Appendix

Index	Description
DGP	Daylight Glare Probability is a glare metric developed based on an empirical approach [2]
Av_lum	Average Luminance of Image
E_v	Vertical Illuminance
DGI	Daylight Glare Index predict discomfort glare from large sources (i.e., visible sky from the
	window). [3]
UGR	Unified Glare Rating is developed by CIE and is restricted to a specific small glare source
	sizes within the upper part of the visual field [4]
VCP	Visual Comfort Probability [5]
CGI	CIE Glare Index Einhorn [6]
Lum_sources	Average Luminance of All Glare Sources
Omega_sources	Sum of Solid Angles of Glare Sources
Lum_backg	Background Luminance
E_v_dir	Direct Vertical Illuminance
Lveil	Veiling Luminance (disability glare according Poynter)
Lveil_cie	Veiling Luminance (sum of disability glare according Stiles-Holladay CIE)
DGR	Discomfort Glare Ratio
UGP	Unified Glare Probability is a modified version of the Unified Glare Rating (UGR) [7]
UGR_exp	Unified Glare Rating
DGI_mod	Daylight Glare Index Nazzal and Chutarat [8]
Av_lum_pos	Average luminance weighted by position index
Av_lum_pos2	Average luminance weighted by squared position index
Med_lum	Median luminance of image
Med_lum_pos	Median of position index weighted luminance of image
Med_lum_pos2	Median of squared position index weighted luminance of image

The 22 glare/luminance/Illuminance indices extracted from Evalglare [1] are detailed in the following table;

1. Wienold, J., C. REETZ, and T. KUHN. *Evalglare: a new RADIANCE-based tool to evaluate glare in office spaces.* in 3rd International Radiance Workshop. 2004.

2. Wienold, J. and J. Christoffersen, *Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras.* Energy and Buildings, 2006. **38**(7): p. 743-757.

3. Hopkinson, R.G., *Glare from daylighting in buildings*. Applied Ergonomics, 1972. **3**(4): p. 206-215.

4. Carlucci, S., F. Causone, F. De Rosa, and L. Pagliano, *A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design*. Renewable and Sustainable Energy Reviews, 2015. **47**: p. 1016-1033.

5. Luckiesh, M. and S.K. Guth, Brightnesses in Visual Field at Borderline Between Comfort and Discomfort (BCD). LEUKOS, 1949.

 Einhorn, H.D., *Discomfort glare: a formula to bridge differences*. Lighting Research and Technology, 1979. **11**(2): p. 90-94.

Hirning, M.B., G.L. Isoardi, and I. Cowling, *Discomfort glare in open plan green buildings*. Energy and Buildings, 2014.
70: p. 427-440.

8. Nazzal, A.A. and A. Chutarat, *A New Daylight Glare Evaluation Method*. Architectural Science Review, 2001. **44**(1): p. 71-82.