of material
with a high friction coefficient. Car disc brake plates and thin oak plates were used. The joint was
then fixed and tightened with a steel bolt, which was pre-stressed to a certain degree. The screw bolt
enables the joint’s pre-stress level to change, which influences not only the stiffness of the joint, but
also the frictional force between the plates. Several bolt pre-stressing moment values were chosen
and tested (from 115 up to 240 Nm), which generated a stress level on the friction surfaces of around
0.43–0.90 MPa.
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2.3. Test Arrangement

On the basis of positive experience gained from previous tests performed at the Institute of
Theoretical and Applied Mechanics of the Czech Academy of Sciences (ITAM) [7,13], a similar test
set-up was constructed, as shown in Figure 6. This set-up enabled cyclic loading and pseudo-dynamic
behavior of the halved dovetail joints to be simulated separately from the roof frame. The joint
samples for testing were placed into a special testing rig that enabled pseudo-dynamic cyclic loading.
It also ensured static stability of the samples and their responses in only the direction of loading.
The cyclic load was applied using a servohydraulic MTS Systems Corporation actuator (cylinder)
(MTS headquarters, 14000 Technology Drive, Eden Prairie, MN, USA, 55344) with a capacity of 25 kN,
attached to a steel frame. The rotational responses of the joints were measured indirectly by means
of a MEGATRON Elektronik GmbH & Co. KG SPR 18-S-100 (5 kΩ) potentiometer (MEGATRON
Elektronik GmbH & Co. KG
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Figure 6. The test set-up.

The specimens were cyclically loaded, and the load deformation curves were registered. The load
was applied to the joint using the actuator attached to the oblique beam. The intensity of the actuator’s
force was controlled by its prescribed displacement. The amplitude of the controlled displacement
increased for each cycle, with a constant step equal to 4 mm. The frequency of each cycle was 0.1 Hz.
During the tests, the forces needed to achieve the desired displacement of the cylinder and the change
in the length of the potentiometer were recorded, as shown in Figure 7.
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3. Results

Damping property is a fundamental factor influencing a structure’s seismic resistance. Effective
dissipation of energy by a structural element, e.g., a joint, can significantly decrease a structure’s
vibration level and lessen internal forces. The dissipative properties of the investigated halved dovetail
joints can be described by the area of hysteresis loops, as shown in Figures 8a,b,9–11. Here, the
hysteresis loops area representation of how the actuator’s moment of force about the axis of pin M is
dependent on the rotation of joint ∆α for one loading cycle.

Both of the retrofitting methods tested (see Discussion) were effective from an energy consumption
point of view. The results showing the changes in hysteresis loops after joint retrofitting are presented
in Figures 8a,b,9–11. Figure 8b clearly shows an apparent increase in the energy needed to achieve the
required rotation (displacement), in contrast to the unreinforced joint, represented in Figure 8a. In this
case, the cyclic loading continued after the maximum testing load was reached, following the stability
of the response loop. A negligible change in the hysteresis loop was observed.

Similar positive effects were attained in tests with the inserted friction plates. A typical example
of the behavior of a joint with two brake plates inserted in the gap between overlapping parts of the
joined elements is shown in Figure 10. As shown in Figure 11, an almost identical dissipation energy
was achieved with the two oak plates (Figure 11), even though the pre-stressing forces applied to the
joining bolts were not identical.Buildings 2018, 8, x FOR PEER REVIEW  8 of 12 
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Figure 11. Hysteresis loops of a joint retrofitted with oak plates.

In the friction joints, energy dissipation depended on the forces pressing the two surfaces together.
The resulting increase in energy dissipation, during cycling, of the tested joint retrofitting variations
is shown in Figure 12. Comparing the results of the effect of two oak plates in relation to the brake
plates—at an identical pre-stressing force—showed an obviously higher efficiency for the brake plates.
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4. Discussion

Rotational stiffness and slipping of joints were studied in detail by Drdácký et al. [7] for both a
typical baroque and gothic roof framework on which halved dovetail joints were widely used. The
results showed that tight, well-made joints with a reduced chance of slipping decreased the overall
roof frame deformation under horizontal wind or earthquake loads, while also providing reasonably
high rotational stiffness and capacity. Highly skilled carpenters were capable of producing flawless
joints which were free of gaps between the individual elements.

Perfectly made joints may exhibit a sufficiently high rotational capacity, as shown in Figure 13,
and as also shown by Wald et al. [13], and can be modeled in a rather simple way using a component
modeling approach, e.g., after Vergne [14], which represents a good tool for the description joint
behavior under repeated loading, as shown in Figure 14. In such a model, the joint was divided into
components, which were represented by a force–deformation diagram. It is supposed that the dowel
resists the shear force and clearly fixes the position of the connection’s center of rotation. The results
presented in Figure 14 show that more testing of the materials’ characteristics are required, especially
the behavior of wood under concentrated compression, to be able to describe the contact in the
rafter dovetail indent. The tested composed joints are more complex and, therefore, an experimental
investigation was adopted without any attempt to create computational models.
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Inserting nails around a wooden pin is a modification of the modern design of seismically resistant
frame corners, Ceccotti A. [15], Kasal et al. [16]. The positive effect of this design has been published
(for an example, Stehn and Börjes [17]). Our experiments have also demonstrated the effectiveness of
this design, as shown in Figure 15a,b. The nails additionally strengthen and integrate the joint, and
may replace a degraded wooden pin.

As the timber structure moves, the connected timber struts rotate mutually in the joint, and tend
to deform the inserted steel rods plastically, which absorbs the energy, as shown in Figure 15b,c.Buildings 2018, 8, x FOR PEER REVIEW  11 of 12 
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Figure 15. X-ray presentation of the deformed mild steel nails after the cycling tests of a joint: the (a)
X-ray recording, (b) perpendicular view of the joint plane, and (c) cross-sectional view of the joint plane.

A rather complex design, supported by appropriate numerical modeling, is required for an
optimal interaction between nails and wood. The effect can be improved by inserting and fixing
fiber-reinforced plastic (FRP) sheets on the contact surfaces of the halved joint counterparts. This
requires partial dismantling of the joint, but prevents the origination and propagation of fissures
or cracks.

Similarly, the approach based on improvement of friction between the contact surfaces of the
halved joint requires moderate intervention, i.e., temporary removal of the wooden joining pin, and
insertion and fixation of thin plates in the slot between the two joint components. The results are
presented for an unreinforced joint, as shown in Figure 8; for brake plates, as shown in Figure 10; and
for oak plates, as shown in Figure 11.

5. Conclusions

This experimental investigation focused on determining the effectiveness of several joint
modifications with respect to their dissipative properties. The best results, and the highest level
of effectiveness, were obtained for joints combined with plates having a high friction coefficient and
a steel bolt. Tightening the nut on the bolt that is replacing the pin influences the pre-stress of the
joint, i.e., the friction force between the plates. The frictional force increases in direct proportion to
an increase in the degree of pre-stress. However, compressive deformation of the wood limits the
maximum possible value of friction force. Fully fastening the brake plates to the wood using screws
was the most effective method. Plates made of oak can be used as an alternative to brake plates,
however, their damping efficiency is not as high. Reinforcing the joints with nails gave good results, as
did the use of a combination of nails and inserted plates.
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