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Abstract: Volumetric prefabricated building construction is growing in most developed countries;
for example, in Sweden the market share of prefabricated building systems in the housing industry
was more than 80%. However, in Australia only approximately 3–4% of new building constructions are
prefabricated buildings in a year. A major hindrance to the growth of prefab construction in Australia
is that systems are developed under commercial and confidential conditions. There are limited
publicly-available research and case studies for certifiers, regulators, engineers and academia to
provide independent information on the performance, advantages and disadvantages of prefabricated
building systems. Independent designers and structural engineers are relying on the strength
of the structural and non-structural element, as well as the connections of the prefabricated
building systems. This strength is estimated from the “commercial-in-confidence” test of individual
components by manufactures, and it might result in undesired outcomes in design. This paper
provides an overview of available literature on structural performance, benefits, constraints and
challenges of prefabricated building systems. This paper also highlights the research needed on the
prefabricated building systems such as full-scale tests, numerical modelling, hybrid simulations,
case studies and social and economic assessments. Being supported by sound academic research
will increase the market demand for prefabricated building systems in Australia as well as in
other countries.
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1. Introduction

In Australia, the prefabricated building system (i.e., pre-cut, panelised, modular, and mobile
home building system) has been recognized as a one of the alternative solutions to changing the speed
of conventional construction methods at a fast rate. This prefabricated construction system also has
been promoted as one of the eight key “visions” to improving the efficiency and performance of the
Australian construction industry vision 2020 [1]. Volumetric prefabricated building construction
systems comprise modular of volumetric units that are typically manufactured complete with
architectural finishes and services at an off-site, quality-controlled factory (See Figures 1 and 2).
These modules are then transported and installed on-site as one of many load-bearing structural blocks
of the building. Reductions in cost and time are the major advantages offered by the prefabricated
building systems when compared to conventional construction methods. Other benefits include
improved quality and accuracy in manufacture, speed of installation on-site, and can also be dismantled
and reused [2,3]. This form of prefabricated buildings also provides environmental benefits, such as
the reduction of construction waste and CO2 emissions, and less disturbance to the building site’s
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neighbours by minimizing on-site noise and dust [4,5]. These advantages are the driving force within
the European building industry for the growth of prefabricated building systems [6–9]. Furthermore,
due to population growth, other countries (i.e., US, Canada, Japan, etc.) also use modular construction
technology to build houses, apartments, offices, etc. [10,11].
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Modular construction technology has been gaining more attention in the building industry over
the last few years in Australia. As a result, several low-rise apartments have been built. One example
is the ‘Little Hero’ low-rise apartment building in Melbourne, Australia [3]. However, only a low
percentage of all low-rise buildings were built using modular construction or volumetric prefabricated
building system [3,6,13]. This is in part due to limited knowledge of the applicability, design and
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performance of prefabricated building systems in the building industry and the general public.
However, due to recent work by academia, industry and institutions such as prefabAUS in creating
awareness of such benefits, the prefab industry is increasing its numbers, especially in the education
and public services sectors. The Permanent Modular School Buildings Program (PMSB), an initiative
of the Victorian School Building Authority (VSBA) of Australia, has commenced the replacement of old
school buildings with newly-built modular classroom buildings targeting hundreds of schools around
Victoria, Australia where already 30 modular school buildings have been completed and handed over.
Figure 3 shows some of the exterior and interior images of those newly-built facilities provided by the
PMSB program.
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Primary School, Glengala Primary School, Yallourn North Primary School and Beaumaris North
Primary School respectively (Victorian School Building Authority [VSBA], © State of Victoria,
Department of Education and Training, 2018) [14].

Similarly, many public spaces in Australia such as new railway stations, police stations, healthcare
facilities (Figure 4) and community centres are now being built using volumetric modular construction
and other prefabricated methods with the assistance of the Australian government. Therefore, it is quite
evident from the recent advancements of the prefab industry in Australia how the collaboration of
industry, academia and government authorities can heavily impact the growth of an industry for
the ultimate benefit of society. However, limited awareness on the performance, benefits, skills
and knowledge required for prefabrication design and construction practice need to be developed
and strengthened to increase the number of prefabricated buildings and constructions in Australia.
This paper provides an overview of past research noting the limitations in the Australian context and
offers some recommendations on targeted research needed in the prefabricated building system.
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2. Previous Research Studies on the Benefits

2.1. Cost and Time

Reducing cost and time are major anxieties for both consumers and manufactures in the building
industry. When compared to conventional construction methods, the prefabricated construction system
provides significant reductions in both cost and time [2,4,5,16–19]. In a prefabricated construction
system, the phases of site preparation and construction of the modules can be run simultaneously, while
in conventional construction, the construction phase happens after the site preparation phase [4,17,20].
With construction phase activities occurring at the same time as the prefabricated construction,
reductions in construction time of about 40% occur, when compared to conventional construction
practices [4,17,20–23].

However, pre-project planning is quite intensive for prefabricated construction systems, as their
design has different complexities from conventional design. For example, features such as when
modules are lifted, transported to the final project site, placed on the foundation, and joined to form
the building need to be taken into account in the design phase. This requires more engineers, quality
controllers and skilled labourers [24]. These requirements will increase the cost and duration of the
design phase, but they reduce the cost and time of the on-site construction phase significantly in
prefabricated construction compared to conventional construction. Furthermore, the construction
activities in conventional construction are significantly affected by any climate change or weather
condition interruptions. Meanwhile, in the prefabricated construction method, these kinds of
interruptions were negligible, as the majority, i.e., about 80–90%, of construction activities happen
in a factory. This also reduces the construction time and total cost of projects using the prefabricated
construction method when compared to conventional construction methods.

In prefabricated construction, the manufacturer can order material in bulk and fabricate several
modules at same time. This provides lower prices from suppliers and reduces the number of labours
and transportations. This will result in savings in cost and time of the project. Moreover, prefabricated
construction reduces the number of on-site laborers, which reduces the total labour cost by about 25%
compared to traditional construction methods [17,25–28]. However, these cost and time benefits are
not very clear due to the lack of access to confidential information of projects (i.e., financial and actual
project plan), as well as to the use of new technology and modern machineries [26,29–31].

2.2. Other Benefits

In conventional construction, there are several safety issues, including working at height,
congestion, severe weather work place accidents, neighbouring construction operations, etc. However,
these problems were reduced by about 80%–85% in prefabricated construction, as the majority of
construction works, i.e., about 80%, occurs in factories [2,17,25–31]. This construction in factories
provides consistent products, as they are repetitive processes, and are typically undertaken with
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automation [2,30,32,33]. Prefabricated construction systems also provide the environmental benefit
of less construction waste. This is because 80% of construction operations take place in a factory,
where waste materials can be controlled/reused/recycled [2,4,17,20,21,23,25–31,34]. Prefabricated
building modules can be disassembled, relocated, or retrofitted and renovated to be used in other
projects, which reduces disposal waste.

A case study by Lawson [2] highlighted the fact that in prefabricated building construction,
the neighbouring buildings are not affected as much as in traditional building construction methods,
as noise and disruption are reduced by 30–50%. Lawson [2] also showed the prefabricated modular
construction reduces landfill by a factor of at least 70%. A study by Aye [19] shows that the reuse of
materials in prefabricated steel buildings saves about 81% of embodied energy and 51% of materials
by mass (Figure 5). Prefabricated houses also reduce CO2 operating emissions by approximately 50%
in annual households [5]. Studies by Matic [35] investigated the energy refurbishment of existing
buildings, and their conversion to energy efficient buildings with minimized loads. This study
found a significant reduction of thermal and cooling loads after refurbishment of existing buildings,
when compared to those buildings’ pre-furbished data. These research and case studies [2,4,35–41]
indicate that prefabricated construction systems contribute significantly to improving environmental
sustainability in the construction industry.
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3. Structural Performance of Prefabricated Building Systems

The structural performance of conventional structures such as steel, concrete and timber-frames
under any natural (i.e., wind load, earthquake load, bushfire) and manmade (i.e., bomb-blast,
vehicle impact, etc.) loading has been evaluated by many researchers from around the world and
incorporated into the design of a range of approaches. However, structural performance data of
prefabricated building structures is limited, as little detail of engineering research and few case studies
have been published [3,42,43]. The structural design approach should ensure the stability of the
building structure under these natural and manmade loads, transferring such loads to the foundation
through their structural elements, non-structural elements and inter-component connections. Although,
these approaches have proved to be adequate, complex structural systems such as timber-framed
houses, non-conventional structures and prefabricated buildings may give rise to non-optimal designs.
This is due to a lack of knowledge in the load sharing and load transfer of structural systems. The load
sharing and load transfer in prefabricated building can be complex, as the system uses multiple
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inter-component connections between the modules, which can be influenced by tolerances in the
installation procedure. The vertical and lateral loads are transferred generally through inter-component
connections and stabilizing elements such as vertical bracing or core walls. In prefabricated systems
with load-bearing walls, the axial load is transferred via direct wall-to-wall bearing. Plasterboard
or similar boards are often attached to the exterior of walls, and these boards prevent the C-sections
(i.e., generally used in the wall panel) from buckling in the in-plane direction of the wall [2]. The tie
forces at the corner of the modules provide resistance to accidental loads, and the accidental limit state
is generally taken as the self-weight plus one-third of the imposed load [2].

A case studies by Lawson [2] recommended that the following key factors should be taken
into account in the design of modular buildings: (1) influence of installation eccentricities and
manufacturing tolerances on the additional forces and moments in the walls; (2) second-order effects
due to sway stability of the group of modules; (3) mechanism of force transfer of horizontal loads
to the stabilizing system; (4) robustness to accidental actions for modular systems; (5) the minimum
horizontal force in any tie between the modules is taken as not less than 30% of the total load acting
on the module and not less than 30 kN. Gunawardena [42] have analysed the static and dynamic
behaviour of the structure using finite-element analysis techniques with the aid of a three-dimensional
(3D) computer model. Their study highlighted that the torsional or twisting effects are a major problem
for the designers of these type of buildings. Results also show that elevator shafts can be flexibly
shifted around the plan without causing adverse torsional effects to the structure.

A performance-based design approach was imposed in many countries such as Australia,
New Zealand, and the USA. This approach requires an independent engineering design for
conventional and non-conventional houses such as modular houses. The independent engineering
design involves laboratory tests and full-scale tests on the individual components (i.e., wall, ceilings,
roof, connections, etc.), as well as structural analyses using finite element software. This approach
is still adopted for the structural design and construction of houses in Australia. Therefore, several
full-scale and individual components tests were conducted, including timber-framed houses and
prefabricated steel-framed panelised building systems [44]. In Australia, the prefabricated modular
houses and building design are based on wind, fire and earthquake standards, i.e., AS 1170.2 [45],
AS 1170.4 [46], AS 1530.4 [47] and AS 5113 [48], as well as the National Construction Code [49].
These standards are developed by a number of research publications, case studies, laboratory tests,
full-scale tests and structural analyses. However, there are no specific standards or recommendations
for prefabricated building design, as there are limited engineering research and case studies which
evaluate the performance of prefabricated building systems compared to those of conventional
building systems.

3.1. Fire Resistance and Acoustic Performance

Fire safety is a major concern after the building collapse at the World Trade Centre (in 2001,
New York) and the Grenfell Tower (in 2017, London). These failures have led to more research and fire
safety testing on structural and non-structural elements as well as their connections. The collapses of
these buildings have also led to changes in building standards and to the banning of some building
materials such as combustible claddings. In Australia, buildings are facing the danger of bushfires
(e.g., Black Saturday in Victoria 2009, Ash Wednesday in Victoria 1983, Black Friday in Victoria 1939,
Black Tuesday in Tasmania 1967, and the Gippsland fires and Black Sunday in Victoria in 1926) and
their associated costs in terms of significant insurance payout and loss of life [50,51]. Therefore, the fire
resistance of buildings and their elements is important.

In prefabricated modular buildings, double-layer walls and floor-ceilings are generally used.
The fire barriers and protection are installed between the modules and internal face of the wall to
prevent the spread of smoke or fire in the cavity and between the modules [2].

The double-layer walls and floor/ceiling offer significant resistance to airborne and impact
sound. Thin concrete floor screed placed either on the light steel floor or as a composite slab between
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the walls or edge beams in the prefabricated building system also provides the additional sound
reduction and floor stiffness to minimize vibrations [2]. However, the manufacturing and construction
of prefabricated building systems vary between countries, as well as some regions within the country.
This difference will create variations in the fire and acoustic performance of prefabricated building
systems in Australia compared to those in the Lawson [2] case studies.

Moreover, composite materials, light weight Structural Insulated Panels (SIPs), Cross Laminated
Timber (CLT), and Concrete-filled steel hollow sections have played a significant role in the
prefabricated construction industry over the past years [51–54]. Full-scale fire testing and
computational fluid dynamics by Nguyen [53] highlighted the fact that prefabricated, lightweight
aerated concrete (PLAC) panels in the modular construction achieved 30 minutes’ fire resistance and
provided low thermal conductivity compared to normal concrete product. Other fire tests on CLT
beams show that the current zero-strength layer fails to capture the necessary physics for robust
predictions of structural responses under non-standard heating, and recommended that more detailed
thermo-mechanical, cross-section analyses are needed to determine the structural implications of real
fire exposure [44]. These studies [52–56] assess the structural response of the individual elements
and connections under fire. The fire rating of individual elements and connections could vary when
compared to whole structure. Therefore, the structural responses of whole prefabricated buildings or
modules under fire conditions need to be evaluated.

3.2. Performance of the Structure under Earth Quake and Wind Load

The finished panels or modules of a prefabricated system are transported to the site and erected
both horizontally and vertically using horizontal and vertical connections [57–59]. Lateral bracings
or core walls are used to achieve the lateral stability of the structure [2,42]. Annan [57] designed
and modelled typical braced frames of Modular Steel Buildings to evaluate their inelastic behaviour
under seismic loads. The results showed that the reserve strength of Modular Steel Building braced
systems was greater than that of traditional braced systems (i.e., specified in the Canadian code).
This study recommended that the unique detailing (i.e., frame type, special vertical connections at
column) requirements of Modular Steel Building braced systems should be taken into account during
the design phase to improve seismic response.

Further, a study carried out by Gunawardena et al. [42] investigated the earthquake performance
of corner-supported, multistorey modular structures. The outcome of a capacity spectrum analysis
(Figure 6) showed that the analysed 10-storey modular structure was past its linear deformation
zone at its performance points against all six earthquake time histories that it was analysed against.
However, the performance points were also far below the full capacity of the structure. Therefore,
it was concluded that the structure analysed in this study performed in the ‘Immediate Occupancy’ to
‘Life Safety’ range as per the performance levels introduced in FEMA 356 [60].

Windstorms is the one of major natural hazards in Australia as well as other countries such as US,
Canada, UK, India, etc. Many studies on structural responses to wind loading for conventional building
structures have been published. Limited research and few case studies are available on prefabricated
building system responses. In prefabricated building, lateral wind loads are resisted and transferred
by bracing elements and/or sheathing the walls, and then conveyed to the foundation [61,62].
Bathon [63] developed a building using prefabricated wood-concrete-composite panels (see Figure 7).
The structural response of this system was assessed under hurricane loading conditions with wind
speeds up to 400 km/h. Although this current paper is focusing on volumetric prefabricated buildings,
the study by Bathon [63] focused on panel-based prefabricated buildings, highlighting the importance
of the connections between the prefabricated components. His results demonstrated that the lateral
load on the floor level was 429 kN/m (see Figure 8), and highlighted that this wood-concrete-composite
panels system provided more structural stability under wind loads as well as seismic loads. Overall,
this wood-concrete-composite panels system allows for a cost-efficient hurricane-proof design and
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provides more resistance under seismic loads compared to contemporary American and European
building systems.
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A full-scale simulated wind load test was conducted on a prefabricated panelised steel framed
single storey building at the Cyclone Testing Station, Australia [64]. The testing evaluated the
transmission of load sharing (i.e., uplift and lateral loads) across the various panelised elements
such as the wall, ceiling, roof, connections, etc. The results show that the prefabricated panelised steel
framed building performed well when subjected to static loads simulating the lateral and uplift for
50 ms−1. However, during load cycling to simulate cyclonic wind load fluctuations, failure occurred at
the wall panel subfloor interface. This was due in part to the load cycles accentuating the eccentric
connection design resulting in fatigue of the rods. A similar type of prefabricated panelised steel framed
house structural system is currently being developed with new construction material, non-conventional
connections and advanced technology, and being built in some parts of Australia. Thus, it essential to
assess the structural responses of this type of building system under wind loads.

4. Constraints, Challenges and Future Research

Project planning is one of the biggest challenges in prefabricated building construction, as several
factors must be considered, such as incorporating different components within a module when they
are lifted, transformation, placed on the foundation, and assembled the building [4,65]. This requires
clear scope, more experience design and planning engineers, and skilled manufacturing, and it
also consumes more time and money. However, the accomplishment time of modular houses or
high-rise buildings was still less than that of conventional buildings [32]. Ramaji and Memari [66]
have highlighted that when the number of stories increases in a prefabricated modular building,
the time savings decrease considerably. This is because of system becomes more complex, causing
more challenges in project planning. Other constrains in the prefabricated system are the module
dimensions, the inability to make changes onsite, and transportation, which are the most important
factors needing to be considered before and after the design the structure.

Structural performance and the strength of the structural and non-structural elements and
their connections used in the prefabricated construction system are important to the design of the
system. Astonishingly, there has been limited published research on this system, because most of
this prefabricated system consists of patented elements. Also, prefabricated system development has
been undertaken under commercial and confidential conditions. The designers rely on the strength of
the structural and non-structural elements and their connections specified by manufacturers based
on commercial-in-confidence testing. In Australia, most of these tests were based on international
standards such as ASTM and European standards. This is because, in Australia, there are no
specific testing standards for most prefabricated structural and non-structural elements. Moreover,
the prefabricated structural design follows the normal conventional structural design standards.
But prefabricated structural systems are complex, non-conventional systems, and they use several
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non-conventional connections. Therefore, Australian design standards need to be developed to include
the design specifications and recommendations for prefabricated structures. This requires more
research and case studies.

Furthermore, individual component testing (i.e., wall, ceiling, roof, connections), full-scale testing
and numerical models are the tools used to assess the performance of prefabricated building structures.
There is limited number of tests, and few numerical models have been conducted by manufactures and
researchers. In addition to this, there is only one full-scale test to have been conducted on prefabricated,
panelised, steel-framed housse [64]. Full-scale tests are important to assess the performance of
structures, as there are inherent redundancies in structural behaviour when comparing individual
component tests and full-scale tests [67]. This could create variations in the design of wind, earthquake
and fire-resistant loads that are estimated from simplification load transmissions. The current uses of
new materials and construction types in prefabricated construction systems also need to assess their
strength and structural system responses via sub assembly tests as well as full-scale tests. The fire
ratings of materials used in the construction industry are critical for the performance of prefabricated
building systems. For example, the CLT panels and façade system used in the prefabricated system
face issues in term of their fire ratings. Therefore, future research needs to be focused on evaluations
of the structural performance of prefabricated buildings via full-scale tests, numerical modelling
and hybrid simulation. Hybrid simulations offer a more efficient and suitable way to assess how
large prefabricated buildings respond to seismic loading by combining physical testing and computer
modelling. Researchers and the building industry should ensure that the outcomes of future research
are available for the public and design engineers. The outcomes should also be used in construction
practices and design methodologies to increase the prevalence of prefabricated buildings in Australia.

5. Conclusions

In this paper, the performance of prefabricated building systems has been reviewed from the
available resources. This review shows that prefabricated building systems and construction hold high
potential to improve the efficiency and performance of the Australian construction industry in a more
sustainable sense. However, more research studies are needed to ensure that these prefab building
systems and construction deliver substantial benefits economically, and in an environmentally- and
socially-friendly manner. Here are some suggestions to increase the market demand and to contribute
to the development of prefabricated building systems in Australia.

• The limitations of transportation, regulations, and special traffic control in the construction area
are the main factors to be considered in transportation planning. Therefore, more case studies are
needed to evaluate project planning, scheduling, and the cost of small- and large-scale projects.

• More research and case studies are needed to develop and include the design specifications and
recommendation for prefabricated structures according to Australian design standards.

• Previous study has highlighted that most often, structural performance of prefabricated building
systems is assessed by individual component testing and numerical models. There could be an
inherent redundancy in the structural behaviour when the structural response between individual
components and the whole structure are compared. Therefore, numerical modelling, hybrid
simulations and full-scale tests need to be conducted on prefabricated whole buildings to evaluate
the structural responses and performance under fire, wind and earthquake loads.

• A lack of awareness on the performance, benefits, and affordability design and techniques
provided by the prefabricated systems is a major challenge for the marketing of prefabricated
building construction in Australia. This could have been achieved through social and economic
research. This research should focus on the following activities, such as questionnaires, workshops,
conferences and media interviews.

• Although a great deal of previous academic research has proven the sustainability aspects of
prefabricated construction, this knowledge needs to be more effectively communicated to the
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general public. This needs to be accompanied by real case studies on public infrastructure projects
where the general public benefits from the performance of prefabricated structures.

• The skills and knowledge required for prefabrication design and construction practices in
Australia need to be developed and strengthened through relevant educational courses,
workshops, conferences and vocational training. Also, universities, TAFE and vocational
education institutes should consider including prefabrication design and construction in their
courses. This will increase the professional skills and knowledge required for the design and
construction practices, as well as increasing their productivity.

• The government and building industry need to encourage the building of some trademark
structures similar to the ‘Little Hero’ low-rise apartment building in Melbourne. This will increase
the market demand and development of prefabricated building systems in Australia.
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