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Abstract: Automated fault detection and diagnosis (AFDD) tools based on machine-learning
algorithms hold promise for lowering cost barriers for AFDD in small commercial buildings; however,
access to high-quality training data for such algorithms is often difficult to obtain. To fill the gap in
this research area, this study covers the development (Part I) and validation (Part II) of fault models
that can be used with the building energy modeling software EnergyPlus® and OpenStudio® to
generate a cost-effective training data set for developing AFDD algorithms. Part II (this paper) first
presents a methodology of validating fault models with OpenStudio and then presents validation
results, which are compared against measurements from a reference building. We discuss the results
of our experiments with eight different faults in the reference building (a total of 39 different baseline
and faulted scenarios), including our methodology for using fault models along with the reference
building model to simulate the same faulted scenarios. Then, we present validation of the fault
models by comparing results of simulations and experiments either quantitatively or qualitatively.

Keywords: automated fault detection and diagnosis; fault model; building energy modeling;
EnergyPlus; OpenStudio; validation; fault experiment

1. Introduction

In Part I of this study [1], we presented the primary motivation for this research: the development
of accurate models for building faults for use in training automated fault detection and diagnosis
(AFDD) algorithms. The availability of accurate physical models for building faults advances several
key areas of fault detection and diagnosis (FDD) research, including projection of regional or national
fault energy impacts [2,3], development of model-based FDD algorithms [4,5], and simulation-based
assessment of FDD algorithm performance [6,7]. For large-scale fault impact estimation, availability of
reliable fault impact data is a key challenge.

Although data-driven FDD algorithms require large volumes of diverse training data, large data
sets of faulty behavior are expensive to obtain experimentally and impractical to acquire from field data.
Compared to the field data, simulated training data offer key theoretical advantages in the evaluation
of FDD algorithms: the ground truth is known with greater certainty; the cost of generating evaluation
samples is low; evaluation samples can be generated for a wide variety of equipment, building types,
environmental conditions, and so on; and evaluation data sets may be constructed without significant
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gaps or biases [7,8]. However, accurate simulation results of faults are difficult to obtain, and rigorous
validation is critical if the models are to be trusted [5,7].

Several previous studies focused on capturing the impact of a fault in the building component with
experimental measurements. These are either full experimental studies to measure the performance
degradation caused by the fault [9–28] or studies focusing on developing fault models or FDD
algorithms that use experimental measurements as a basis for development and validation [29–40].
These studies cover various faults that occur in buildings at the component level:

- Envelope material [17,24,25,28]
- Air ducts [10]
- Heat exchangers [11,19,23,36]

Or in system-level equipment:

- Chillers [13,31,38]
- Direct expansion units [9,14,18,22,29,30,33,35,39,40]
- Heat pumps [15,16,20]
- Refrigeration systems [21,26]
- Variable air volume systems [12]
- Fan coil units [32]
- Variable refrigerant flow system [34]
- Air-handling units [37].

Although these studies provide useful information related to the individual objectives of each
study, only one study focused on fault models that can be directly used in building energy simulations
tools such as EnergyPlus® and OpenStudio®. Cheung and Braun [31] developed empirical models
of faults (overcharging, excess oil, noncondensable, and condenser fouling) that are common in
water-cooled centrifugal chillers. Because chillers are not common in small commercial buildings,
however, chiller fault models are not considered in the scope of this study.

In this two-part article series, we present the development and validation of a library of models
for faults common in small commercial buildings in the United States. In Part I (Model Development),
we described the modeling approach and technical development; in Part II (Model Validation)—this
article—we describe an experimental validation methodology for the developed models and the
validation results. The remainder of this article is organized as follows: Section 2 presents the
validation methodology, Section 3 provides validation results of fault models, and Sections 4 and 5
include limitations, future work, and conclusions.

2. Methodology

This section includes overall workflow of the entire study as well as detailed descriptions of the
building facility used for conducting fault experiments, the workflow of the fault model validation
process, and additional tuning processes of the building model based on preliminary building
measurement results.

2.1. Overall Workflow

Figure 1 shows the workflow of the study, including prioritization of common faults in small
commercial buildings, fault model development (Part I), and fault model validation (Part II). As shown
in the figure, fault models [41] developed in Part I were identified as highest priority by Kim, Cai,
and Braun [2]; these prioritized fault models have a significant impact in the nationwide energy
consumption. Figure 1 also includes fault models that were developed in the earlier phase of this
study [42]. Some of these fault models that are applicable in small commercial buildings have been
adopted and updated to complete the prioritized fault list. Remaining faults in the list are newly
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developed; these fault models are refined to have extended capability, such as covering wider modeling
objects in the EnergyPlus, compatibility with other fault models within the simulation, and additional
feature such as the fault evolution.
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Among faults that were identified as high priority [2], we selected eight different faults (described
in Section 2.2) for model validations in this paper, based on the need for model validation and feasibility
of experimental implementation. We developed and calibrated a building model—including the
envelope; heating, ventilation, and air conditioning (HVAC) system; weather conditions; and internal
gains (plug and lighting load)—based on the actual setup of the experimental facility [43,44]. We then
used the simulation model to generate results both with and without each fault. While conducting
preliminary simulations, we have identified several tuning opportunities in the simulation model that
are described in Section 2.4, and these changes were applied in the results in Section 3. In Section 3,
we compare the results against the actual experimental measurements. We use the coefficient of
variation of the root-mean-square error [CV (RMSE)] and the normalized mean bias error (NMBE) as
metrics for the validation as well as qualitative comparisons of component level behaviors. Detailed
contents of the validation process are described in Section 2.3.

2.2. Physical Experiments

We conducted our fault research on a two-story flexible research platform (FRP) [43] in Oak
Ridge, Tennessee. The building consists of slabs and a steel superstructure, representing a light
commercial office building common in the existing U.S. building stock. The FRP is an unoccupied
research facility in which occupancy is emulated by process control of lighting, humidifiers for
human-based latent loading, and a heater for miscellaneous electrical loads. The emulation minimizes
human-occupancy-based interference with the building, which is one of the main sources of uncertainty
in building modeling input data. Ground heat transfer is another source of uncertainty because of the
unavailability of the deep ground temperature. To reduce this uncertainty, we installed insulation
under the ground floor. The added insulation makes the floor-to-ground heat transfer nearly adiabatic.
The test building is exposed to natural weather conditions to facilitate research and development of
system- and building-level advanced energy efficiency solutions for new and retrofit applications.
A dedicated weather station is installed on the roof of the FRP to collect weather data that can be used
in performance analysis and energy modeling. Table 1 summarizes the FRP’s general characteristics.
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Table 1. Flexible research platform general characteristics.

Location Oak Ridge, Tennessee

Building width 44 ft (13.4 m) (outside dimension with 1′4” (0.4 m) exterior wall thickness)
Building length 44 ft (13.4 m)

Floor to floor height 14 ft (4.3 m)
Floor to ceiling height 9 ft (2.7 m)

Number of floors 2
Number of thermal zones 10 (8 perimeter and 2 core) conditioned zones

Occupied hours 7 a.m. to 10 p.m.

Temperature setpoints
Supply air temperature: 12.7 ◦C (cooling)/18.3 ◦C (heating)

Zone temperature (occupied): 24 ◦C (cooling)/21 ◦C (heating)
Zone temperature (unoccupied): 26.7 ◦C (cooling)/15.6 ◦C (heating)

Building envelope

Wall structure: Concrete masonry units with face brick
Wall insulation: Fiberglass RUS-11 (Btu/hr-◦F-ft2)/RSI-1.9 (W/m-K)

Floor: Slab-on-grade
Roof structure: Metal deck with polyisocyanurate and ethylene proplylene

diene monomer
Roof insulation: Polyisocyanurate RUS-18/RSI-3.17

Windows: Aluminum frame, double-pane, clear glazing
Window-to-wall ratio: 28%

HVAC system
Rooftop unit: DX unit (12.5 ton, energy efficiency ratio 9.6), furnace (natural

gas fired, AFUE 81%)
Variable air volume (VAV) system (electric reheat coil)

Plug load Lighting power density: 0.85 W/ft2 (9.2 W/m2) with lighting on/off schedule
Equipment power density: 1.3 W/ft2 (14.0 W/m2) with on/off schedule

The FRP is equipped with a single packaged rooftop unit (RTU) connected to a multizone variable
air volume (VAV) system. The RTU has an energy efficiency ratio of 9.6. The connected VAV system
serves a total of 10 zones (8 perimeter and 2 core), and each VAV box includes electric resistance reheat.
To better monitor and control the outside air introduced to the building, the original intake for the fresh
air in the RTU was blocked during experiments (i.e., there was no outside ventilation air). Lighting
and occupancy followed schedules and levels found in typical office buildings. During testing, the
system operated with the HVAC setpoints noted in Table 1.

The fault experiments consisted of a series of controlled experiments that modified equipment,
envelope, and controls in the FRP to impose faults and measure the resulting performance (the data set
is publicly available [45]). The experiments were designed to simulate each fault and to validate both
the baseline and faulted simulation results. Figure 2 shows the dates of baseline and faulted scenario
experiments for all 8 faults. The full set of experiments includes 39 scenarios: 15 baseline scenarios and
24 faulted scenarios. Each fault test imposed a single fault at a fixed fault intensity for a 24-h period,
starting at midnight. Faults that occur in the RTU were specifically planned during the cooling season,
and the other faults were planned based on the availability of the experimental facility and avoiding
the shoulder season where the impact of the fault can be relatively small. If the daily average ambient
temperature was above 23.9 ◦C, the condition of the day was considered as warm weather (cooling
season), and if the average temperature was below 12.8 ◦C, the condition was considered as cool
weather (heating season). To verify whether there was a seasonal bias in model prediction, the HVAC
setback error fault was tested in both winter and summer seasons. Also, baseline experiments were
conducted twice for several faults in order to provide a variety of baseline data for quality control.
In general, all experiments used identical internal loads and building controls; however, for some
individual faults, specific modifications were made to the general building system configuration.
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2.3. Validation Workflow

Figure 3 presents the workflow for fault model validation. The workflow was established in the
Parametric Analysis Tool (PAT) in OpenStudio [46]. PAT provided an efficient and automated workflow
for simulating and validating a total of 39 different faulted and unfaulted scenarios. The workflow
requires a calibrated reference building model and fault models for simulating behaviors of the building
system under faulted or unfaulted conditions. A calibrated whole-building energy model for the FRP
is available from prior modeling efforts [43,44]. The building model developed from these previous
studies was used as the initial model for this study. We made additional modifications to the baseline
model based on preliminary simulations against the building measurements (see Section 2.4).
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Because there was only one building physically available for the experiment, experiments were
performed sequentially and identical weather conditions did not exist for the baseline and faulted
scenarios. Thus, individual baseline experiments were conducted separately for each fault (Figure 2)
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in order to provide a baseline that represents the same time of year and substantially similar weather
conditions as in the fault experiment. Comparisons between the simulation and experimental data
are presented separately for baseline and faulted scenarios. To precisely simulate the weather and
internal gains in the actual building, the measured weather and internal loads (plug load, occupant,
and lighting) were used as inputs for the baseline and faulted simulations. While internal loads were
directly defined in the reference building model, the weather measurements from the weather station
were converted to EnergPlus weather files (epw file).

Each run of the PAT simulation starts with a minimum 10 days of a warm-up simulation under
normal operating conditions (unfaulted; that is, equivalent to the baseline scenario) to minimize
the effect of initial conditions defined in the building model. Then, the simulation continues to
cover the period that includes all baseline and faulted scenarios. For example, as shown in Figure 2,
the condenser fouling experiments were conducted over four different days, including two baseline
tests and two faulted tests. Most of the scenarios were tested within seven consecutive days without
being interrupted by other fault experiments. The PAT simulation started on August 27, 10 days
earlier than the first experiment (25% fouling) and ended on September 2 (second baseline experiment).
Except on the dates when a fault was simulated, the building model was simulated based on the
normal operating conditions and schedules described in Section 2.2. However, as shown in Figure 2,
the experiment schedules for the HVAC setback error fault were split by two other faults (excessive
infiltration and nonstandard refrigerant charging) in winter and summer seasons because of scheduling
difficulties at the experimental facility. The same validation workflow was used for the HVAC setback
error fault assuming that the impact of two other faults was removed after several days of normal
operation. Both the simulation and measurement were processed with a 15-min time step.

Figure 3 shows the two model validation activities: validation of the baseline building model and
validation of the individual fault models, implemented as OpenStudio or EnergyPlus measures [47].
We used the acceptance criteria established in The American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) Guideline 14 [48] for the whole-building electricity consumption
for the quantitative validation assessment:

• The CV (RMSE) of the predicted hourly energy consumption shall not exceed 30%.
• The NMBE of the predicted hourly energy consumption shall not exceed ±10%.

CV (RMSE) is a measure of the variance (or spread) in the residual errors, and NMBE is a measure
of bias (or average error). Equations of CV (RMSE) and NMBE are shown as Equation (1) and Equation
(2), respectively, where n is the total number of data points, y is the actual measurement, ŷ is the
simulation result, and y is the average of y for all time steps.

CV(RMSE) =
1
y

√∑n
i=1(yi − ŷi)

2

n
× 100 (1)

NMBE =
1
y

∑n
i=1(yi − ŷi)

n
× 100 (2)

As shown in Figure 3, there are multiple output parameters available and useful for validating
fault models using component-level behavior. These include separate end-use energy consumption
for heating, cooling, ventilation, plug load, lighting, and so on, and state measurement outputs
(temperature, humidity, and flow rate) in various building HVAC components and thermal zones.
Because there are faults that have small impacts on the total building energy consumption level, these
detailed end-use consumptions and state parameters are selectively used for the qualitative validation
of certain fault models, as described in Section 3.
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2.4. Building Model Tuning and Validation Process Modifications

Although Goldwasser et al. [44] made an effort in their study to calibrate the building model
against measurements, they found inconsistencies between model results and measurements that
could not be explained. In our study, we identified several tuning opportunities in response to issues
that were identified. All pertinent details are described in the following subsections; the results shown
in Section 3 reflect those changes.

2.4.1. Supply Duct Leakage and VAV Box Configurations

The first opportunity for tuning involved the inherent leakage in the air duct connecting the RTU
and terminal VAV boxes. The team conducted a separate measurement to estimate the percentage of
the supply air duct leakage in the air system. Table 2 shows airflow measurements taken at the terminal
side of all VAV box units (downstream) and at the outlet side of the RTU (upstream). Because there are
no permanent airflow sensors installed on the downstream locations, two different tests were conducted
with a portable airflow measurement hood—all dampers were set to the minimum position for the
minimum airflow operation case and fully open for the maximum airflow operation case. Based on our
measurements, the average duct leakage was calculated as 30% of total airflow rate, and this leakage
rate level was applied as the downstream leakage fraction in the ZoneHVAC: AirDistributionUnit
object in all PAT simulations (baseline and faulted) during the fault model validation.

Table 2. Airflow measurements for supply air duct leakage prediction.

Room
Measurement Model

Minimum Airflow,
CFM

Maximum Airflow,
CFM

Minimum Airflow,
CFM

Maximum Airflow,
CFM

102 98 160 98 280
103 90 218 90 400
104 297 352 297 560
105 274 317 274 600
106 276 401 276 600
202 161 280 161 450
203 118 164 118 250
204 268 473 268 600
205 272 408 272 600
206 285 415 285 630

Total (downstream) 2139 3188 2139 4970
Total (upstream) 3170 4447 - -

Leak % 33% 28% - -

The actual airflow in the air system is controlled by the supply fan, which operates based on
comparing the actual static pressure in the air duct against the static pressure setpoint. In a VAV
system, the static pressure varies mostly based on the position of dampers in VAV boxes. Although
maximum airflow measurements with all dampers fully open provide useful information regarding
the overall capacity of the air system in a full load condition, these are not the exact maximum airflow
rates that can be achieved in each VAV box. For example, if only one VAV box damper is fully open
and the others are not, the maximum airflow of that VAV box can be higher than when all VAV boxes
are fully open. Setting the maximum airflow based on measurements shown in the table will cause a
shortage of cooling capacity under certain conditions. Therefore, the modeled maximum airflow for
each VAV box was set based on the as-built mechanical drawings for the building. Minimum airflow
measurements for each VAV box were directly applied as the minimum airflow settings in the model.
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2.4.2. Infiltration in Return Air Plenum

Measurements from the building showed that there is a heat gain (during the summer) or heat
loss (during the winter) between thermal zones and the RTU return air temperature. Figure 4 shows a
parity plot where each marker represents a comparison between the return air temperature to the RTU
and weighted average room air temperature for all 10 rooms at various times. The data points are
grouped into summer and winter measurements.
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The summer experiments in the figure represent a data set in which the VAV system was operated
with all dampers fully open (condenser fouling tests in 2017); this corresponds to maximum airflow
measurements shown in the left side of Table 2. These airflow values were used to calculate the
weighted average temperature of 10 thermal zones in the building that was then compared with the
direct measurement of the return air temperature at the RTU. The winter experiments shown in the
figure are representative of when the VAV system was in heating mode for all thermal zones with all
dampers in the minimum position (excessive infiltration tests in 2017). For those cases, the minimum
airflow values shown in Table 2 were used to calculate the weighted average temperature. It is clear
that the return air temperature to the RTU is higher than the average room temperature in the summer
season and lower in the winter season. To capture this effect, the infiltration object in the return air
plenum was used as a tuning parameter to match the heat gain or loss between different seasons.
By trial and error of comparing the difference between the return air temperature and weighted average
temperature with different infiltration levels, the original infiltration level (flow per exterior surface
area = 0.001 m/s) in the plenum was reduced by 60% (0.0004 m/s) in the updated building model.

2.4.3. Diffuse Horizontal Irradiance Calculation

The preliminary fault simulation results showed a shortage of cooling capacity in perimeter zones
on some occasions. During the capacity shortage periods, perimeter zone temperatures increased to an
extreme condition while the RTU operated at its full load condition with maximum airflow. The supply
air temperature also rose above its setpoint (12.7 ◦C) during this period. Because there was no such
capacity shortage in the actual building during the corresponding experiment, the model parameters
were reviewed to identify the issue.

Figure 5 includes diffuse horizontal irradiance (DHI) plots for eight consecutive days (during
which the issue presented itself) from different sources: weather station measurements taken at the
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FRP, data from the National Solar Radiation Database (NSRDB) [49], and values derived from Equation
(3). For the calculated DHI, the global horizontal irradiance (GHI) and direct normal irradiance (DNI)
values were taken from FRP weather station data, and the solar zenith angle (θ) was adopted from the
NSRDB for the same location.
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GHI = DNI × cosθ+ DHI (3)

As shown in Figure 5, the measured DHI rises above 800 W/m2 at peak and to around 600 W/m2

during nights between December 12 and 15. Because direct normal irradiance can reach up to
1000 W/m2 when the sun is at its zenith, the DHI measurements from the building location are not
plausible. Because the issue only occurred during a short period in the winter season measurement,
it is unclear exactly what caused it. Although this affected only a small portion of the validation
data set, the measured DHI values were replaced with the calculated values in all cases to ensure
modeling consistency.

2.4.4. Other Preprocess Modifications

In addition to the previously described modifications to the reference building model and weather
file that were applied to all validation scenarios, additional modifications were selectively applied to
certain type of faults.

Room temperature setpoint mapped to the measurements: In an actual VAV system, room
temperature is controlled at the VAV box by modulating the cooling or heating capacity with the
damper or heating coil, respectively. Each VAV box has a controller for sensing the room temperature
and modulates conditioning capacity by comparing the room temperature against the room temperature
setpoint. If the quality of the VAV box and tuning of its controller are not sufficiently sophisticated,
precise room temperature control cannot be realized even when there is sufficient heating or cooling
capacity. On the simulation side, room temperatures are controlled perfectly when there is sufficient
conditioning capacity (damper position or heating coil run time fraction is set to automatically meet the
cooling or heating setpoint for a particular timestep). Fixed room temperature setpoints for heating and
cooling are imposed in the actual building during experiments. However, the experimental data showed
deviations between measured room temperatures and the corresponding setpoints. Such deviations
can be a critical aspect of the building dynamics if the fault affects the room temperature directly (e.g.,
thermostat bias). However, for faults that do not affect zone temperature, matching the measured noise
of the VAV box’s control precision on the simulation side helps isolate fault impact. For this reason,
validations of faults such as HVAC setback error, lighting setback error, and RTU faults (condenser
fouling and nonstandard refrigerant charging) were performed by using room temperature setpoints
based on actual room temperature measurements. Fault model validation scenarios affected by this
modification are indicated in Table 3 in Section 3.
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Table 3. Validation results and preprocessing modifications for each fault model validation scenario.
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Supply air temperature setpoint mapped to the measurements: A fixed supply air temperature
setpoint was imposed in the building experiments. However, precision of supply air temperature
control is dependent on the RTU’s control capability. Similar to room temperature control, supply
air temperature is also controlled perfectly in EnergyPlus when conditioning capacity is sufficient.
Similar to the room temperature setpoint case, mapping simulation supply air temperature setpoint
to measured values enables better isolation of certain faults. However, there are faults that can
significantly increase the cooling load on the cooling coil, which can result in increased supply air
temperature. These include excessive infiltration, return air duct leakage, and stuck economizer
damper faults. Apart from these three faults, the supply air temperature experimental measurements
were imposed as supply air temperature setpoints in PAT simulations. Fault models affected by this
modification are indicated in Table 3.

Converting the lighting power measurements to a schedule object in EnergyPlus: In a regular
simulation case where the lighting schedule is predefined in OpenStudio, the lighting setback
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fault model directly modifies the lighting schedule defined in the building model. However, the
PAT simulation setup shown in Figure 3 was constructed by reading the lighting profile from the
measurement file and rerouting it into the building model. The sequence of reading and modifying the
schedule is not properly ordered in the PAT simulation; thus, the lighting setback error fault model was
not originally able to read in the lighting profile extracted from FRP measurement. For this reason, the
measured lighting power profile was converted manually to a schedule object in the building model
prior to lighting setback fault validation.

3. Fault Model Validation Results

The overall validation results and model preprocessing modifications for all fault model validation
scenarios are summarized in Table 3. The validation results in this table are presented with CV
(RMSE) and NMBE by comparing the results of total building electricity consumptions between actual
measurements and model predictions for each scenario. The graphical bars indicate the results of CV
(RMSE) and NMBE for each scenario measured against the target error levels (CV [RMSE] = 30%/NMBE
= ±10%). A one-hour time step resolution is used for the CV (RMSE) and NMBE calculations, consistent
with ASHRAE Guideline 14. CV (RMSE) and NMBE for most of the scenarios are within the target;
others are close but not within the target.

These results show that the scale of the model prediction with the building envelope model, HVAC
model, and fault models is within a reasonable boundary. However, the results in this table do not
guarantee the validity of all fault models. There are specific details that need to be addressed for certain
fault models to fully verify model validity. Additionally, variation in CV (RMSE) and NMBE values
for baseline results across different faults indicate the presence of noise and uncertainty within the
system stemming from the inherent differences between actual and modeled operation. This, combined
with the fact that many of the faults have minimal impact on whole-building electricity use, makes it
impractical to evaluate models solely using the chosen error metrics of the whole-building electricity
consumption. Therefore, we also performed qualitative validation of each fault model. These results
are addressed in the following subsections along with experimental configurations for each fault.
Table A1 in Appendix A summarizes detailed configurations of each fault experiment, including fault
intensity definition, fault imposition method, tested date, average daily ambient temperature, and
exceptional condition. The baseline results illustrated in tables and figures in the following subsections
represent Baseline 1 measurements listed in Figure 2 and Table 3. Detailed description of each fault
model can be found in Part I of this article series [1].

An additional modification was made in the following subsections to the original CV (RMSE) and
NMBE to better characterize the agreement between experiments and simulations and to understand
the impact of each parameter on the building-level energy consumption. For example, in the heating
season, the cooling demand is almost negligible compared to the heating demand. Because the
uncertainty of predicting the building energy consumption remains constant in the simulation, the CV
(RMSE) and NMBE increase significantly for the cooling consumption in the heating season. Although
this can be interpreted as quantitatively poor agreement of cooling energy consumption between
the measurement and simulation, this does not mean the behavior of the building system is poorly
predicted because the absolute scale and the impact of that small energy consumption are negligible.
In order to compare the agreement level of three major energy consumption categories (total building
consumption, total cooling consumption, and total heating consumption) based on the same reference
scale, modified CV (RMSE) (CV* [RMSE]) and NMBE (NMBE*) are used that replace the y variable
in Equations (1) and (2) of cooling and heating consumptions with y of the total building electricity
consumption, meaning that the modified metrics are normalized with respect to the total building
energy consumption rather than the energy consumption of the heating and cooling systems.
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3.1. HVAC Setback Error

While the normal setback hours for the entire operating period are between 10 p.m. and 7 a.m.,
the controller was directly modified to emulate three different setback error scenarios: delayed onset,
early termination, and no setback. Each fault scenario for these fault experiments was tested twice,
once in the heating season and once in the cooling season. To capture contiguous overnight setback
periods for each of the fault tests and to avoid transient effects at each end of the test period, the
operator imposed the fault prior to the start of the overnight setback period on the day preceding the
fault test and removed the fault after the end of the overnight setback period on the day following the
fault test. This was an exception to the general test procedure (besides the lighting setback error fault),
in which fault testing began and ended at midnight.

Table 4 shows CV (RMSE) and NMBE values for a number of model outputs within the building
system for combined summer and winter periods. In Table 4, cells are highlighted when the CV (RMSE)
and NMBE (as well as CV* [RMSE] and NMBE*) predictions are outside the targets (CV [RMSE] = 30%
and NMBE = ±10%). Most of the outputs are predicted well against measurements, but the humidity
ratio of the return and supply air and latent cooling capacity are not. The poor prediction of the
humidity level in thermal zones is also discussed in the initial calibration of the building model [44].
This is one of the model limitations that has not been solved in this study and needs to be improved
by improving the moisture balance model in the EnergyPlus and sensible heat ratio prediction in the
cooling coil model. Although the validation of the HVAC setback model does not require precise
agreement for the building’s humidity prediction, there are other faults (such as faults in the RTU)
where the humidity level is important for properly predicting the latent cooling capacity. Because
the setpoint of the room and supply air temperature were simulated based on actual measurements,
the predictions for these two outputs are within 8% of CV (RMSE). The results show infinite values
of CV (RMSE) and NMBE for the latent cooling capacity predictions, and this is because of the zero
dehumidification measurements in the winter season. Because the absolute scale of the latent load is
relatively small (in both winter and summer) compared to the sensible load, the total cooling capacity
predictions are within the target compared to measurements.

Table 4. CV (RMSE) and NMBE Calculations for Detailed Model Outputs: HVAC Setback Error
(Average of Winter and Summer).
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Figure 6 shows total electricity consumption (sensor accuracy = ±0.5% of reading) of the building
for each winter season scenario. It is clear from these results that delayed onset, early termination,
and no overnight setback faults are properly implemented in the model. Because the normal setback
starts at 10 p.m., 3 h of delay in setback causes the HVAC system to operate until the end of the day
(Figure 6b). Terminating the setback 3 h earlier than the normal operation causes the HVAC system to
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operate at 4 a.m. (Figure 6c). The HVAC system operates the entire day when the setback is not applied
(Figure 6d). The profiles of the total energy consumption predictions agree well with the measurement.
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Figure 7 shows the same time series plots, but for the summer season experiments and simulations.
The magnitudes of energy consumption are slightly reduced compared to winter results. Based on
model predictions shown in Figures 6 and 7, the building model reasonably captures the seasonal
difference between heating and cooling seasons.
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3.2. Lighting Setback Error

Fault definitions and the method of imposing the fault on the building are similar to the previous
HVAC setback error fault. Lighting setback error faults were also imposed ahead of the actual fault
testing date and removed the day after the testing date to avoid transient effects at transitions. Table 5
presents CV (RMSE) and NMBE results of detailed model outputs for all scenarios. The prediction
trend is similar to the HVAC setback error results. The poor predictions of the humidity ratio and
latent load cooling capacity as discussed in Section 3.1 are also shown in this table. A lighting column
is included, and corresponding CV (RMSE) and NMBE values were calculated. The heating energy
consumption is overpredicted (negative NMBE) compared to the measurement for the no setback
scenario, which resulted in slightly higher CV (RMSE) above the target limit.

Table 5. CV (RMSE) and NMBE Calculations for Detailed Model Outputs: Lighting Setback Error.
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Figure 9 shows total electricity consumption time series for all scenarios and comparisons 
between experiments (sensor accuracy = ±0.5% of reading) and model predictions. All model 
predictions show good agreement against the experimental measurements. However, impacts of 
lighting setback fault scenarios are not readily apparent in these graphs when comparing model 
results with and without the fault. This is one example of a fault in which the fault impact is very 
small compared to the whole-building energy consumption. In Figure 8, the lighting power 

Figure 8 shows lighting power comparisons between experiments (sensor accuracy = ±0.5% of
reading) and simulations for each scenario. The baseline measurements and model results in Figure 8a
match perfectly because the actual measurement was fed into the model. In addition, the faulted lighting
power profiles imposed by the fault model in Figure 8b–d agree well with the actual faulted measurements.
Small deviations between the measurements and model predictions are a result of limitations in the model
(i.e., the model simplifies the profile when there are multiple changes in the value within an extended
time frame) and sensitivity of the lighting power control and sensor measurement.
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Figure 9 shows total electricity consumption time series for all scenarios and comparisons between
experiments (sensor accuracy = ±0.5% of reading) and model predictions. All model predictions show
good agreement against the experimental measurements. However, impacts of lighting setback fault
scenarios are not readily apparent in these graphs when comparing model results with and without the
fault. This is one example of a fault in which the fault impact is very small compared to the whole-building
energy consumption. In Figure 8, the lighting power consumption is on the order of 1–3 kW, while the
total consumption in the building level reaches 20 kW in the summer and 30 kW in the winter.
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3.3. Condenser Fouling

For the condenser fouling and return air duct leakage faults, the fault intensity is defined at the
full load condition (supply fan at 100% speed and all VAV dampers fully open) and referenced to
the design airflow rate. Thus, fault intensities for these faults are measured based on the full load
condition prior to the actual experiments, and actual experiments are also conducted under the full
load condition. The operator covered the condenser coil with a blocking media (i.e., meshes with
different perforation levels) to reduce the airflow, remeasured the surface air velocity, and adjusted
the blocking media until the target airflow reductions were achieved. The media thereafter remained
unchanged for the duration of each test. Because the HVAC system was forced to operate under the
full load condition, additional VAV heating was provided to thermal zones to prevent overcooling.

Table 6 shows the CV (RMSE) and NMBE values for detailed building system parameters for the
condenser fouling fault scenarios. Energy consumption predictions for the total building, heating, and
cooling agree well with actual measurements based on CV (RMSE), but there are some biased results
in terms of NMBE in the 28% and 58% fouled scenarios. Besides the poor humidity prediction in the
EnergyPlus building model, another limitation that is not solved in this study is the accuracy of the
latent cooling capacity prediction of the two-stage direct expansion (DX) unit model. The DX unit
model in EnergyPlus requires nominal values (rated capacity, rated coefficient of performance [COP],
rated sensible heat ratio, and rated flow rate) along with performance maps that adjust the nominal
performances of the DX unit depending on different operating conditions (ambient temperature,
wet-bulb temperature to evaporator inlet, and part load ratio). A separate study was conducted to
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develop these performance maps for the two-stage DX unit [50]. Total cooling capacity and power
consumption estimations of the DX unit agree well with measurements, whereas the sensible heat
ratio prediction affecting the latent cooling capacity still needs some improvement. The impact of the
condenser fouling fault is negligible in terms of the building-level energy consumption. As a result,
validation focused on RTU performance measures.

Table 6. CV (RMSE) and NMBE Calculations for Detailed Model Outputs: Condenser Fouling.
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3.4. Nonstandard Refrigerant Charging 

Prior to executing the fault tests, the operator evacuated the RTU’s refrigerant circuit and 
recharged it to the nominal (manufacturer-specified) value. This nominal value was used as the 
baseline for subsequent fault tests. To impose a nonstandard refrigerant charge level, the operator 
evacuated and recharged the RTU’s refrigerant circuit with a mass of refrigerant that differed from 
the nominal value by the specified fault intensity. No exceptional experimental conditions were 
applied during these fault experiments, and all operating conditions and schedules followed the 
normal condition (besides refrigerant charge levels and weather conditions) described in Section 2.2. 

The fault model was evaluated in terms the relative RTU performance differences between the
baseline and faulted scenarios. Figure 10 shows measurements (COP uncertainty ≈ 3% of reading)
and model predictions of COP reductions in faulted scenarios compared to the baseline measurement
and model prediction, respectively. This way of isolating the degraded performance of the DX unit
eliminates the DX unit’s performance difference between the actual unit and model. The degradation
trend is correct, but the magnitude of the modeled degradation is incorrect. In Figure 10, in the 28%
fouling scenario, the model slightly underpredicts the COP reduction compared to the measurement.
In the 58% fouling scenario, the model significantly underpredicts the COP reduction. The condenser
fouling and nonstandard refrigerant charging fault models include regression models that are trained
with training data from multiple sources [42], but not with data from the specific RTU used in the
validation experiments. Thus, the deviation stems from the degradation difference between training
data and actual DX unit equipment tested in the building. Thus, improvements can be made for this
fault model by utilizing a larger and more representative training data set or developing an extended
regression model that can capture additional operating parameters that may have caused differences
in results. The peak values at the beginning and end of the measurements are a result of the transient
response during the transition between unoccupied hours and occupied hours.
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3.4. Nonstandard Refrigerant Charging

Prior to executing the fault tests, the operator evacuated the RTU’s refrigerant circuit and recharged
it to the nominal (manufacturer-specified) value. This nominal value was used as the baseline for
subsequent fault tests. To impose a nonstandard refrigerant charge level, the operator evacuated and
recharged the RTU’s refrigerant circuit with a mass of refrigerant that differed from the nominal value
by the specified fault intensity. No exceptional experimental conditions were applied during these
fault experiments, and all operating conditions and schedules followed the normal condition (besides
refrigerant charge levels and weather conditions) described in Section 2.2.

Table 7 shows the CV (RMSE) and NMBE results of detailed model outputs for the nonstandard
refrigerant charging fault. Prediction accuracies are similar to the results of the condenser fouling, but
with slightly more biased predictions (e.g., heating energy consumption and airflow rate).

Table 7. CV (RMSE) and NMBE calculations for detailed model outputs: Nonstandard refrigerant charging.
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3.5. Thermostat Measurement Bias

A thermostat bias of +2.2 ◦C is defined as a thermostat reading 2.2 ◦C higher than the actual
zone temperature. Based on the definition, the experiments were conducted by changing the room
setpoint temperature instead of imposing a bias in the thermostat reading. For example, the thermostat
bias of +2.2 ◦C was simulated by decreasing the zone setpoint temperature by 2.2 ◦C. The operator
used thermostats in rooms 105, 106, 205, and 206 to emulate the thermostat measurement bias of each
scenario. These rooms were selected to produce the greatest (most readily measurable) fault impact;
all these rooms face south and have a larger floor area compared to the other rooms.

Table 8 shows the CV (RMSE) and NMBE results of detailed model outputs for all scenarios of
the thermostat measurement bias fault. The total building, heating, and cooling energy consumption
predictions are within the target based on CV* (RMSE), with slight underpredictions shown in NMBE*.
As summarized in Table 3, the setpoints for room temperatures in the simulations for this fault were
fixed values defined in Table 1 rather than actual room temperatures from the experiments. Although
predictions of total building, heating, and cooling energy did not change significantly, the CV (RMSE)
and NMBE results of room temperatures were slightly higher than the results when measured values
were imposed as the room temperature setpoint. The impact of tested fault scenarios was not significant
in terms of the building level energy consumption and validation of the model focused on room
temperature controls.

Table 8. CV (RMSE) and NMBE calculations for detailed model outputs: Thermostat measurement bias.
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Figure 12 shows room temperature comparisons (for rooms 105, 106, 205, and 206) between
experiments (sensor accuracy = ±0.1 ◦C at 23 ◦C) and simulations where thermostats were biased with
−2.2 ◦C (equivalent to the thermostat setpoint increased by 2.2 ◦C) for two scenarios: thermostat bias in
two rooms (105 and 205) and four rooms (105, 106, 205, and 206). In this figure, results in Figure 12c,g
are the only rooms where the thermostat bias was not applied. Because it is difficult to calibrate an
individual room’s thermal behavior accurately with the model, temperature differences between model
predictions and measurements vary among the different rooms. Rooms on the second floor (205 and
206) have better agreement compared to rooms on the first floor (rooms 105 and 106). As shown with
these results, fault models that only modify existing variables in EnergyPlus rely on the accuracy of the
building model in terms of predicting its impact.

Based on results of rooms on the second floor (Figure 12e–h), the −2.2 ◦C bias was well predicted
compared to measurements. The model captures both early and late reheating demand and provides
less cooling during midday. However, while the prediction of the temperature in room 206 (Figure 12g)
shows almost perfect control along the setpoint, the temperature prediction in room 106 (Figure 12c) is
not close to the setpoint because of the insufficient cooling capacity limited by the maximum airflow
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defined in Table 2. Based on results shown in this section, the fault model accurately captures demands
of reheating and cooling throughout the day, but requires a more accurate building model in order to
predict individual room temperatures precisely.

Buildings 2019, 9, x FOR PEER REVIEW 20 of 33 

demands of reheating and cooling throughout the day, but requires a more accurate building model 
in order to predict individual room temperatures precisely. 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 12. Room temperature comparisons between experiments and simulations: thermostat 
measurement bias. (a) −2.2 °C bias in two rooms: room 105; (b) −2.2 °C bias in four rooms: room 105; 
(c) −2.2 °C bias in two rooms: room 106; (d) −2.2 °C bias in four rooms: room 106; (e) −2.2 °C bias in 
two rooms: room 205; (f) −2.2 °C bias in four rooms: room 205; (g) −2.2 °C bias in two rooms: room 
206; (h) −2.2 °C bias in four rooms: room 206. 

3.6. Excessive Infiltration Through the Building Envelope 

Prior to the actual fault tests, we conducted a series of blower door tests to measure the 
infiltration levels for baseline and faulted scenarios. The HVAC system was turned off during these 
tests. Table 9 includes results of the blower door tests for different scenarios. For each fault scenario, 
the operator repeatedly conducted a blower door test while adjusting window openings in two rooms 

Figure 12. Room temperature comparisons between experiments and simulations: thermostat measurement
bias. (a) −2.2 ◦C bias in two rooms: room 105; (b) −2.2 ◦C bias in four rooms: room 105; (c) −2.2 ◦C bias in
two rooms: room 106; (d) −2.2 ◦C bias in four rooms: room 106; (e) −2.2 ◦C bias in two rooms: room 205;
(f) −2.2 ◦C bias in four rooms: room 205; (g) −2.2 ◦C bias in two rooms: room 206; (h) −2.2 ◦C bias in four
rooms: room 206.
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3.6. Excessive Infiltration Through the Building Envelope

Prior to the actual fault tests, we conducted a series of blower door tests to measure the infiltration
levels for baseline and faulted scenarios. The HVAC system was turned off during these tests. Table 9
includes results of the blower door tests for different scenarios. For each fault scenario, the operator
repeatedly conducted a blower door test while adjusting window openings in two rooms (rooms
106 and 204) to increase the effective leakage area by an amount that achieved the specified fault
intensity. The vertical lengths of window openings of each room in Table 9 derived from these tests
then remained unchanged for the duration of each fault experiment. In order to increase the impact of
the infiltration on the building, relatively colder days (daily average outdoor air temperature less than
7.2 ◦C) were selected for all experiments.

Table 9. Blower door test results for each scenario.

Test Baseline Test +20% Infiltration +40% Infiltration

CFM 50 1364.32 1648.82 1868.11
ELA 75.038 90.69 102.75

C 107.30 129.67 146.92
N 0.65 0.65 0.65

Window opening Closed
Room 106: 2 1

4 ”
Room 204: 1 3

4 ”
Room 106: 4 3

4 ”
Room 204: 3 3

4 ”

The infiltration fault model uses standard infiltration objects that are already implemented in
EnergyPlus. EnergyPlus infiltration models can use a fixed infiltration rate for the entire simulation
period or can include some level of variation against the design infiltration rate by using a correlation
model that includes effects of the indoor and outdoor temperature difference and wind speed. However,
there are many more factors that influence infiltration or exfiltration in actual buildings. The infiltration
or exfiltration will occur based on the pressure difference between the indoor and outdoor environment;
this pressure can also vary depending on the opening/closing of windows/doors, cracks or leaks through
the building envelope, intensity of the building stack effect, and so on. All these physical properties
that drive the building’s infiltration/exfiltration level are difficult to completely implement within the
approach that is currently used in the EnergyPlus simulation. However, to make the infiltration model
as detailed as possible, we used the infiltration correlation model in the simulation [44]. Table 10 and
Figure 13 show validation results of detailed model outputs and total building energy consumption
profiles for all scenarios. As shown in Table 10, the total building energy consumption predictions
are above the target for both baseline and +20% infiltration scenarios. The CV (RMSE) of heating
energy prediction is high in the baseline scenario, and room temperature predictions are relatively
poor compared to previous validation results. In this fault model validation, fixed setpoints were
used instead of actual measurements for both room temperature and supply air temperature setpoints,
as described in Section 2.4.4.

Building energy consumption predictions for the baseline scenario (Figure 13a) mostly agree
well with the actual measurements (sensor accuracy = ±0.5% of reading), besides the unoccupied
period. Because these measurements were conducted during the winter season, additional cold air
in the building increased the heating demand. Overall, the impacts of faulted scenarios are within
the uncertainty of the building simulation model because differences between model results with
and without the fault model are smaller than the differences between model results (with fault) and
measurements (Figure 13b,c). Therefore, it is difficult to validate the model using the building-level
energy consumption. In fact, although the trend produced by the fault is as expected, the whole-building
model results without the fault are actually slightly closer to the observed building performance.
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Table 10. CV (RMSE) and NMBE Calculations for Detailed Model Outputs: Excessive Infiltration
Through the Building Envelope.
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Figure 13. Total building electricity consumptions of baseline and faulted scenarios: Excessive
infiltration through the building envelope. (a) baseline; (b) +20% infiltration; (c) +40% infiltration.

Figure 14 shows room temperatures and VAV heating power of room 106 for the baseline and
faulted scenarios. In Figure 14a,c,e, the actual room temperatures were controlled higher than the
setpoint (21 ◦C) during most of the occupied hours, besides the beginning of the occupied period where
the zone temperature was increasing to meet the setpoint. The room temperatures in the simulation
results were well maintained close to the setpoint. VAV heating output predictions in faulted scenarios
were underpredicted compared to the measurements. However, this is reasonable considering the
zone temperatures from measurements were mostly higher than model predictions. The VAV heating
output measurements of room 106 show an increasing trend with increased infiltration scenarios
between Figure 14b,d,f even though the average (between 7 a.m. to 10 p.m.) outdoor air temperature
on the baseline day (2.2 ◦C) was lower than faulted scenario days (5.8 ◦C for +20% infiltration and
4.7 ◦C for +40% infiltration). This is a result of the introduction of cold air into the rooms. The model
predictions follow the trend, as shown in Figure 14.
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Figure 14. Room temperature and VAV heating power of baseline and faulted scenarios in a smaller
room (room 106). (a) baseline: Room 106 temperature; (b) baseline: Room 106 VAV heating output;
(c) +20% infiltration: Room 106 temperature; (d) +20% infiltration: Room 106 VAV heating output;
(e) +40% infiltration: Room 106 temperature; (f) +40% infiltration: Room 106 VAV heating output.

Figure 14 also shows temperature (sensor accuracy = ±0.1◦C at 23 ◦C) and VAV heating power
(sensor accuracy = ±0.5% of reading) differences between experiments and model predictions during
the unoccupied hours, where the model predicted a much faster temperature decrease after the start
of setback. Although the measurements for the +40% infiltration scenario also showed a significant
temperature decrease in room 106 during the unoccupied hours, which triggered additional heating as
shown in Figure 14f, the building model did not predict the free floating temperature correctly for
other scenarios, which resulted in poor overall building-level energy predictions, as shown in Table 10.
The same trend is also observed between experiment and model results for room 204 that was tested
with additional infiltration. Similar to the thermostat measurement bias model, the impact of excessive
infiltration is also well captured in terms of estimating the additional reheating demand; however,
better model prediction also requires a more accurate building model (especially the infiltration model
in EnergyPlus) for better prediction of room temperatures and VAV heating outputs.

3.7. Economizer Opening Stuck at a Fixed Position

The operator overrode the damper position variable in the economizer’s controller user interface
to fix the outdoor air damper position during each testing period. All other operating conditions
followed the normal operating conditions described in Section 2.2.

Table 11 presents CV (RMSE) and NMBE results from detailed model outputs for all scenarios.
Although CV (RMSE) results of the total building energy consumption predictions are within or close
to the target level, the predictions for the total cooling capacity, supply air temperature, and return air
temperature are poor, especially for the damper 100% open scenario. Although the impact of this fault is
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not negligible in terms of the building level energy consumption, detailed model outputs are also used to
validate the fault model because of the failure of various detailed model outputs to meet the target NMBE.

Table 11. CV (RMSE) and NMBE calculations for detailed model outputs: Economizer opening stuck
at a fixed position.
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Figure 15 shows the return and supply air temperature (sensor accuracy = ±0.1 ◦C at 23 ◦C) and
total cooling capacity (total cooling capacity uncertainty ≈ 3% of reading) comparisons for all scenarios.
As shown in Figure 15a,b, model predictions of return and supply air temperature and total capacity are
within a reasonable range in the baseline scenario. For the results of Figure 15e,f, 100% outdoor air was
imposed in the model, and it predicted that insufficient cooling capacity existed throughout most of the
occupied hours for conditioning the air to the supply air temperature setpoint. The measured data also
show insufficient cooling capacity (the supply air temperature increased to about 17 ◦C at the highest
peak demand); however, the measured supply air temperature was much lower than the model predicted.
This is not because of an underestimate of maximum cooling capacity in the model; in fact, the model
predicts higher cooling capacity than is observed in the measured data (Figure 15f). Rather, in the model,
the amount of the outdoor air increases linearly with the opening of the outdoor air damper, but the
experimental results show that the relationship between the damper opening and outdoor air volume
is not strictly linear. Thus, the model does not fully capture the physical behavior of the fault. Because
economizer opening stuck faults are known anecdotally to be prevalent in commercial buildings, it is
important to improve this fault model in order to capture this nonlinearity.
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3.8. Return Air Duct Leakage

The experiments for the baseline and faulted scenarios were conducted with the RTU operating
in full load (100% fan power and all VAV dampers fully open). The fault intensity is defined at the
full load condition and referenced to the design flow rate. For example, if the supply air design flow
rate is 1000 cfm and the fault intensity is 15% leakage, then 150 cfm of the outdoor air is introduced
to the air system prior to the conditioning of the air. To impose the fault, the operator inserted an
adjustable opening—such as a circular cutout—in the return duct at the RTU, such that a portion of the
outdoor air was introduced into the air system. To set up each test, the operator temporarily overrode
the building control system to force all VAV dampers to the fully open position and force the RTU
to the full load operating condition. The operator then adjusted the size of the opening by adjusting
the damper opening to achieve the specified fault intensity. The airflow through the damper was
estimated using the measured pressure drop and the value of the damper opening position:

q = K
√

∆P

where q = airflow (cfm); ∆P = measured pressure drop (in.w.g.); K = constant of proportionality
dependent upon orifice area (damper opening position).

The damper opening remained unchanged for the duration of each fault test.
Table 12 presents CV (RMSE) and NMBE results of detailed model outputs for the return air

duct leakage fault. The CV (RMSE) results are mostly within the target level (besides latent cooling
capacity predictions), whereas total building energy and heating energy predictions are underpredicted
compared to measurements, as shown in NMBE results. Although the results of the baseline and
15% leakage scenario show reasonable predictions against measurements, the 30% leakage scenario
overpredicts the total cooling capacity.

Table 12. CV (RMSE) and NMBE Calculations for Detailed Model Outputs: Return Air Duct Leakage.
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Figure 16 shows detailed plots, including total cooling capacity (total cooling capacity uncertainty
≈ 3% of reading) and total VAV heating (sensor accuracy = ±0.5% of reading) predictions for all
scenarios. The difference in the transient response because of thermal and mechanical delay between
measurements and simulation is seen in both cooling capacity and VAV heating results. The predicted
cooling capacity peak is much higher than the measured value, and the VAV reheat peak timings
occur earlier in the model. The total cooling capacity predictions of the baseline and 15% leakage
scenario show reasonable agreement with measurements, but the 30% leakage scenario significantly
overpredicts the cooling capacity. The fault model applies the air leakage by increasing the fraction
of the outdoor air linearly based on the fault intensity definition; thus, the load on the cooling coil
also increases linearly based on the amount of outdoor air introduced. However, as with the results
shown in the economizer damper stuck fault, comparisons between measurements and the unfaulted
simulations show that the impact of the outdoor air introduced into the return air system is also
nonlinear. Thus, this model also requires an improvement for capturing nonlinearities of the duct
leakage in the air system.
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Figure 16. Total heating and cooling energy consumptions of baseline and faulted scenarios: Return
air duct leakage. (a) baseline: total cooling capacity; (b) baseline: heating energy consumption;
(c) +15% leak in return air duct: total cooling capacity; (d) +15% leak in return air duct: heating energy
consumption; (e) +30% leak in return air duct: total cooling capacity; (f) +30% leak in return air duct:
heating energy consumption.
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4. Discussion, Limitations, and Future Work

As demonstrated by the quantitative and qualitative validation in Section 3, the fault models’
validation results varied depending on characteristics of the fault and model structure. Faults such as
HVAC/lighting setback error, thermostat measurement bias, and excessive infiltration where existing
EnergyPlus variables were modified captured relative impacts (e.g., increased heating or cooling
demand) correctly in the building system. However, these fault models require a more accurate building
model in order to predict individual room behaviors (e.g., room temperature, VAV heating output)
precisely. Although the nonstandard refrigerant charging model provided reasonable predictions
compared to measurements for all faulted scenarios, the condenser fouling fault model (which has the
same model structure of the nonstandard refrigerant charging) mostly underpredicted the degradation
impacts. We also identified opportunities for model improvements for the stuck economizer damper
opening and return air duct leakage fault models, where measurements showed nonlinear behavior
that is not present in the model. Following are summaries of limitations that can lead to future work:

- In order to precisely estimate the impacts of faults on the building, and especially for fault
models that only modify existing variables in EnergyPlus, the building model requires a more
rigorous calibration process to precisely reflect the thermal behavior of the building. Although
poor humidity level prediction in the building model did not have a significant impact on the
building’s overall performance (because the absolute scale of the latent load was already small),
the difference in the rate of temperature decay during the unoccupied hours did lead to significant
overprediction of heating energy consumption for the winter season simulation.

- Fault models for predicting the degradation of the RTU performance (e.g., condenser fouling
and nonstandard refrigerant charging) were developed by estimating the relative deviation
from the nominal equipment’s performance. Although the nonstandard refrigerant charging
model showed good agreement against measurements, the condenser fouling model requires
additional improvement based on validation results. Additionally, a more accurate DX unit
model (or cooling coil model in EnergyPlus) is necessary to accurately estimate both sensible and
latent cooling performances of the unit.

- The stuck economizer damper and return air duct leakage faults are modeled by linearly
introducing the outdoor air into the air system depending on the definition of the fault intensity.
However, measurements showed that the impacts from a stuck damper and return air duct
leakage are nonlinear. While pressure-based airflow network models can be used for improved
prediction of outdoor air introduced into the air system, this type of model typically requires high
computational requirements that are not suitable in building energy simulation tools. Thus, these
two fault models also need improvements for capturing nonlinearities.

5. Conclusions

This work was motivated by the need for development of a cost-effective AFDD tool for the small
commercial buildings market, where the energy savings potential is high but the return of the AFDD
tool investment is low. In this study, the objective was to use a building energy simulation tool suite
(EnergyPlus and OpenStudio) to generate a data set that can be used for training an AFDD algorithm.
Because there has not been a study for developing and validating models to simulate faults that are
common in small commercial buildings, Part I of this article series presented a library of fault models,
including detailed descriptions of each fault model structure and implementation within EnergyPlus.

In this article (Part II), we presented a methodology of validating fault models with OpenStudio as
well as validation results against measurements from a reference building. We conducted experiments
and simulations for eight different faults (a total of 39 different baseline and faulted scenarios) using
the reference building and fault models in order to enable model validations. The experimental results
were uploaded in a public repository for future use cases [45]. Out of eight fault models validated
in this study, five fault models (HVAC setback error, lighting setback error, thermostat measurement
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bias, excessive infiltration, and nonstandard refrigerant charging) showed reasonable predictions
against measurements (assuming adequate accuracy of reference building model), and three fault
models (condenser fouling, economizer opening stuck, and return air duct leakage) were identified as
needing improvement.
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Nomenclature

Greek symbols
∆ difference in time
θ solar zenith angle, rad
Acronyms
AFDD automated fault detection and diagnosis
C air leakage coefficient of the airflow power law
CFM 50 airflow measured with a blower door test with 50 pascals, cfm
COP coefficient of performance
CV (RMSE) coefficient of variation of the root-mean-square error, %
DHI diffuse horizontal irradiance, W/m2

DNI direct normal irradiance, W/m2

DX direct expansion
ELA effective leakage area, in2

FRP flexible research platform
GHI global horizontal irradiance, W/m2

HVAC heating, ventilating, and air conditioning
K constant of proportionality dependent upon orifice area
N pressure exponent of the airflow power law
n total number of data points
NMBE normalized mean bias error, %
NSRDB National Solar Radiation Database
PAT Parametric Analysis Tool
P Pressure, in.w.g.
q airflow, cfm
RTU rooftop unit
y actual metered value
ŷ predicted value
y average of metered value
VAV variable air volume
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Appendix A

Table A1. Experimental configurations for all fault experiments.

Scenario Baseline 3 h delayed onset 3 h early
termination No setback

Fault intensity definition - Delay in onset of overnight
HVAC setback, in hours

Early termination
of overnight HVAC

setback, in hours

Absence of overnight HVAC setback
(binary)

HVAC Setback Error Fault imposition method - Modify the control programming to either delay/terminate/remove the setback schedules.
Tested date 30/11/2017 7-8/8/2018 1/12/2017 5/8/2018 3/12/2017 4/8/2018 20/12/2017 28/8/2018

Average daily ambient
temperature 9.0 ◦C 26.1 ◦C 9.1 ◦C 25.7 ◦C 10.5 ◦C 25.4 ◦C 11.6 ◦C 26.1 ◦C

Exception - Fault imposed earlier and removed later than other fault experiments to avoid transient
effects during transitions.

Scenario Baseline 3 h delayed onset 3 h early
termination No setback

Fault intensity definition - Delay in onset of overnight
lighting setback, in hours

Early termination
of overnight

lighting setback, in
hours

Absence of overnight HVAC setback
(binary)

Lighting Setback Error Fault imposition method - Modify the control programming to either delay/terminate/remove the setback schedules.
Tested date 5/2/2019 7/2/2018 9/2/2018 18/2/2018

Average daily ambient
temperature 4.3 ◦C 3.1 ◦C 1.6 ◦C 7.4 ◦C

Exception - Fault imposed earlier and removed later than other fault experiments to avoid transient
effects during transitions.

Scenario Baseline 28% fouling 58% fouling
Fault intensity definition - Percent reduction in condenser coil airflow at full load.
Fault imposition method - Cover the condenser face using pretested blocking media.

Condenser Fouling Tested date 2/9/2019 27/8/2017 29/8/2017
Average daily ambient

temperature 16.4 ◦C 22.9 ◦C 22.1 ◦C

Exception - RTU operated in full load (supply fan in 100% speed) and all VAV dampers fully open.

Scenario Baseline 15% undercharge 30% undercharge 15% overcharge
Fault intensity definition - Fraction of refrigerant charge level deviated from normal charge.
Fault imposition method - Add or remove refrigerant to the refrigerant circuit.

Nonstandard
Refrigerant Charging Tested date 22-23/8/2019 14/8/2018 16/8/2018 18/8/2018

Average daily ambient
temperature 23.4 ◦C 24.1 ◦C 24.4 ◦C 24.8 ◦C

Exception - No exception. Based on normal operating conditions and schedule.

Scenario Baseline −2.2 ◦C bias in
room 105 and 205

+2.2 ◦C bias in
room 105 and 205

−2.2 ◦C bias in
room 105, 205, 106,

and 206

+2.2 ◦C bias in room 105,
205, 106, and 206

Fault intensity definition - Zone thermostat measurement deviation from correct value in ◦C (e.g., positive fault
intensity = measurement reading higher than actual).

Thermostat
Measurement Bias Fault imposition method - Adjust temperature setpoints of rooms by a number of degrees equal in magnitude and

opposite in sign to the fault intensity.
Tested date 9/8/2019 10/8/2019 14/8/2019 12/8/2019 13/8/2019

Average daily ambient
temperature 26.0 ◦C 26.6 ◦C 25.7 ◦C 25.5 ◦C 26.6 ◦C

Exception - No exception. Based on normal operating condition and schedule.

Scenario Baseline +20% infiltration +40% infiltration
Fault intensity definition - Effective infiltration area as a percentage of the nominal value.
Fault imposition method - Open windows to achieve target infiltration area.

Excessive Infiltration
Through the

Building Envelope
Tested date 9-10/12/2019 7/12/2017 14/12/2017

Average daily ambient
temperature 1.2 ◦C 3.8 ◦C 0.6 ◦C

Exception - Baseline and fault tests conducted only when daily average ambient temperature was less
than 7.2 ◦C in order to increase the fault impact.

Scenario Baseline Damper 50% open Damper 100% open
Fault intensity definition - Ratio of economizer damper at the stuck position (0 = fully closed, 1 = fully open).
Fault imposition method - Modify the control programming to override the position of the outdoor air damper.

Economizer Opening
Stuck at a Fixed Position Tested date 20/8/2019 15/8/2019 19/8/2019

Average daily ambient
temperature 27.4 ◦C 25.4 ◦C 26.4 ◦C

Exception - No exception. Based on normal operating condition and schedule.

Scenario Baseline 15% return duct leakage 30% return duct leakage

Fault intensity definition - Unconditioned air introduced into the return air stream at full load condition as a percent of
the design airflow rate.

Return Air Duct Leakage Fault imposition method - Insert an adjustable opening in the return duct at the RTU and adjust this to achieve the
target air-leakage rate.

Tested date 21-22/6/2019 15/6/2018 19/6/2018
Average daily ambient

temperature 24.1 ◦C 25.6 ◦C 27.4 ◦C

Exception - RTU operated under full load (supply fan at 100% speed) and all VAV dampers fully open.

References

1. Kim, J.; Frank, S.; Braun, J.E.; Goldwasser, D. Representing small commercial building faults in energyplus,
Part I: Model development. Buildings 2019, 9, 233. [CrossRef]

2. Kim, J.; Cai, J.; Braun, J.E. Common Faults and Their Prioritization in Small Commercial Buildings; Common
Faults and Their Prioritization in Small Commercial Buildings: February 2017–December 2017. 2018. Available
online: https://www.nrel.gov/docs/fy18osti/70136.pdf (accessed on 12 November 2019).

http://dx.doi.org/10.3390/buildings9110233
https://www.nrel.gov/docs/fy18osti/70136.pdf


Buildings 2019, 9, 239 29 of 31

3. Roth, K.W.; Westphalen, D.; Feng, M.Y.; Llana, P.; Quartararo, L. Energy Impact of Commercial Building Controls
and Performance Diagnostics: Market Characterization, Energy Impact of Building Faults and Energy Savings
Potential; Building Technologies Program; National Technical Reports Library: Washington, DC, USA, 2005.

4. Frank, S.; Heaney, M.; Jin, X.; Robertson, J.; Cheung, H.; Elmore, R.; Henze, G. Hybrid Model-Based and
Data-Driven Fault Detection and Diagnostics for Commercial Buildings; American Council for an Energy-Efficient
Economy (ACEEE): Washington, DC, USA, 2016.

5. Kim, W.; Katipamula, S. A review of fault detection and diagnostics methods for building systems. Sci. Technol.
Built Environ. 2018, 24, 3–21. [CrossRef]

6. Yu, Y.; Yuill, D.; Behfar, A. Fault Detection and Diagnostics (FDD) Methods for Supermarkets-Phase 1; ASHRAE:
Omaha, NE, USA, 2017.

7. Yuill, D.P.; Braun, J.E. Evaluating the performance of fault detection and diagnostics protocols applied to
air-cooled unitary air-conditioning equipment. HVAC&R Res. 2013, 19, 882–891.

8. Yuill, D.P.; Braun, J.E. Effect of the distribution of faults and operating conditions on AFDD performance
evaluations. Appl. Therm. Eng. 2016, 106, 1329–1336. [CrossRef]

9. Ali, A.H.H.; Ismail, I.M. Evaporator air-side fouling: Effect on performance of room air conditioners and
impact on indoor air quality. HVAC&R Res. 2008, 14, 209–219.

10. Aydin, C.; Ozerdem, B. Air leakage measurement and analysis in duct systems. Energy Build. 2006, 38, 207–213.
[CrossRef]

11. Bell, I.H.; Groll, E.A. Air-side particulate fouling of microchannel heat exchangers: Experimental comparison
of air-side pressure drop and heat transfer with plate-fin heat exchanger. Appl. Therm. Eng. 2011, 31, 742–749.
[CrossRef]

12. Cho, S.-H.; Yang, H.-C.; Zaheer-uddin, M.; Ahn, B.-C. Transient pattern analysis for fault detection and
diagnosis of HVAC systems. Energy Convers. Manag. 2005, 46, 3103–3116. [CrossRef]

13. Comstock, M.C.; Braun, J.E.; Groll, E.A. The sensitivity of chiller performance to common faults. HVAC&R Res.
2001, 7, 263–279.

14. Goswami, D.Y.; Ek, G.; Leung, M.; Jotshi, C.K.; Sherif, S.A.; Colacino, F. Effect of refrigerant charge on the
performance of air-conditioning systems. In Proceedings of the IECEC-97 Proceedings of the Thirty-Second
Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), Honolulu, HI, USA, 27 July–1
August 1997; Volume 3, pp. 1635–1640.

15. Kim, M.; Payne, W.V.; Domanski, P.A.; Yoon, S.H.; Hermes, C.J.L. Performance of a residential heat pump
operating in the cooling mode with single faults imposed. Appl. Therm. Eng. 2009, 29, 770–778. [CrossRef]

16. Kim, W.; Braun, J.E. Evaluation of the impacts of refrigerant charge on air conditioner and heat pump
performance. Int. J. Refrig. 2012, 35, 1805–1814. [CrossRef]

17. Mukhopadhyaya, P.; Bomberg, M.; Kumaran, M.K.; Drouin, M.; Lackey, J.C.; Van Reenen, D.; Normandin, N.
Long-term thermal resistance of polyisocyanurate foam insulation with gas barrier. In Proceedings of the IX
International Conference on Performance of Exterior Envelopes of Whole Buildings, Clearwater Beach, FL,
USA, 5–10 December 2004.

18. O’Neal, D.L.; Farzad, M. The effect of improper refrigerant charging on the performance of an air conditioner
with capillary tube expansion. Energy Build. 1990, 14, 363–371. [CrossRef]

19. Pak, B.C.; Groll, E.A.; Braun, J.E. Impact of fouling and cleaning on plate fin and spine fin heat exchanger
performance. ASHRAE Trans. 2005, 111, 496–504. [CrossRef]

20. Palmiter, L.; Kim, J.-H.; Larson, B.; Francisco, P.W.; Groll, E.A.; Braun, J.E. Measured effect of airflow and
refrigerant charge on the seasonal performance of an air-source heat pump using R-410A. Energy Build. 2011,
43, 1802–1810. [CrossRef]

21. Qureshi, B.A.; Zubair, S.M. The impact of fouling on the condenser of a vapor compression refrigeration
system: An experimental observation. Int. J. Refrig. 2014, 38, 260–266. [CrossRef]

22. Rice, C.K. The Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory
Predictions; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1987.

23. Siegel, J.A.; Nazaroff, W.W. Predicting particle deposition on HVAC heat exchangers. Atmos. Environ. 2003, 37,
5587–5596. [CrossRef]

24. Simmler, H.; Brunner, S. Vacuum insulation panels for building application: Basic properties, aging mechanisms
and service life. Energy Build. 2005, 37, 1122–1131. [CrossRef]

http://dx.doi.org/10.1080/23744731.2017.1318008
http://dx.doi.org/10.1016/j.applthermaleng.2016.06.149
http://dx.doi.org/10.1016/j.enbuild.2005.05.010
http://dx.doi.org/10.1016/j.applthermaleng.2010.10.019
http://dx.doi.org/10.1016/j.enconman.2005.02.012
http://dx.doi.org/10.1016/j.applthermaleng.2008.04.009
http://dx.doi.org/10.1016/j.ijrefrig.2012.06.007
http://dx.doi.org/10.1016/0378-7788(90)90098-4
http://dx.doi.org/10.1007/BF02983611
http://dx.doi.org/10.1016/j.enbuild.2011.03.026
http://dx.doi.org/10.1016/j.ijrefrig.2013.08.012
http://dx.doi.org/10.1016/j.atmosenv.2003.09.033
http://dx.doi.org/10.1016/j.enbuild.2005.06.015


Buildings 2019, 9, 239 30 of 31

25. Wallace, L.A.; Emmerich, S.J.; Howard-Reed, C. Continuous measurements of air change rates in an occupied
house for 1 year: The effect of temperature, wind, fans, and windows. J. Expo. Anal. Environ. Epidemiol.
Princet. 2002, 12, 296–306. [CrossRef]

26. Wichman, A.; Braun, J. Fault detection and diagnostics for commercial coolers and freezers. HVAC&R Res.
2008, 15:1, 77–99. [CrossRef]

27. Woradechjumroen, D.; Yu, Y.; Li, H.; Yu, D.; Yang, H. Analysis of HVAC system oversizing in commercial
buildings through field measurements. Energy Build. 2014, 69, 131–143. [CrossRef]

28. Zirkelbach, D.; Schafaczek, B.; Künzel, H.M. Thermal performance degradation of foam insulation in inverted
roofs due to moisture accumulation. In Proceedings of the XII DBMC 2011, 12th International Conference on
Durability of Building Materials and Components, Porto, Portugal, 12–15 April 2011; Volume 1, pp. 529–536.

29. Cheung, H.; Braun, J.E. Simulation of fault impacts for vapor compression systems by inverse modeling.
Part I: Component modeling and validation. HVAC&R Res. 2013, 19, 892–906.

30. Cheung, H.; Braun, J.E. Simulation of fault impacts for vapor compression systems by inverse modeling.
Part II: System modeling and validation. HVAC&R Res. 2013, 19, 907–921.

31. Cheung, H.; Braun, J.E. Empirical modeling of the impacts of faults on water-cooled chiller power consumption
for use in building simulation programs. Appl. Therm. Eng. 2016, 99, 756–764. [CrossRef]

32. Dey, M.; Rana, S.P.; Dudley, S. Smart building creation in large scale HVAC environments through automated
fault detection and diagnosis. Future Gener. Comput. Syst. 2018. [CrossRef]

33. Farzad, M. Modeling the Effects of Refrigerant Charging on Air Conditioner Performance Characteristics for
Three Expansion Devices. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1990.

34. Guo, Y.; Tan, Z.; Chen, H.; Li, G.; Wang, J.; Huang, R.; Liu, J.; Ahmad, T. Deep learning-based fault diagnosis of
variable refrigerant flow air-conditioning system for building energy saving. Appl. Energy 2018, 225, 732–745.
[CrossRef]

35. Harms, T.M. Charge Inventory System Modeling and Validation for Unitary Air Conditioners. Ph.D. Thesis,
Purdue University, West Lafayette, IN, USA, 2002.

36. Inamdar, H.V.; Groll, E.A.; Weibel, J.A.; Garimella, S.V. Prediction of air-side particulate fouling of HVAC&R
heat exchangers. Appl. Therm. Eng. 2016, 104, 720–733.

37. Li, S.; Wen, J. Application of pattern matching method for detecting faults in air handling unit system.
Autom. Constr. 2014, 43, 49–58. [CrossRef]

38. Reddy, T.A. Application of a generic evaluation methodology to assess four different chiller FDD methods
(RP-1275). HVAC&R Res. 2007, 13, 711–729.

39. Rossi, T.M. Detection, Diagnosis, and Evaluation of Faults in Vapor Compression Equipment. Ph.D. Thesis,
Purdue University, West Lafayette, IN, USA, 1995.

40. Shen, B.; Braun, J.E.; Groll, E.A. Improved methodologies for simulating unitary air conditioners at off-design
conditions. Int. J. Refrig. 2009, 32, 1837–1849. [CrossRef]

41. NREL Open Studio Fault Models. Available online: https://github.com/NREL/OpenStudio-fault-models
(accessed on 23 May 2019).

42. Cheung, H.; Braun, J.E. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm;
National Renewable Energy Laboratory: Golden, CO, USA, 2015.

43. Im, P.; Bhandari, M.S.; New, J.R. Multiyear Plan for Validation of EnergyPlus Multi-Zone HVAC System Modeling
using ORNL’s Flexible Research Platform; Oak Ridge National Lab (ORNL), Building Technologies Research
and Integration Center (BTRIC): Oak Ridge, TN, USA, 2016.

44. Goldwasser, D.; Ball, B.L.; Farthing, A.D.; Frank, S.M.; Im, P. Advances in Calibration of Building Energy Models
to Time Series Data: Preprint; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018.

45. Kim, J.; Im, P.; Leach, M. Curated Test Fault Data Set. Available online: https://openei.org/doe-opendata/

dataset/curated-test-fault-data-set (accessed on 16 November 2019).
46. National Renewable Energy Laboratory. OpenStudio. Available online: https://www.openstudio.net/

(accessed on 20 November 2019).
47. Goldwasser, D.; Macumber, D.; Parker, A.; Lee, E.; Guglielmetti, R.; Brackney, L. The Life Cycle of an OpenStudio

Measure: Development, Testing, Distribution, and Application; National Renewable Energy Lab. (NREL): Golden,
CO, USA, 2016.

48. ASHRAE. ASHRAE Guideline 14-2014—Measurement of Energy, Demand, and Water Savings; American Society
of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Atlanta, GA, USA, 2014.

http://dx.doi.org/10.1038/sj.jea.7500229
http://dx.doi.org/10.1080/10789669.2009.10390826
http://dx.doi.org/10.1016/j.enbuild.2013.10.015
http://dx.doi.org/10.1016/j.applthermaleng.2016.01.119
http://dx.doi.org/10.1016/j.future.2018.02.019
http://dx.doi.org/10.1016/j.apenergy.2018.05.075
http://dx.doi.org/10.1016/j.autcon.2014.03.002
http://dx.doi.org/10.1016/j.ijrefrig.2009.06.009
https://github.com/NREL/OpenStudio-fault-models
https://openei.org/doe-opendata/dataset/curated-test-fault-data-set
https://openei.org/doe-opendata/dataset/curated-test-fault-data-set
https://www.openstudio.net/


Buildings 2019, 9, 239 31 of 31

49. National Solar Radiation Database (NSRDB). Available online: https://nsrdb.nrel.gov/ (accessed on 5
September 2019).

50. Wheeler, G.; Kozubal, E.; Judkoff, R. Experimental design and laboratory characterization of a medium-
and high-efficiency rooftop unit for use in building energy simulations. In Proceedings of the International
Refrigeration and Air Conditioning Conference, West Lafayette, Indiana, 9–12 August 2018; Purdue University.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://nsrdb.nrel.gov/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Overall Workflow 
	Physical Experiments 
	Validation Workflow 
	Building Model Tuning and Validation Process Modifications 
	Supply Duct Leakage and VAV Box Configurations 
	Infiltration in Return Air Plenum 
	Diffuse Horizontal Irradiance Calculation 
	Other Preprocess Modifications 


	Fault Model Validation Results 
	HVAC Setback Error 
	Lighting Setback Error 
	Condenser Fouling 
	Nonstandard Refrigerant Charging 
	Thermostat Measurement Bias 
	Excessive Infiltration Through the Building Envelope 
	Economizer Opening Stuck at a Fixed Position 
	Return Air Duct Leakage 

	Discussion, Limitations, and Future Work 
	Conclusions 
	
	References

