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Abstract: In the last decades, the possibility to use the inelastic capacities of structures have driven
the seismic design philosophy to conceive structures with ductile elements, able to obtain large
deformations without compromising structural safety. In particular, the utilization of high-strength
elements combined with the purpose of reducing inertial masses of the construction has highlighted
the second-order effect as a result of the “lightweight” structure’s flexibility. Computational aspects
of inclusion of the second-order effects in the structural analysis remain an open issue and the most
common method in the current design practices uses the stability coefficient θ The stability coefficient
estimates the ratio between the second-order effect and lateral loads’ effects. This coefficient is used
then to amplify the lateral loads’ effects in order to consider the second-order effects, within a certain
range proposed by codes of practices. In the present paper, we propose a simple approach, as an
alternative to the stability coefficient method, in order to take into consideration P-Delta effects for
earthquake-resisting ductile frame structures in the design process. The expected plastic deformations,
which can be assessed by the behavior factor and the elastic deformations of the structure, are expected
to magnify the P-Delta effects compared to those estimated from an elastic approach. The real internal
forces are approximated by modifying the stiffness matrix of the structure in such a way as to provide
a compatible amplification effect. This concept is herein implemented with a three-step procedure
and illustrated with well-documented case studies from the current literature. The obtained results
show that the method, although simple, provides a good approximation compared to more refined
and computationally expensive methods. The proposed method seems promising for facilitating the
design computations and increasing the accuracy of the internal forces considering the second-order
effects and the amplification from the inelastic deformations.
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1. Introduction

The primary objective of earthquake engineering is to provide an adequate margin of safety against
earthquake loads. According to performance-based seismic design, any structure adequately designed
should fulfill a multilevel performance criterion, where of particular importance is guaranteeing the
life safety and the collapse prevention of the structure [1]. However, collapse prevention is not a simple
goal, which will always demand the acceptance of a small probability of collapse. Acceptance of this
small probability of collapse requires the ability to predict, with sufficient confidence, the structural
behavior until collapse. Observations of collapsed buildings in past earthquakes show that two modes
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of collapse can be envisioned for a typical building: (i) sidesway collapse and (ii) vertical collapse [2].
This statement is true not only for frame structures, but for any complex structures which may exhibit
atypical collapse configurations; refer to [3] for masonry monumental structures, or to [4] (the abacus
of vulnerability classification of buildings). The lateral collapse is initiated by the horizontal loads
acting on the structure, either by seismic events or strong winds, until the lateral strength capacity of
the structural elements is exceeded. Analyzing whether it is technically and economically possible to
balance the seismic input, the designer may decide to adopt several choices, referring to [5], of which
the more frequently embraced is the incrementation of the dissipated hysteretic energy by increasing
the structural ductility. On the other hand, a ductile design leads to the evolution of large interstory
drifts due to the advancement of plastic deformations. A progressive reduction of the load-carrying
capacity of structural components that are part of the building’s lateral-load-resisting system may
occur to the extent that second-order (P-∆) effects overcome gravity load resistance. P-Delta effects
can significantly increase displacements and internal member forces in the postyield response of a
structure [6,7], even when the vertical load magnitude is at low relative values [8,9]. P-∆ effects should,
therefore, be accounted for in the nonlinear analysis, even when elastic design provisions would
otherwise allow them to be neglected [8–13].

This paper is concerned with sidesway collapse of structures vulnerable to earthquakes and
sensitive to P-Delta effects. A simplified approach is proposed for the structural design, which
considers simultaneously plastic deformations and the P-Delta effect. A special interest has been
shown by researchers in the past decades in deformation estimation, by refining the numerical models’
nonlinear behavior with more advanced approaches. Despite the advancement made in nonlinear
analyses, which are mostly used for the structural performance assessment, the design procedures
are fundamentally based on linear analysis. To avoid inelastic structural analysis in design, the
capacity of the structure to dissipate energy, through the ductile behavior of its elements and/or other
mechanisms, is taken into account by performing an elastic analysis based on a response spectrum
reduced with respect to the elastic one, by introducing the behavior factor q [14]. The behavior
factor is a predefined coefficient based on the expected inelastic behavior that a structural typology
exhibits during earthquakes. It considers the development of the plastic deformations, the ductile
properties, and redundancy of the structure. Essentially, based on the equal displacement performance
approach, it permits reducing the design earthquake loads compared to an elastic structure, assuming
to achieve both the same seismic demand in displacement terms. The linear analyses, adopted in the
design process of estimating the internal actions, may count for any nonlinearity by means of two
approaches: (i) iterative procedures or (ii) simplified methods. Both are fundamentally based on the
structural reanalysis approach [15]. The difference stands in the possibility to implement them within a
subroutine for practical purposes. The simplified methods principally distinguish the responses from
vertical and horizontal loads. Then, in a second step, they combine the deformations resulting from
horizontal loads (wind or earthquake) with the axial loads to estimate the P-∆ effect. The drawback of
the simplified methods is the lack of practicality for large and complex systems. Meanwhile, in an
iterative procedure, the estimated plastic deformations do not represent an equilibrium state of the
structure, due to linear analysis limitations. Thenceforth, the second-order effect which is related to the
above-estimated deformations is an approximation of the real solution. The contribution of the P-∆
effect is usually estimated by the stability coefficient θ, as detailed in the following paragraphs.

An amplification of the second-order moment, proportional to the evolution of plastic deformations,
may be easily observed for ductile structures during strong earthquakes. Such a phenomenon is
difficult to be traced during the design process with the stability coefficient only, despite that inelastic
deformations can be approximated by amplifying the elastic deformations with the behavior factor q.
In the present research, a simplified approach, which may be easily implemented in many commercial
software programs in order to directly obtain the design forces in structures vulnerable to P-∆ effects,
is provided. To overcome the design procedures and computational efforts, an enhancement of the
main concept presented in [16] for SDOF (Single Degree of Freedom) systems, for what concerns MDOF
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(Multi Degree of Freedom) systems and linear dynamic analysis, is here developed and illustrated for
different case studies from the literature. The proposed method differs conceptually from the current
P-Delta analysis and the captured structural behavior is, from the physics point of view, more reliable.
With a three-step procedure, the method is semiautomatic and very practical. The approach is adequate
for a moment-resisting structural system and could be a relevant instrument for the practitioners
involved in the design process.

2. The P-Delta Inelastic Analysis

2.1. The SDOF System

Figure 1 illustrates the classic example of a cantilever column subjected to equivalent horizontal
load H and the vertical load P. In the deformed configuration, an additional moment equal to the
product P·∆ is produced and acts on the cantilever. In the present paper, in order to study this effect
employing simplified approaches, as will be explained in the following paragraphs, only one iteration
will be applied for the case studies.

Figure 1. Forces acting on a column type element in the deformed configuration.

The effect of P-∆ becomes important when the increase of the bending moment in the columns due
to the lateral deformation during an earthquake reaches a critical value [17]. According to the technical
codes (e.g., [14]), this effect need not be taken into account if the following condition is fulfilled in all
stories:

θ =
Ptot dr

Vtot h
≤ 0.1 (1)

where:

θ is the interstory drift sensitivity coefficient or the stability coefficient;
Ptot is the total gravity load above the considered story in the seismic design combination;
dr is the design interstory drift, evaluated as the difference of the average lateral displacements at the
top and bottom of the story under consideration;
Vtot is the total seismic story shear;
and h is the story height.

It is worth noting that the interstory drift should consider the evolution of possible plastic
deformations induced by the seismic forces. If linear analyses are performed, as in the normal practice
of structural design, the displacements shall be calculated on the basis of the elastic deformations of
the structural system by means of the following simplified expression [14]:

ds = qd de (2)

where:
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ds is the displacement of a point of the structural system induced by the seismic design actions;
qd is the displacement behavior factor, assumed equal to q unless otherwise specified;
de is the displacement of the same point of the structural system, as determined by a linear analysis
based on the design response spectrum.

In this case, the drift at a certain level i is: dr,i = ds,i − ds,i−1 = qd (de,i − de,i−1).
If 0.1 ≤ θ ≤ 0.2, the P-∆ effects may be approximately accounted for by multiplying the relevant

seismic action effects by a factor equal to 1/(1− θ). If θ ≥ 0.2, an exact second-order analysis is
required [18]. In any case, it is recommended to keep θ ≤ 0.3 otherwise the conceptual design of the
considered structure is not adequate [1,14,19]. Figure 2a depicts the implication of the interstory drift
sensitivity coefficient into the (i) reduction of the stiffness, (ii) reduction of the strength capacity of
the first yield, and (iii) the progressive strength decay to a residual strength corresponding to the
ultimate lateral displacement. Performance-Based Seismic Design (PBSD) is currently the predominant
design concept being applied in seismic design on any structure subjected to earthquakes [20–22].
From Figure 2a, it is evident that for a designed structure, the performance objectives (i.e., in this case,
the maximum displacement) cannot be achieved if the structure is not properly accounting for the
second-order effects. As a matter of fact, there are many parameters involved but are out of the scope
of this research, thence have not been considered here.

Figure 2. (a) Lateral force—displacement relationship with and without P-∆ effect; (b) design approaches
under P-∆ effects.

To meet the performance objective, one may follow different approaches, of which two classics are
reported in Figure 2b. Increasing the stiffness of a structure as a means of compensating the secondary
effect would likely move the structure to a period with a larger seismic response and therefore it may be
preferable to increase the strength instead [17], referring to Paulay’s method (Figure 2b). Alternatively
based on the concept of effective fundamental period and effective damping, the strength should be
increased so that the secant stiffness at the peak displacement is the same for structures including and
ignoring the P-∆ effect [12,17], referring to MacRae’s method (Figure 2b). As both methods refer to
fixed target performance, they do differ in the estimation of the lateral design force. Paulay’s method is
compatible with the design code which proposes to increase the design seismic action by the correcting
factor equal to 1/(1− θ). The second approach requires the modification of the stiffness matrix to
match the estimated secant stiffness. In a static approach, the method is very straightforward, however,
dynamic forces are very sensitive to the period change of the structures which may lead to incompatible
actions for the primary performance objectives. In addition, the first approach amplifies all the lateral
seismic loads and not localized effects on those elements when the P-∆ effect is significantly present.
This can lead to an overestimation of the second-order effects.
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For an elastic static response, the stability coefficient is a straightforward measure of force and
displacement amplification at the story level, however, for inelastic dynamic behavior, it is merely an
indicator of the potential severity of P-Delta effects [11,23]. Many flaws could be encountered in this
approach, related to post-elastic effects, dynamic stiffness, force redistribution, higher mode effects,
and so forth. In this light, clearly there is a gap between this approach and a much more reliable
estimation of the structural elements sensitive to P-∆ effects and inelastic deformations.

To show the difficulties of the numerical approach for the problem under investigation, we consider
the case of the compressed element subjected to lateral loads. The lateral stiffness of the rod reduces
significantly and a small lateral load may cause the rod to buckle. The general formulation of
the static equilibrium is given by the following expression considering a stiffness matrix that takes
into consideration the elastic properties of the elements and the deformed geometry according
to [24]. The following equation does not consider the plastic deformations, thenceforth the following
equilibrium is not conformed with the design practice for a ductile conception of the structure. The next
section describes our proposal to approximate the equilibrium in the damaged phase.
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2.2. The P-Delta Effect and the Behavior Factor (q)

Inelastic story drifts are directly related to ductility demands in plastic hinges, thus when drift
increases in the lower stories of a frame due to P-∆ effects, the plastic rotational demand increases
correspondingly [25]. The ductility factor itself is not directly integrated into the seismic analysis;
instead of it, the strength reduction factor is used to build the design seismic spectrum, which coincides
with the so-called behavior factor. If a constant ductility is assumed, for long period structures,
the strength reduction factor and the ductility are basically equal [6,26,27]. The current seismic design
uses the behavior factor q to estimate the strength reduction factor, which is an approximation of the
ratio of the seismic forces that the structure would experience if its response was completely elastic
with 5% viscous damping, to the seismic forces that may be used in the design.

The P-∆ effect in the moment increment for an elastic SDOF system, as depicted in Figure 3, can be
estimated in two different ways:

(a) Apply simultaneously the lateral and vertical loads and implement the stiffness matrix according
to Equation (2).

(b) Apply the vertical loads in the system and use the resulting stiffness matrix in a second step
where the lateral loads are then applied. This approach is the key to the here-proposed method.

Figure 3. Static equilibrium of a cantilever in the deformed configuration.
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From the above approaches, the second one is more suitable in closed code commercial software.
A single nonlinear analysis with P-∆ effect is performed initially, and then multiple combinations of
horizontal loads may be applied from the previous step, counting for all the required load combinations.
Both the above approaches estimate the total displacement and the total acting moment at the base
of the cantilever equal to de and M = Hh + Pde, respectively. For an elastoplastic system conceived
according to proper seismic design, the total displacement is q times higher than the corresponding
elastic displacements. From that, it will be expected that an extra moment from the inelastic lateral
shift of the vertically applied load will be active, Mq = Hh + Pds.

∆M = Mq −Hh = P(ds) = P (q de) (4)

The magnitude of the ∆M, as shown from Equation (5), is proportional to the vertical loads,
the behavior factor, and the elastic displacements. From these parameters, the behavior factor is the
most relevant because it influences both the plastic and elastic displacements, hence the structural
design process itself. Such a phenomenon is worth being investigated for slender elements designed to
undergo large plastic deformations subjected to relatively high vertical loads. These situations may be
found very often in the steel moment-resisting frames of high-rise buildings. According to the second
approach, the correcting moment may be approximated with the added moment in the elastic system
by multiplying the vertical load instead of the displacement.

∆M = P q de = (q P) de = P∗ de (5)

To illustrate this approach, the example of Figure 3 is considered with a vertical load of 200 kN
and a horizontal load of 10 kN; Figure 4a,b represents the moment diagram due to the horizontal load
considering the P-∆ effect. Figure 4c,d depicts respectively the deformed shape under horizontal load
and the axial load in the element. Figure 4e represents the moment diagram due to the horizontal
load considering a stiffness matrix of the element with the P-∆ effect. By comparing results from
Figure 4b,e, it can be noted that the approach is quite accurate for practical application. If we assume
that this element undergoes plastic deformation, the estimated deformation in Figure 4c is magnified
by q. Assuming a value for the behavior factor equal to 4, the displacement at the ultimate state is
umax = 4·0.0071 = 0.0284. The P-∆ effect in this case approximately will produce an extra moment of
∆M = P q de = 5.68 kNm. Automatically, the moment value acting in the final configuration of the
element is estimated as M = 37.29 kNm (see Figure 4f) and is more accurate than manually estimated
without iterations.

Figure 4. Illustration of the q factor in P-∆ effect in a cantilever: (a) applied loads; (b) moment diagram
with P-∆ effect; (c) deformed configuration due to lateral loads; (d) axial load in the element; (e) moment
diagram with implicit P-∆ effect in the stiffness matrix; (f) moment diagram with implicit P-∆ effect in
the stiffness matrix considering the amplification from the behavior factor.
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The above-estimated values conform with the interstory drift sensitivity coefficient, θ =

Ptot dr/Vtot h ≤ 0.189 < 0.2. Therefore, a modified horizontal load H∗ = H/(1− θ) = 12.34 can
be applied, and the moment at the base is equal to M = 37.02 kNm. Comparing these two approaches,
the θmethod could overestimate the acting shear loads in the element up to a maximum of 25% related
to the limit θ = 0.2, while the moment from the proposed approach and the stability factor approach
is similar. In addition, for multi-degree-of-freedom systems, the interstory drift is not a constant
parameter, thence the applicability of this approach by correcting the horizontal forces either could be
computationally demanding or would result in overestimation of the shear forces.

2.3. The P-Delta Effect on MDOF Systems

The 10-story steel moment-resisting frame from Anderson and Bertero [28] is investigated as an
illustrative example to evaluate the implementation of the proposed approach for MDOF systems.
The designed elements are typical wide-flanged steel beams of different sections (Figure 5a). The bay
widths are 6 m (20 f t) and the typical story height is 3.66 m (12 f t), with 4.57 m (15 f t) only for the first
story. Gravity loads used in the design are: dead load 29 kN/m and live load 4.6 kN/m for the roof, and
dead load 35 kN/m and live load 16 kN/m for the floors (Figure 5b,c).

Figure 5. Ten-story steel frame resisting structure [28]; (a) sections; (b) dead load 35 kN/m ;(c) live load
14.6 kN/m ; (d) deformed shape of the first mode T = 2.27 s; (e) deformed shape of the second mode
T = 0.79 s.

The periods of the first two vibration modes of this structure have the results T = 2.27 s and
T = 0.79 s, respectively. The differences in the periods from the results in [28] are negligible for
practical design purposes. The structure results in being flexible, hence it may be considered relevant
for investigating the correlation of the P-∆ effect with seismic design requirements. Six seismic
intensity levels are considered in this illustrative test, from a combination of two different peak ground
accelerations, 0.2 g and 0.3 g, and three behavior factors, q = 3, 4, and 5.

Figure 6 reports the obtained stability factors θ obtained for the different levels of earthquake loads,
by applying a standard response spectrum analysis procedure. The behavior factor significantly affects
the intensity of the seismic loads, particularly when the response spectrum method is applied, and the
structures exhibit frequencies closer to the plateau of the spectrum. This indicates the importance of
the ductility design of the structures coupled with second-order effects.
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Figure 6. Illustration of the q factor and the ground acceleration influence in the stability factor, θ for a
10-story steel resisting frame.

The design approach including the P-∆ effect is investigated in five different ways as follows:

1. A simple response spectrum analysis is performed including the geometrical nonlinearities
derived from the implementation of a P-∆ analysis.

2. The deformations derived from simple response spectrum analysis are multiplied with the normal
forces and then manually added to the moments obtained from the RS analysis. No moment
redistribution is applied here.

3. A simple response spectrum analysis is performed including the nonlinearities derived from P-∆
analysis assuming that the structure behaves inelastically, according to the approach presented in
Section 2.2 for the SDOF systems. The vertical load in the P-∆ forming stiffness matrix process is
multiplied with the q factor.

4. The results obtained from the response spectrum analysis are amplified by the 1/(1− θ) factor,
assuming the maximum value is obtained for the instability coefficients at each story, as is
recommended in [29].

5. The results obtained from the response spectrum analysis are amplified by the 1/(1− θi) factor,
estimated to each story. At present, there is no reference to implement this approach, thenceforth
the meaning is only to provide a full picture to the expected amplification effect from the P-∆
analysis, comparable here with the physics approach of the second method.

The results in terms of the maximum moments at the story columns for all the cases are reported
in Figure 7. The results obtained by the physical approach of the P-∆ effect (i.e., the second of the
above approaches) highlight a significant increase of the design moment for the columns, up to 75% for
the structure under consideration. The fourth method (i.e., with the stability factor) exhibits a constant
increment (if applied automatically as is performed in the present case) of the design moment for
guaranteeing the structural stability at the ultimate limit state. This method presents a drawback that it
increases the overall acting loads and does not consider any second-order effects in localized elements
of the structure (e.g., to the elements close to the base). The way to overcome this drawback is to apply
different stability factors at each level but this results in the impractical application of the method for
complex structures. The third method seems to follow the amplification trend of the second method,
considering the locally induced second-order moments. The automatically implementable method
allows for the force’s redistribution that is reflected by lower moments compared to the second method,
which adds the P∆ moment at a single column without redistributing it at the adjacent elements.
The advantage of the proposed approach is evident even applied for MDOF systems, and not only for
SDOF systems, for which the stability factor is primarily conceived.
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Figure 7. Influence of the q factor and ground acceleration in the P-∆ effect of nine-story steel resisting
frame structure. Illustration of different approaches for the estimation of the maximum acting moment
in the story columns.

3. The Three-Step Procedure

In this section, we will summarize the steps to be followed for implementing a P-∆ analysis for
a structure which is subject to large displacement demands due to earthquakes and vulnerable to
second-order effects.

As demonstrated in Section 2 of this article, it is quite a challenge to consider adequately the P-∆
effects in linear analysis during the design phase if the inelastic phase of the structural elements should
be taken into account. According to FEMA 450 [29], the stability coefficient θ shall be permitted to
exceed 0.10 if the resistance to lateral forces is determined to increase continuously in a monotonic
nonlinear static (pushover) analysis to the target displacement and the P-∆ effects shall be included
in the analysis. In this article, a simple procedure is proposed to perform structural analysis which
considers simultaneously P-∆ effects and the plastic deformations of the structure in an approach
suitable for the design phase, applying the following steps:

• Step 1. The inputs for the structural analysis are selected: the peak ground acceleration (PGA)
and the behavior factor (q). The selected behavior factor should reflect also the expected ductility
of the structure, thenceforth it should neither underestimate nor overestimate such value in order
to obtain a realistic design.

• Step 2. Perform a nonlinear analysis considering the geometrical nonlinearity. The vertical forces
in this analysis are magnified with the behavior factor in order to consider the amplification of the
P-∆ effects as a result of the inelastic displacements. This analysis will be used as a starting point
for the application of successive analysis.
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• Step 3. Perform linear analysis, Response Spectrum analysis, or equivalent seismic analysis using
the stiffness matrix of the previous analysis for the determination of the seismic actions. Many
software programs, like SAP2000 [30] or other commercial packages [31–33], allow running an
analysis using the stiffness matrix of a previous analysis. Hence such a requirement is mandatory
for the implementation of the present approach.

The obtained results have automatically included the effect of gravity loads in a pseudo deformed
configuration which approximates the effect of the plastic deformations.

4. Case Studies

Three case studies from the research of Gupta and Krawinkler [11,34] are used to discuss the
P-∆ effects in light of the stability factor, behavior factor, and the seismic intensity. The case studies
summarized here are part of an extensive study on the seismic performance of steel moment-resisting
frame structures with fully restrained connections [29]. Briefly, they consist of: (1) a 3-story building
designed for Los Angeles conditions (Seismic Zone 3); (2) a 9-story building designed for Los Angeles
conditions (Seismic Zone 4); (3) a 20-story building designed for Los Angeles conditions (Seismic Zone 4).
The design of the three structures conforms with the Uniform Building Code (UBC-1994) requirements.

All three structures were conceived with perimeter moment-resisting frames that are designed
to resist all lateral loads. The interior simple framing is designed to resist only tributary gravity
effects. The corresponding gravity loads are the dead loads, 4.6 kN/m2(96 psf), and the live loads,
2.4 kN/m2 (50 psf). The designed sections of the elements are considered those as reported, and no
additional design is conducted by applying different seismic design codes or any update from the
current codes. The structures have been tested to different seismic intensity levels, similarly to the
tests conducted in Section 2.3. Plan views and elevations of the two buildings are shown in Figure 8.
Detailed information on the building structures can be found in [11,34].

Full complete 3D finite element models for the considered buildings have been created in
commercial software SAP2000, which provides the possibility for detailed modeling and the
implementation of the structural analyses with interest for this study [30]. It is possible to perform
three-dimensional analyses, but for the scope of the research and considering the perfect symmetry of
the structures, it was chosen to apply the seismic loads only in one plane.

Initially, modal analyses are conducted in order to verify the congruence of the numerical
models with the models developed in [29]. The here-created numerical models have similar periods
corresponding to the first fundamental vibration mode with the results of the models developed by
Gupta and Krawinkler as reported in [29]. The results are reported in Table 1, and the similarity of
the modal frequencies demonstrates the validity of the present models and the subsequent seismic
analysis can be performed.

Table 1. Periods of the analyzed building from other studies.

Structure
Period [s]

Mode 1 (Present Study) Range of Mode 1 From [29]

LA 3-Story 0.9 s 0.85–1.03 s
LA 9-Story 2.03 s 1.97–2.34 s

LA 20-Story 3.65 s 3.45–3.98 s
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Figure 8. Floor plans and elevations of the considered 3-, 9-, and 20-story buildings [29].

The analyses carried out on the three case studies are similar to those performed in Section 2.3,
considering two seismic levels separately for an ag = 0.2 and ag = 0.3 and three behavior factors.
The results reported in Figures 9–12 show the ratio between the design moment due to the seismic
action, with and without P-∆ effect. The three case studies, representing also different types of
structures, exhibit different behaviors (in terms of the necessity to consider the P-∆ effect).

Figure 9. Influence of the q factor and ground acceleration in the P-∆ effect of three-story steel resisting
frame structure. Illustration of different approaches for the estimation of the maximum acting moment
in the story columns.
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Figure 10. Influence of the q factor and ground acceleration in the P-∆ effect of nine-story steel resisting
frame structure. Illustration of different approaches for the estimation of the maximum acting moment
in the story columns.

In the case of the 3-story building, the P-∆ effect results in not being significant, while a stability
factor lower than 0.1 is computed. The 9-story structure and the 20-story structure exhibit a higher
stability factor, around 0.2 and 0.3, indicating the necessity to consider the P-∆ effects during the design.

It is evident that each case study would have a different structural response to the P-∆ effects,
depending on the seismic level and behavior factor.

Cases such as the 9-story building highlight the possibility that the stability factor would
overestimate the second-order moments, while the 20-story building shows the opposite. Up to a
difference of 200% was registered for the 20-story structure, highlighting a high sensitivity toward the
P-∆ such structure exhibits. From a design perspective, it is necessary to understand the behavior of the
structure, and it is obvious that the present case studies would behave not as desired or unpredictably
compared to the expected one.

The results for all the investigated case studies highlight the necessity to study the P-∆ effect in a
more accurate fashion. For the low-height buildings, the stiffness of the structure impels relatively high
seismic forces and the change in the stiffness matrix causes a slight decrement of the lateral acting loads.
However, such structural behavior is not due to the incorporation of the plastic deformations in the
added second-order moment. For the tallest structure, it is expected that the lateral loads are slightly
influenced by the period shift, however, the magnitude of the vertical loads and the lateral flexibility of
the structure play a crucial role. A double of the acting moment for the ultimate configuration shows
a high potential that similar structures would form soft stories even when the structural elements
respect the design requirements. Such cases may be classified as highly vulnerable to a loss of stability.
In fact, the proposed approach, on performing nonlinear static analysis with the vertical loads, is an
approximation for buckling analysis, where the lateral inelastic deformations from seismic loads could
amplify the effect of the vertical loads and cause a matrix singularity [24].
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Figure 11. Influence of the q factor and ground acceleration in the P-∆ effect of 20-story steel resisting
frame structure. Illustration of different approaches for the estimation of the maximum acting moment
in the story columns.

The method here proposed and the obtained results demonstrate the high vulnerability of flexible
structures to sidesway collapse. From a safety perspective, it is helpful to understand the behavioral
characteristics of the designed structure from a pushover analysis to evaluate the influence of P-∆
effects on the dynamic response and the inelastic capabilities of the structure [35].

From the case study, a significant difference between the proposed method and the existing one is
found for the 9-story and 20-story building. The following graphs synthesize for the above structures
the difference in the resisting moment between the proposed method and the stability factor method.
Each graph in the image represents a seismic scenario as previously described. Depending on the
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structure’s height and the seismic scenario, we take a large range of the results to differ approximately
80% to 160%. These results show the difference of the proposed approach and highlight the sensitivity
of the structures toward second-order effects and plastic capabilities.

Figure 12. The difference between the proposed method and the stability factor method in estimating
the design resisting moment.

5. Conclusions

This paper proposes a practical approach for addressing the design of ductile structures vulnerable
to the second-order effects. The architectural demands very often drive the engineering design
to relatively flexible structures, while on the other side, the seismic demands impede for a more
ductile behavior.

The proposed procedure is aimed to overcome some drawbacks of the current practice regarding
the P-∆ effects, related mostly to the stability factor approach. In this paper, we showed by comparing
with other approaches that a simple procedure, implementable in three easy steps, may be more practical
in terms of time efficiency (compared to nonlinear analysis) and result accuracy. The stability factor
coefficient has resulted in a very efficient and straightforward approach for SDOF systems, whereas
some issues arise in the case of MDOF systems. One of the significant aspects as also highlighted here
is related to the multiple values that this coefficient takes for different levels. The application of a
different correction coefficient for each story restricts the applicability of some analyses, like response
spectrum analysis. Moreover, the selection of the maximum value from the different stability factors
may result in an overestimation of the seismic effects, while the proposed approach evaluates the
seismic demands by manipulating the stiffness matrix of the structure, such as by properly estimating
the internal forces at the limit state of a structural element subjected to horizontal and vertical loads,
for a deformed configuration compatible with the evolution of plastic phases.

The numerical analysis carried out on the selected case studies highlighted that the lower levels
were more vulnerable to such combined effects. Based on the selected design parameters, the additional
design moments due to P-∆ effects varied from approximately 25 to 100%, which is very significative
of the strength capacity of the elements. These results propose the need to design these structures with
higher resisting capabilities, which will result in a better redistribution of the plastic hinges through
the structure during strong earthquake sequences.

This research was focused on the response spectrum method for estimating the seismic loads,
thenceforth the traditional pushover analysis presents challenges counting for the higher modes.
It is foreseen to extend this research on simplified representations of lateral seismic loads which can
later be compared with an equivalent pushover analysis mimicking the same load pattern in a very
straightforward fashion.
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