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Abstract: This paper investigates the impact of load shedding strategies on a block of multiple
buildings. It particularly deals with the quantification of the factors i.e., peak shaving, occupants’
thermal comfort or CO2 emission reduction and how to quickly quantify them. To achieve this
goal, the paper focuses on a new residential district, thermally fed by heat pumps. Four modeling
approaches were implemented in order to estimate buildings’ response towards load shedding.
Two schemes were combined in order to study an overall load shedding. This strategy for the
neighborhood has proved itself efficient for both peak shaving and thermal comfort. Most of the
clipped heating load during the peak period is shifted to low-consumption periods, providing an
effective peak shaving. The thermal comfort is guaranteed for at least 96% of the time. For CO2

emissions reduction, the link between consumption reduction and CO2 emissions savings should be
realized carefully, since shifting the consumption could increase these emissions.
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1. Introduction

1.1. Background

Within three years of the 21st United Nations Climate Change Conference (COP21), a number of
energy transition policies have been carried out in order to respect the Paris Agreement in keeping
the global average temperature below 2 °C of pre-industrial levels [1]. The massive integration of
renewable energy sources, together with the electrical peak consumption augmentation put load
flexibility in a central position in regards to energy transition strategies, as it could help to guarantee
grid stability [2].

Many new stakeholders, as well as new markets, appear in order to modulate electrical
consumption [3]. However, aggregators mostly apply these demand response strategies on
electricity-intensive industries, excluding lower power level sites such as buildings. Nevertheless,
the latter represents a large share of global energy consumption. Owing to their thermal inertia,
different load shedding schemes (recurring or non-recurring) can be implemented on the buildings;
yet the flexibility of these schemes is hard to evaluate quickly.

Therefore, it became one of the key points studied in the European project City-zen [4].
Our collaborative effort with the local Distribution System Operator (DSO), Grenoble Electricity
and Gas (GEG), takes place in this context and focuses on a new residential eco-district. This district
consists of 23 residential buildings having 264 apartments and is thermally fed by ground source heat
pumps (GSHP); thus emphasizing the primary use of electrical energy for heating purposes. Indeed,
GSHP represent a significant research field [5,6], so that they are at the cutting edges of research with
the demand side management (DSM) in order to manage electric grid constraints [7].
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1.2. Literature Review

On the one hand, peak-shaving strategies are widely studied in order to deal with electric grid
constraints [8]. On the other hand, DSM becomes more studied at a local scale [9], focusing on local
energy integration [10], demand curve smoothing [11] or economic purposes [12]. These two combined
lead to an increase of research papers on the field of peak-shaving for better management of local
electric grid constraints through DSM [13].

The idea of using buildings’ thermal inertia in order to modulate the heating load is also vastly
studied. While buildings’ flexibility is studied with several aims such as increasing district heating
efficiency [14,15] or for a better integration of local production sources [16], it is also investigated with
the objective to evaluate what could be their future impact in smartgrids [17] and to compare them to
storage solutions [18]. Several methodologies have been developed in order to quantify this flexibility
but only three are commonly applied using building structural mass [19]. Moreover, only a few of
these papers evaluate the impact on thermal comfort as they mostly consider it as a constraint [20].
In our case, the possibility to be out of the comfort zones will be considered, usually defined by
set-point temperature ranges [18,21], while estimating this impact by standing on comfort ranges as
defined in [22].

Most of the time, estimating the building temperature is possible as the building thermal flexibility
quantification is based on thermal models. These models can be from low-order RC models [23] to
higher-detailed models often based on widespread tools such as EnergyPlus [18,24] or based on
the Modelica language such as the library IDEAS [25]. Even the district scale becomes more and
more widespread in the energetic dynamic simulation software, like DIstrict MOdeller and SIMulator
(DIMOSIM) developed by CSTB [26], City Energy Analyst (CEA) developed by ETH Zurich [27] or Tool
for Energy Analysis and Simulation for Efficient Retrofit (TEASER) developed by RWTH Aachen [28].
It was observed that this scale change could be impractical by being relevant to annual heating needs,
but not anymore when focusing on power analysis [29]. For this reason, models with different levels
of detail have been studied.

1.3. Context and Aims of the Study

In the local context of Grenoble, an electrical consumption peak appears between 5 a.m. and
10 a.m. GEG is interested in peak shaving during this morning period by implementing effective load
shedding scheme. However, it could be hard to quickly quantify the impact of load shedding strategies
through peak shaving while avoiding thermal discomfort for occupants and an increase in carbon
footprint simultaneously.

Indeed, the problem is complex to model. In order to maintain occupants’ thermal comfort,
load shedding can be realized after an over-heating so that the building could store heat before
disconnecting the heating system. As it induces an over-consumption, this over-heating should be
performed before the peak period (i.e., between 5 a.m. and 10 a.m. in our case), with the purpose of
reducing the consumption peak. In order to study a strategy of district peak reduction by deliberate
load shedding building by building, two load shedding strategies (with or without over-heating) will
be compared.

This paper aims to quickly quantify the influence of this district heat load shedding strategy on
the heat load curve, thermal comfort and greenhouse gases emissions reduction. Moreover, the study
will try to quantify the impact of heat load profiles modeling on the results.

1.4. Paper Structure

The first section of this paper describes the methods used for load shedding impact quantification.
At first, the impact indicators in terms of peak shaving, thermal comfort and CO2 reduction will be
defined. Then, the heat load profiles modeling will be presented. Finally, the load shedding scenarios
studied in the paper will be introduced. In the ‘Results’ section, the two load shedding strategies will
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be analyzed on a building with respect to the indicators introduced earlier. The results will show the
impact on three aspects: peak-shaving, thermal comfort, and CO2 emissions while analyzing the effect
of the heat load profiles modeling. A conclusion will be drawn at the end of the paper based on the
observed results.

2. Methods for Impact Quantification of Load Shedding

2.1. Indicators for Impact Quantification of Load Shedding

2.1.1. Peak Shaving

In order to quantify the amount of load reduction in a district, the key indicators will be defined
first. Many studies show some rebound effects after a load shedding, related to the restart of the
consumption [30]. This behavior could not only affect the energy conservation by providing any
(or few) consumption reductions at a daily scale, but it could also lead to failure of peak shaving
strategy. Indeed, if concentrated during a short period, a load shifting could cause bigger grid
constraints during this time period. For this reason, in order to quantify the impact of load shedding
strategies for peak shaving purpose, the consumption behaviour after the load shedding period has
to be analyzed. To do so, the study is based on one indicator used by the French TSO RTE [31]
(cf. Equations (1)–(4) and (8)). The daily Load Shifting rate (LSd

rate)) is defined in Equation (1) from
the ratio of the addition of anticipated energy and delayed energy, by the cut-off energy. These three
energies are defined in Equations (2)–(4) by the integral in a given period of the consumption power
(Pt) and its reference value without operation (Pre f

t ). These energies are also visible in Figure 1.

LSd
rate =

Eanticipated + Edelayed

Ecut_o f f
(1)

where :

Ecut_o f f =
∫ τe

ls

τb
ls

Pre f
t dt (2)

Eanticipated =
∫ τb

ls

τb
ls−1

(Pt − Pre f
t )dt (3)

Edelayed =
∫ τe

ls+23

τe
ls

(Pt − Pre f
t )dt (4)

By taking into account the energy reported during the 23 h following the load shedding,
this indicator gives information at a daily scale. However, in order to get a better understanding of the
dynamic behavior of this energy report, the study will rather focus on an adapted form of this load
shifting rate, that we proposed, defined in Equation (5). This indicator will be calculated on an hourly
basis in order to quantify the distribution of energy report, hour by hour, as shown in Figure 1.

LSh
rate =

∫ h+1
h (Pt − Pre f

t )dt
Ecut_o f f

(5)

Defined as such, the load shifting rate can be used to study dynamically the load variations
and gives information on the efficiency of the load shedding strategy to reduce a long peak period
(more than one hour).
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Figure 1. Representation of a daily heating load curve modification with a load shedding order and
associated load shifting rates.

2.1.2. Thermal Comfort

It is important to keep in mind that turning off the heat supply can affect the thermal comfort
so that this aspect has to be estimated too. When the thermal supply of a building is turned off,
the internal temperature does not decrease instantaneously to the level of external temperature.
This building dynamic can be explained by the possibility for buildings to store heat in their heavy
components, such as walls. Indeed, due to their significant inertia, walls will cool later than the air,
in cases of heating load shedding. The phenomena are important in terms of comfort, as walls and
air temperatures respectively reflect radiation and convection effects perceived by the occupants of
the building. Since the feeling of thermal comfort is related to this perception of both air and wall
temperature, studies analyzed the relationship between thermal comfort and the operative temperature
(Top, defined Equation (6)) [32].

Top =
Twalls + Tair

2
(6)

In this study, this operative temperature will be taken as an indicator in order to estimate the
comfort level, according to levels defined in [22]:

• Comfortable: A range of +/- 1°C about the temperature set-point (Tset)
• Slightly uncomfortable: A range of +/- 1°C and +/- 2°C about Tset
• Uncomfortable: A difference of more than 2°C with Tset

2.1.3. CO2 Emissions Reduction

Finally, the impact of the different load shedding methods on CO2 emissions will be studied.
To do so, the work will rely on the actual CO2 emissions from the French power generation in January
2016 [33]. This will allow us to estimate the gross CO2 emissions variation when the load shedding
strategies will be applied while taking into account hourly and daily variation (see Equation (7)).

CO2Sm =

∫
month(COre f

2t
− CO2t)dt∫

month(COre f
2t

)dt
(7)

This variation not only takes into account the load shifting, but also the consumption reduction.
Moreover, it is very common to conclude that CO2 emissions will obviously decrease with load
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shedding strategies when there is energy saving. A widespread indicator for energy saving [31] is the
daily Energy Saving rate (ESd

rate) defined as follows:

ESd
rate =

Ecut_o f f − Eanticipated − Edelayed

Ecut_o f f
(8)

This energy saving rate is commonly used to quantify energy balance in the long-run by showing
the amount of non-reported energy 23 h after [31]. The energy saving rate should be put into
perspective, as it represents saving in regard to cut-off energy. Since the energy saving of an entire day
is much lower than ESd

rate, the reduction of daily CO2 emissions would be lowered too.

ESm =

∫
month(Pre f

t − Pt)dt∫
month(Pre f

t )dt
(9)

Nevertheless, this does not prevent us from expecting that CO2 emissions would decrease as
much as daily consumption. To deeply examine the impact on district carbon footprint, it is crucial to
consider the daily and intra-day CO2 emission variability for the electrical energy generation. Shifting
the electrical consumption from one time period to another could increase the CO2 emissions if local
peaks do not match the total electricity generation.

For all these reasons, the paper will compare the total consumption reduction (ESm) to the total
CO2 emissions reduction during the month (CO2Sm). Doing this will help us in combining the two
reduction factors (energy consumption and CO2 emissions) into a single indicator, the Expected Gain
reduction (EGred), defined as follows:

EGred =
ESm − CO2Sm

ESm (10)

2.2. Heat Load Profiles Models

According to the previously defined indicators, the thermal load variation between no-load
shedding and the applied load shedding strategy need to be assessed in order to quantify the impact
on peak shaving and CO2 emissions. In the present study, two modeling approaches will be compared.
At first, a standard load shifting profile will be established with experimental data. Then, thermal
models with several levels of details will be introduced in order to assess thermal comfort.

2.2.1. Experimental Load Shifting Profile

A first estimation can rely on experimental results from similar buildings and load shedding
strategies. The main advantage of this method is to assess very quickly the peak shaving indicator.
To do so, a standard load shifting rate profile was defined, based on experimental results from the
French GreenLys project [34] and from a study led by the French TSO RTE [31]. As the experimental
building stock contains two new eco-districts [34], the use of the resulting standard profile is considered
suitable for our new residential district. The experimental results show an energy saving rate around
90%. The load shifting rate profiles are plotted below.

Figure 2a is representing the hourly load shifting rates for a one-hour residential heat load
shedding without pre-heating, while Figure 2b shows it after an over-heating of one hour, consuming
50% of the cut-off energy.
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(a) (b)

Figure 2. Load shifting rate profiles. (a) One-hour residential heat load shedding without pre-heating
(b) One-hour residential heat load shedding after one-hour pre-heating.

2.2.2. Thermal Models

In order to quantify the impact on thermal comfort, it is also necessary to estimate Top

(cf. Equation (6)). For this reason, two thermal models with identified parameters were used in
order to simulate the building dynamic during and after the load shedding.

In order to manage both modelings (thermal model of the building and electric model of the
grid), an open-source tool, TEASER [35] was chosen for the first thermal model creation. It allows
to automatically generate RC thermal models in the Modelica language for the AixLib [36] and the
Annex60 [37] libraries.

The thermal model can be created thanks to building envelope information (wall areas,
orientations, thickness, materials, etc.). As it can be difficult to access the specific data about each
building envelope at district level, it can be realized with at least 5 input data: year of construction,
net area, type of use, number of floors and height of each floor [35], making the tool very useful for
saving time. If only this data is given, the tool enriches the dataset based on pre-defined statistical
data, whose use in a French context will be analyzed in this study case.

For the same thermal model structure (see Figure 3), two precision levels can be achieved
depending on the input data. In order to compare the impact of dataset enrichment, both the model
generated with the 5 minimal parameters and the model enriched with the building envelope data
were analyzed. The first one will further be referred to as the ’Simple’ model, while the second one
enriched with data used for the regulatory Building Energy Simulation (BES) will further be referred
to as the ’Enriched’ model.

The second one is the fully detailed thermal model used for the mandatory study. Indeed,
in a French context, since each building construction requires an energy requirement study based on a
fully detailed thermal model, existing thermal models from this mandatory study can also be re-used.
In this study, a Pleiades tool [38] has been used to build a detailed model (each room is considered as a
thermal zone), that will be called ’Complex’ model afterward.

For all heat load profiles from simulation models, the result from a thermal dynamic simulation of
a building in our district was considered as reference heat load profile (Pre f

t ). The building behavior in
the case of a temperature set-point of 20 °C was simulated during the month of January. All other data:
weather, occupancy schedules, internal gains for lightning etc. have been set to the same values in
order to obtain a better comparison between simulation results. However, the set-point temperatures
for the ’Simple’ and ’Enriched’ models are ambient temperatures, while the one in ’Complex’ model is
on the operative temperature, and cannot be changed. Therefore, small differences between the results
could still be expected.
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Figure 3. Scheme of the RC (Resistance Capacity) equivalent model generated by Tool for Energy
Analysis and Simulation for Efficient Retrofit (TEASER).

2.2.3. Summary of Modeling Approaches

To summarize, four modeling approaches are considered in order to estimate the load shifting
rates is this paper:

• The ‘Standard’ model: the statistical model from experimental data
• The ‘Simple’ model: thermal model generated by TEASER (Figure 3) with database
• The ‘Enriched’ model: thermal model generated by TEASER (Figure 3) with building

envelope data
• The ‘Complex’ model: multi-zone thermal model created with a Pleiades tool.

2.3. Modeling of Load Shedding Scenarios

For the aforementioned models, two scenarios will be studied:

• One-hour thermal load shedding after one-hour over-heating: In order to over-heat the building
outside of the peak period (5 a.m. to 10 a.m.), the load shedding order will be applied from 5 a.m.
to 6 a.m.

• Simple one-hour thermal load shedding: In this scenario, the load shedding will be applied in
the middle of the peak period, from 7 a.m. to 8 a.m. without any over-heating.

Each load shedding will be obtained by a very low set-point temperature (around 0 °C) in order
to cut the heat supply. The aim of these two scenarios is to represent the two load shedding approaches
that could be made building by building in the district. For instance, by applying the first strategy
(with over-heating) to a first building and then applying the second strategy to each of the four other
buildings hour by hour, the resulting load shedding on the entire district would be obtained by adding
the individual effects (see Figure 4).

Figure 4. Load shifting rate profiles during a day for the multiple one-hour thermal load shedding
from 5 a.m. to 10 a.m. Example of the ’Standard’ model for load shifting rate profiles for 5 buildings.



Buildings 2018, 8, 145 8 of 14

3. Results and Discussion

The load shedding impact in terms of peak shaving, thermal comfort and CO2 emissions will
be analyzed in this section. As explained previously, the district load-shedding strategy consists in
shedding thermal load for the buildings one by one for one hour. The first load shedding would
integrate a one-hour over-heating during the previous hour, while all the following hours will face
simple one-hour thermal load shedding. Two different building behaviors are thus expected for these
two strategies.

3.1. Results for Peak Shaving

In order to reduce the mean power during the peak period, the load shifting rate would have
to be the most diffused as possible to shift most of the consumption out of the peak period. Thus,
the lower load shifting rates are, the higher the efficiency of peak shaving. As two dynamic responses
are expected from the building depending on whether it has been previously over-heated or not,
results will be demonstrated for both load shedding strategies. At first, results for a simple thermal
load shedding happening from 7 a.m. to 8 a.m. each day of the month of January will be drawn. Then,
the second load shedding strategy with a one-hour over-heating before cutting the heat supply will
be shown. This load shedding will be applied from 5 a.m. to 6 a.m., in order to shift the anticipated
consumption before the peak period.

3.1.1. Thermal Load Shedding from 7 a.m. to 8 a.m.

The results of the simple one-hour load shedding applied all days of January are displayed in
Figure 5. The mean load shifting can be found for all of the four modeling approaches (‘Standard’,
‘Simple’, ‘Enriched’ and ‘Complex’). The mean operative temperatures are also drawn with their
variation range during the month.

Figure 5. One-hour thermal load shedding.

Two different building behaviors can be observed for this strategy:

• Most of the rebound effect appears within the two hours following the load shedding
(experimental load shifting profile)

• The shed consumption is shifted during the entire day (load shifting profiles from thermal models)

Here, it can be noticed that all the simulation results from thermal models show a slower dynamic
than the experimental load shifting profile.
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3.1.2. Heat Load Shedding from 5 a.m. to 6 a.m. after an Over-Heating in Preceding Hour

The results of the complex one-hour thermal load shedding strategy, taking place from 5 a.m. to
6 a.m. after a one-hour over-heating are presented in Figure 6. The strategy was applied each day of
January and results are the average value for each time slot and each modeling, like those presented
in Figure 5. As seen before, there is a big difference between experimental and simulated buildings
behaviors for simple heat load shedding strategy. This gap between models is therefore confirmed for
this complex strategy too.

Figure 6. One-hour thermal load shedding after one-hour over-heating.

Although this standard profile was established from real measurement, it remains difficult to
consider it as more reliable than simulated profiles. Indeed, weather and occupancy data differ
and several types of buildings are aggregated. Even with fewer old buildings than new ones in the
experiment, consumption values for heating tend to be higher for the first category and mean values
could be strongly affected. In spite of this conclusion, the standard model reminds that occupancy
behavior could play a great role in the rebound effect. In our study case, the thermal load is entirely
controlled by the building manager, so this effect can be neglected.

Thus, conclusions on the effect of the overall strategy (starting with the complex strategy and
continuing, building by building, with the simple load shedding) could be realized by analyzing the
building behaviors predicted by thermal models. These three modeling approaches all lead to diffused
energy reports so that it can be concluded that this load shedding strategy could be efficient in regards
to a peak shaving objective, even if thermal comfort still needs to be looked at.

3.2. Results for Thermal Comfort

As explained above, the study focuses on the building operative temperature as thermal comfort
indicator. With a set-point temperature fixed to 20 °C, the comfort zone is reached over 19 °C and below
21 °C. Results obtained for the month of January are presented in Figures 5 and 6. Mean operative
temperatures are represented, with their variation intervals, so that it can be noticed that :

• On average, load shedding hours are slightly uncomfortable
• On average, other hours of the days are comfortable

Distribution of comfort level for occupants for the load shedding strategy after an over-heating is
presented in Table 1:
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Table 1. Thermal comfort levels distribution for the load shedding after over-heating strategy.

Load Shedding after over-Heating

Comfort level/Models Reduced Enriched Complex
Comfortable 98.5% 96% 100%

Slightly uncomfortable 1.5% 3.6% 0%
Uncomfortable 0% 0.4% 0%

Similar results are obtained for the load shedding strategy without over-heating. Most of the
hours are “comfortable” (at least 96% of the time for all models) and “uncomfortable” level is rarely
reached (0.4% of the time and only with the ‘Enriched’ model). However, further studies on the
impact of heating systems (as shown in [16]) or on the perception of this comfort could be needed
to consolidate these results (as studied in [39]). As internal gains and external temperatures differ
each hour, each time slot should be considered individually for further studies in the entire district
impact. Finally, requiring less energy for heating purposes, new low-consumption buildings could get
a large part of their heating needs from internal gains (lightning, devices, occupation, etc.). This would
also have to be considered carefully in order to avoid an under-evaluation of thermal discomfort
in buildings.

3.3. Results for CO2 Emissions Reduction

In this last section, the results for the impact on the carbon footprint are presented. The chosen
indicator for the effect is the expected gain reduction (EGred), representing the difference between CO2

emission reduction expected by looking at the energy consumption savings (ESm) and the effective
CO2 emission diminution (CO2Sm). In order to put into perspective the feeling of savings obtained by
looking at the mean ESd

rate, the following Table 2 will also integrate it in comparison to the effective
consumption reduction during the month (ESm).

Table 2. Consumption and CO2 emission reduction in January for the simple load shedding strategy
(a) and for the load shedding after over-heating strategy (b).

(a) Load Shedding

Models Simple Enriched Complex
ESd

rate −10.0% 13.1% 5.5%
ESm 0.40% 0.50% 0.22%

CO2Sm 0.38% 0.50% 0.16%
EGred 3.2% 0.70% 28%

(b) Load Shedding after over-Heating

Models Simple Enriched Complex
ESd

rate 3.1% 2.1% 2.4%
ESm 0.21% 0.22% 0.14%

CO2Sm 0.01% 0.05% −0.06%
EGred 94% 76% 144%

For the load shedding between 7 a.m. and 8 a.m. (simple load shedding), the intuition is confirmed
since the overall consumption reduction leads to the reduction of the CO2 emission, though a little less
than expected. However, for the second strategy with overheating, reduction of CO2 emission is not so
obvious anymore. Depending on the models, the expected CO2 emission reduction is lower than the
calculated one. It goes from 76% less than expected to an increase of 44% of CO2 emissions. In terms
of avoided CO2 emissions, the savings go from 245 g (CO2Sm = 0.01%) to 7.82 kg (CO2Sm = 0.38%)
The reason for these differences is that the load is transferred from a low-CO2 emissions time slot to
higher CO2 emissions times of the day. In order to be consistent with energy transition strategies, it is
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important to consider this aspect into load shedding impact evaluation to avoid a local amelioration to
the detriment of general interest.

4. Conclusions

With often few data available at the district level, thermal models with parameters from the
statistical database could provide coherent load shedding impacts results, in respect to those available
with detailed thermal simulation models. However, a comparison between simulation results and
measurements would be necessary to validate the accuracy of the results, although it was unfortunately
impossible due to lack of data on the considered buildings and external factor such as occupation
schedules and weather data. For our study case, thermal models are considered as reliable for trend
estimation on the effects on peak shaving, thermal comfort and CO2 emissions reduction for a first
approach at a district scale. The overall strategy for the district studied in this paper relies on two load
shedding approaches:

• An overheating from 4 a.m. to 5 a.m. before load shedding from 5 a.m. to 6 a.m.
• One-hour load shedding building by building beginning from 6 a.m. to 9 a.m.

The two approaches were analyzed separately for these three aspects:

• Peak shaving
Turning off the heating supply for one hour successively for building by building in an entire
district seems to be effective for peak-shaving. Indeed, the transferred load is very diffused
(LSh

rate < 25% the first hour and LSh
rate < 10% the following hours) so that the rebound effects of

the previous buildings do not cancel the peak reduction obtained by the current load shedding.
These results are crucial in the case of a long peak (more than an hour), offering the possibility to
shift the load outside consumption peak period.

• Thermal comfort
Thermal comfort is reduced during the load-shedding hours. Measurements would have to be
realized in order to determine if operative temperature evaluation is more reliable when based
on the ‘Simple’ model, the ‘Enriched’ model or the ‘Complex’ model. Indeed, the ‘Complex’
model assessed only 0.8% of the time as not comfortable, while this discomfort could cover up
to 4% of the time with the ‘Enriched’ model. Moreover, the ‘Enriched’ model gives a minimal
operative temperature of 18 °C, while the operative temperatures estimated by the ‘Simple’ and
the ‘Complex’ models never reach values below 18.8 °C. The different modeling approaches used
do not allow to estimate precisely how much thermal comfort can be reduced and how it will be
perceived by occupants but they help the stakeholder understand what could be the issue. In all
cases, one solution to investigate the reduction of thermal discomfort could be to reduce heat
loads instead of shedding them, or to turn off the thermal load during shorter duration.

• CO2 emission reduction
In the case of CO2 emission reduction, estimation cannot be based only on consumption reduction
as CO2 emission for electrical systems have dynamic variations that have to be taken into account.
Only by considering dynamic CO2 variations and by calculating the difference between emissions
with or without load shedding strategy could lead to a reliable estimation of CO2 emissions
variations. Indeed, even with effective consumption diminution, a load shedding strategy could
shift consumption from low-CO2 periods to higher-CO2 time slots, increasing the overall CO2

emissions. For instance, in the case of the load shedding after over-heating, the ’Complex’ model
assessed 0.14% of energy saving during the month, while the CO2 emissions increased from 0.06%.
Therefore, the link between energy saving and CO2 emission reduction has to be realized carefully.

Finally, the modeling approach will depend on the accuracy required, the data available and
the time for the study design, so that mixing modeling approaches for a study at the district scale
may be required. A further work will consist in coupling the reduced thermal models together with
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generation parameters tools into an optimization library. This optimization point of view could allow
stakeholders such as DSOs to define the best load shedding sequences in a district in order to maximize
peak-shaving while minimizing both the occupants’ thermal discomfort and CO2 emission.

Author Contributions: Resources, D.F.; Supervision, B.D. and Y.M.; Writing—original draft, C.P.; Writing—review
& editing, B.D., Y.M. and D.F.

Funding: This work has been partially supported by the ANR project ANR-15-IDEX-02.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

COP21 21th Conference of the Parties
CSTB French Scientific and Technical Center for Building
DSM Demand Side Management
DSO Distribution System Operator
GEG Grenoble Gas and Electricity
GSHP Ground Source Heat Pumps
RTE French transmission system operator
TEASER Tool for Energy Analysis and Simulation for Efficient Retrofit
TSO Transmission System Operator
UNFCCC United Nations Framework Convention on Climate Change

Nomenclature

CO2t [kg] CO2 emissions at time t (with load shedding)

COre f
2t

[kg] Reference CO2 emissions at time t (without load shedding)
CO2Sm [%] CO2 Saving in a month (Reduction of CO2 emission on the month)
Eanticipated [kWh] Anticipated energy consumption during the hour before the load shedding
Ecut_o f f [kWh] Cut-off energy consumption during the load shedding
Edelayed [kWh] Delayed energy consumption during the 23 h after the load shedding
EGred [%] Expected Gains Reduction (CO2 emissions diminution expected by looking at the energy

consumption reduction)
ESd

rate [%] Energy Saving rate defined 23 h after the load shedding
ESm [%] Energy Saving in a month (Reduction of energy consumption on the month)
LSd

rate [%] Load Shifting rate defined during a day
LSh

rate [%] Load Shifting rate defined during an hour
Pt [kW] Power consumed at time t (with load shedding)

Pre f
t [kW] Reference power consumed at time t (without load shedding)

Tair [°C] Ambient temperature
Tset [°C] Set-point temperature
Top [°C] Operative temperature
Twalls [°C] Walls temperature
τb

ls [h] Beginning of the load shedding
τe

ls [h] End of the load shedding
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