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Abstract: Selecting the appropriate excavation support system (ESS) is critical for ensuring
construction projects’ safety and cost-effectiveness. Several dynamic factors influence this
decision-making process, such as the groundwater table, excavation depth, proximity to
neighboring buildings, and soil characteristics. In practice, the selection often depends
heavily on the subjective judgment of experienced professionals in the construction indus-
try. Although the analytical hierarchy process (AHP) is frequently employed to evaluate
alternatives using multiple criteria, it fails to adequately account for the subjectivity and
uncertainty in converting the decision-maker’s intuition into exact numerical values. To
overcome this challenge, this study proposes an enhanced method known as fuzzy AHP.
This approach is designed to capture the subjective experiences of experts better and ef-
fectively incorporate the uncertainties present in the decision-making process, ultimately
aiding in identifying the most suitable ESS. A case study of excavation projects is also
included to demonstrate the practical application of the proposed model. By presenting
this approach, the study aims to raise awareness within the construction industry about
the critical factors to consider when selecting the best excavation support technique for
specific projects.

Keywords: excavation support system; fuzzy logic; AHP; multiple criteria evaluation;
construction industry

1. Introduction
1.1. Background and Key Challenges

Excavation plays a crucial role in various construction endeavors, ranging from the
creation of building foundations to the development of underground infrastructure. These
projects’ safety and overall success rely heavily on the proper use of effective Excavation
Support Systems (ESSs) (Ghorbani et al., 2012; Liu et al., 2016 [1,2]). These systems are es-
sential for preserving soil stability, safeguarding workers, and protecting nearby structures
during excavation [3].
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The use of ESSs is especially crucial in the construction sector for several key reasons.
First, ESSs are designed to prevent the collapse of soil walls, reducing the risk of danger-
ous cave-ins and ensuring a safe work environment for construction workers. Second,
these systems help protect nearby structures, utilities, and infrastructure by preventing
potential damage caused by uncontrolled soil movements during excavation. Ultimately,
ESSs promote the smooth and timely progress of projects by providing a stable base for
the subsequent construction phases. Maintaining the excavation site’s integrity allows
construction teams to work efficiently, meet deadlines, and uphold safety standards [4].

Although excavation activities are essential, they come with inherent risks and chal-
lenges that need to be carefully managed. Issues like soil instability, fluctuating water tables,
and the closeness of existing structures can create dangerous conditions if not adequately
addressed. Accidents during excavation can lead to injuries, delays, and finances [5,6].
Consequently, it is vital to deploy effective ESSs that can help mitigate these risks.

Selecting the right ESS requires thoroughly assessing several key factors. The type
and condition of the soil, excavation depth, groundwater table level, and nearby structures
all significantly impact the choice of the most appropriate support system [7]. Addition-
ally, the water table’s effect on soil stability and the project’s duration must be carefully
considered [8]. The following subsections provide a brief overview of the importance of
these factors:

Initially, soil type is a key factor in determining the design of ESSs. Different soil types
exhibit varying characteristics, such as cohesion, internal friction, and effective density,
all influencing the choice of appropriate support methods. Systems such as soldier piles
with lagging or diaphragm walls are often preferred for cohesive soils like clay. In contrast,
granular soils like sand may require different support systems, such as sheet piles [3]. The
soil type also plays a critical role in determining both the stability of the excavation and the
risk of ground settlement, making it a crucial factor in the design and safety of ESSs [9].

Secondly, excavation depth is a fundamental factor in designing ESSs. The depth
directly influences the complexity and type of support system needed. More robust support
is required for deeper excavations, such as soldier piles and sheet piles, or stronger systems
like concrete secant piles or diaphragm walls. This enhanced support is crucial to prevent
soil movement, subsidence, and ground heave. The selection of the appropriate support
system depends on factors such as soil characteristics, expected loads, and safety standards,
requiring customized solutions that align with the excavation depth [10].

The third critical factor is the groundwater table level, which directly affects excavation
stability. A high groundwater table increases the risk of water seepage and instability,
including uplift and piping. As a result, dewatering techniques are crucial to lowering
the water table and ensuring a safe working environment. The success of dewatering
methods, such as well points or deep wells, depends on the groundwater level. Effective
management of these techniques is vital to prevent flooding and protect construction
workers. Additionally, the groundwater table creates extra lateral pressure on the shoring
system, making it necessary to choose a watertight system to prevent leakage [11].

Lastly, the proximity of adjacent buildings to the excavation site adds another layer of
complexity. Excavation activities can lead to ground settlement, which may threaten the
structural integrity of nearby buildings. Ensuring the stability and safety of these surround-
ing structures is crucial, requiring underpinning methods, structural reinforcement, and
controlled excavation techniques to minimize the impact on neighboring buildings [6].

Deep excavation projects present significant challenges in ensuring safety and quality,
as unstable soil conditions, groundwater infiltration, and proximity to adjacent structures
can lead to catastrophic failures if not properly managed [2]. Selecting an appropriate ESS
is a critical decision that directly impacts worker safety, structural integrity, and project
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success. Traditional selection methods often rely on subjective experience or simplified
technical assessments, which may fail to account for uncertainties in soil behavior, dynamic
site conditions, or evolving safety regulations [7]. Safety considerations such as preventing
soil collapse, minimizing vibrations, and protecting nearby infrastructure must balance
quality requirements, including long-term durability, water tightness, and compliance
with engineering standards [4]. For instance, diaphragm walls offer high rigidity and
water resistance but may be cost-prohibitive, while soldier piles are economical but less
practical in high-water-table conditions [12]. These trade-offs complicate the selection
process, necessitating a systematic approach integrating multi-criteria decision-making
(MCDM) with real-world constraints.

In conclusion, a comprehensive understanding of the collective influence of these
factors ensures safety, cost optimization, and minimizes environmental impact on construc-
tion projects. The meticulous consideration and integration of soil type, excavation depth,
groundwater table level, and proximity to adjacent structures collectively contribute to the
practical design and implementation of ESSs in construction endeavors.

1.2. Overview of Excavation Support Systems and Decision-Making Methods

Table 1 presents a detailed comparison of different ESS techniques used in building
projects, including a concise overview of each method’s mechanism, benefits, and draw-
backs. In summary, diaphragm wall shoring provides strong structural support and is
watertight but can be complex and expensive. Secant piles are versatile, though not as
rigid or watertight as diaphragm walls. Steel sheet pile shoring is a cost-effective solution
for temporary excavations but may cause noise and vibration and may not offer the same
level of watertightness as other systems. Lastly, soldier pile shoring provides a quick and
affordable option for dry, temporary, shallow excavations.

Table 1. Widely used excavation support systems.

Feature Description Suitability Advantages Disadvantages References

Diaphragm
Wall

Reinforced
concrete wall
constructed using
slurry trench
excavation

- Deep excavations
- Unstable soil
- High water table

- High strength
and stiffness
- Any depth
- Watertight

- Time-consuming
- Expensive
- Needs specialized
equipment

[11,13]

Steel Sheet
Pile

Thin, interlocked
steel walls driven
into the ground.

- Shallow to deep
excavations
- Stable soil
- Low water table

- Easy installation
and removal
- Reusable
- Suitable for
limited spaces

- Difficult in hard
soil/rock
- Susceptible to
corrosion

[1,14]

Secant Piles

Overlapping
reinforced concrete
piles form a
continuous wall.

- Deep excavations
- Unstable soil
- High water table

- High strength
and stiffness
- Any depth
- Watertight

- Time-consuming
- Expensive
- Needs specialized
equipment

[15,16]

Soldier Pile
Shoring

Vertical steel I- or
H-beams with
horizontal lagging.

- Shallow to deep
excavations
- Stable soil
- Low water table

- Cost-effective
- Easy installation
- Suitable for
limited spaces

- Lower
strength/stiffness
- Not ideal for high
water tables

[17]

The literature contains numerous MCDM applications within civil engineering projects
(CEPs), particularly in construction and geotechnical engineering. For instance, ref. [18] in-
tegrated a framework combining Building Information Modeling (BIM) and multi-objective
optimization to enhance decision-making in deep excavation projects. The proposed model
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optimizes cost, duration, safety, and environmental impact by incorporating the critical
path method, system reliability, reward-penalty mechanisms, and environmental assess-
ments. An improved Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is
introduced. The research highlights the potential of BIM-driven optimization to improve
efficiency and sustainability in construction projects. Lin et al. [19] described an MCDM-
based approach using TOPSIS to identify high-risk factors in excavation construction. The
study developed an expert coefficient to evaluate the significance of expert judgments and
categorized risk factors into geotechnical conditions, surrounding environment, construc-
tion measures, and management. Spherical and triangular fuzzy sets were employed to
handle uncertainties in expert judgments and measured data. Issa et al. [20] presented a
hybrid AHP-Fuzzy TOPSIS method for choosing the most appropriate deep excavation
support system (DESS) in construction projects. An MCDM model, integrated with ex-
pert knowledge, cost, and soil property data, is developed to address the complexity and
uncertainty inherent in such decisions. The results indicated that secant pile walls were
the most preferred option, followed by sheet pile walls and soldier piles with lagging.
Shahpari et al. [21] combined the Delphi method, analytic network process (ANP), and
decision-making trial and evaluation laboratory (DEMATEL) with the technique for order
of preference by similarity to the ideal solution (TOPSIS) to create a tool for assessing
the efficiency of residential building construction systems. Similarly, this study aims to
raise awareness within the construction industry by highlighting the crucial factors to
consider when selecting the most suitable excavation support method for specific projects.
In another study, Temiz and Calis [14] applied the preference ranking organization method
alongside the analytical hierarchy process (AHP) to determine the most suitable excavation
equipment for a construction site. Similarly, Penadés-Plà et al. [22] employed AHP to
prioritize durable and sustainable solutions in the design of a continuous concrete box-
girder pedestrian bridge deck. Furthermore, in the context of excavation project selection
techniques, Qi et al. [23] utilized the analytical hierarchy process (AHP) in combination
with the Delphi technique to determine appropriate protection methods for underground
excavation and deep excavation construction techniques in building projects.

The foundation of these decision-making approaches can be traced back to Saaty [24],
who introduced AHP as a structured technique for ranking the relative importance of dif-
ferent solutions to MCDM challenges. AHP facilitates decision-making by integrating both
quantitative criteria and qualitative assessments [25]. Meanwhile, alternative approaches
such as fuzzy TOPSIS address uncertainties by utilizing linguistic variables instead of
precise numerical values, making them effective for handling incomplete or ambiguous
data [26]. Furthermore, triangular fuzzy numbers (TFNs) have gained prominence in CEPs
due to their computational simplicity and ability to enhance information processing in fuzzy
environments [27]. TFNs have proven particularly effective in modeling decision-making
problems where subjective and imprecise information plays a critical role.

1.3. Study Context, Research Gap, and Objectives

The selection of ESSs in building projects is a complex task, particularly in regions
with challenging geotechnical and operational conditions. In Egypt, construction projects
frequently encounter unique site constraints such as prevalent sandy soils, high ground-
water tables, and densely built urban environments. These factors introduce significant
uncertainty and risk, making the decision process highly sensitive to local context and
expert judgment.

Despite the critical importance of ESS selection, most previous studies have either
focused on generic criteria or applied MCDM methods that inadequately address the inher-
ent subjectivity and ambiguity in expert assessments. Traditional AHP, while widely used,
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requires precise numerical judgments, which may not realistically reflect the uncertainty
and linguistic nature of expert opinions in real-world excavation projects. Furthermore, the
literature reveals a lack of comprehensive frameworks tailored to the specific geotechnical
challenges and construction practices in Egypt.

To address these gaps, this study applies fuzzy AHP to the selection of ESSs within
the Egyptian construction context. By integrating fuzzy logic with AHP, the proposed
approach enables the use of linguistic variables and triangular fuzzy numbers, thus more
accurately capturing the uncertainties and subjectivities inherent in expert decision-making.
This enhances the robustness and reliability of the selection process. The main objectives of
this study are as follows:

• To develop a context-specific, MCDM framework for ESS selection that incorporates
the unique geotechnical and operational challenges of building construction in Egypt.

• To demonstrate the effectiveness of the fuzzy AHP approach in capturing expert judg-
ment uncertainty and improving the prioritization of selection criteria and alternatives.

• To validate the proposed framework through a real-world case study, thereby illustrat-
ing its practical applicability and value for construction practitioners.

By addressing these objectives, the study fills a critical gap in the literature and
provides a practical, adaptable tool for enhancing safety and cost in ESS selection for
building projects in Egypt and similar contexts.

2. Research Methodology and Model Development
A structured framework for prioritizing the optimal deep excavation supporting

system is developed using the fuzzy AHP approach. The implementation of this model is
visually depicted in Figure 1. The proposed integrated fuzzy model is constructed within
the AHP framework, incorporating refinements to Pan’s model [28]. The methodology
follows a systematic process consisting of several key steps: (1) establishing a hierarchical
structure, (2) conducting fuzzy pairwise comparisons, (3) performing consistency checks,
(4) computing relative weights, and (5) synthesizing group decisions. The subsequent
sections comprehensively explain each component within the proposed fuzzy AHP model.

2.1. Development of the Decision Hierarchy

The analytic hierarchy process (AHP) involves a structured series of steps to support
decision-making. First, the decision problem is defined, and a goal is established. Then, a
hierarchical model is built, comprising the overall goal, evaluation criteria (and sub-criteria
if needed), and the set of alternatives. Next, pairwise comparisons are performed between
criteria and alternatives, often using Saaty’s scale or fuzzy extensions, to assess their relative
importance. The relative weights (priority vectors) are calculated from these comparisons,
typically using the geometric mean method. Consistency of judgments is then checked by
calculating the consistency index (CI) and consistency ratio (CR), with an acceptable CR
generally below 0.10. After ensuring consistency, the local weights are synthesized across
the hierarchy to determine the global priorities of the alternatives. Finally, the best option
is the alternative with the highest priority score.

2.2. Fuzzy Pairwise Comparisons

In general, a fuzzy AHP decision problem comprises the following key components:
(1) a set of alternative options Mi (i = 1, 2, . . . , m); (2) a collection of evaluation criteria
Cj (j = 1, 2, . . . , n); (3) a linguistic judgment ij representing the relative importance of each
pair of criteria; and (4) a weighting vector, w = (w1, w2, . . . , w n). Pairwise comparisons
are used in the evaluation process after establishing the hierarchy. Each criterion from the
previous upper level is systematically compared with all criteria at the same hierarchical
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level. Decision-makers use linguistic phrases to make pairwise comparisons. The reciprocal
comparisons of criteria at the same level, or of all potential alternatives, generate the
resulting matrices used to compare the criteria or alternatives.
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This study separates the evaluation process into two stages because of the large
number of criteria and options and the unique and varied character of projects. Common
factors impacting the choice of a suitable ESS are assessed in the first phase. This entails
assembling a panel of decision-makers from the building industry. Following that, the
project decision team determines and evaluates potential options in accordance with the
predetermined standards. Acknowledging the subjectivity and ambiguity that come with
determining significance through pairwise comparisons, this method uses a symmetric
triangular membership function to accommodate triangular fuzzy numbers. A linguistic
variable is a type of variable where the values are represented using linguistic terms. In this
study’s pairwise comparison process, five linguistic terms are defined: “Very Unimportant”
(VU), “Less Important” (LI), “Equally Important” (EI), “More Important” (MI), and “Very
Important” (VI). These terms are assigned numerical values ranging from 1 to 5, respectively,
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as detailed in Table 2. A fuzzy number or linguistic variable can be represented by a
membership function, µA(x), as shown in Figure 2. This study employs a fuzzy importance
scale for pairwise comparisons, assigning fuzzy numbers to different levels of verbal
judgment. The scale consists of five linguistic terms, each representing a distinct level
of importance:

Table 2. Fuzzy importance scale.

Verbal Judgment Explanation Fuzzy Number

Very Unimportant (1) One criterion is significantly less important than another (1, 1, 2)
Less Important (2) One criterion is slightly less important than another (1, 2, 3)
Equally Important (3) Both criteria contribute equally to the objective (2, 3, 4)
More Important (4) One criterion is somewhat preferred over another (3, 4, 5)
Very Important (5) One criterion is strongly preferred over another (4, 5, 5)
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The fuzzy comparison matrix, Ã, representing fuzzy relative importance of each pair
of elements, is given by Equation (1), written as follows:

∼
A =


1

∼
a12

∼
a13 . . .

∼
a1n

∼
a21 1

∼
a23 . . .

∼
a2n

...
...

. . .
...

...
∼
an1

∼
an2 . . . . . . 1

 where,
∼
a ii = 1,

∼
a ij =

∼
a ji,

∼
a ij ̸= 0 (1)

The suggested approach uses representative membership values to characterize each
reciprocal fuzzy number instead of the inverse and reverse order of its corresponding posi-
tive fuzzy number. For example, if ãij is assessed as “more important”, a positive judgment
represented by (3, 4, 5), its reciprocal element ãji results in “less important”, a negative judg-
ment characterized by (1, 2, 3). This approach assists the operations of pairwise comparison
and provides a more accurate representation of human assessments. The concept of ∝-cut
is applied to account for specific levels of uncertainty in the decision-making process. The
value ∝ is between 0 and 1. Where, ∝= 0 and ∝= 1, signify the degree of uncertainty as
greatest and least, respectively. Selecting ∝= 0.5 indicates that environmental uncertainty
is steady. Figure 3 shows that a triangular fuzzy number regarding a given value can be
denoted by (X∝,L, X∝,M, X∝,U). X∝,M, X∝,L, and X∝,U represents the most likely, minimum,
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and maximum values of the fuzzy number, respectively. The five membership functions
can be mathematically represented by Equations (2)–(6), written as follows:

X(∝)Very unimportant =


1
1

2 − ∝
(2)

X(∝)Less important =


1 + ∝

2
3 − ∝

(3)

X(∝)Equally important =


2 + ∝

3
4 − ∝

(4)

X(∝)More important =


3 + ∝

4
5 − ∝

(5)

X(∝)Very important =


4 + ∝

5
5

(6)
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Accordingly, a fuzzy comparison matrix can be defined as follows:

∼
A =


1 (X12,L, X12,M, X12,U) · · · (X1n,L, X1n,M, X1n,U)

(X21,L, X21,M, X21,U) 1 · · · (X2n,L, X2n,M, X2n,U)

· · · · · · · · · · · ·
(Xn1,L, Xn1,M, Xn1,U) (Xn2,L, Xn2,M, Xn2,U) · · · 1

 (7)

For instance, (x12,L, x12,M, x12,U) in Equation (7) displays the first element’s lower,
middle, and upper values in relation to the second element at the higher level, respectively.
To facilitate fuzzy weight calculations, matrix Ã is further divided into three crisp matrices:
the lower bound matrix (A L), most likely matrix, (A M), and upper-bound matrix (A U).
These non-fuzzy comparison matrices are given by the following:
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AL =


1 X12,L · · · X1n,L

X21,L 1 · · · X2n,L

· · · · · · · · · · · ·
Xn1,L · · · · · · 1

 AM =


1 X12,M · · · X1n,M

X21,M 1 · · · X2n,M

· · · · · · · · · · · ·
Xn1,M · · · · · · 1

 AU =


1 X12,U · · · X1n,U

X21,U 1 · · · X2n,U

· · · · · · · · · · · ·
Xn1,U · · · · · · 1

 (8)

2.3. Relative Weight Calculations

When calculating local weights, the normalization of the geometric mean (NGM) approach
applied in Buckley’s model is utilized and yielded by Buckley [29] Equations (9) and (10),
written as follows:

wi =
gi

∑n
i=1 gi

(9)

gi =
(
∏n

j=1 aij

)1/n
(10)

In Equations (9) and (10), gi is geometric mean of criterion i, aij is the compari-
son value of criterion i to criterion j, wi is the i-th criterion’s weight, where wi > 0
and ∑n

i=1 wi = 1, 1 ≤ i ≤ n. The maximum eigenvalue λmax is calculated as follows
(Equation (11)):

λmax = Q wT (11)

where Q is the sum of each column of matrix, Q is a vector size equal (n × 1), and wT is the
normalized vector (1 × n). Accordingly, the overall weight of the l-th sub-criterion, Sl , can
be computed by Equation (12), written as follows:

sl = wK × slk (12)

where wk is the weight of the k-th main criterion; Slk is the local weight of the l-th sub-
criterion with respect to the k-th main criterion. By the same manner, the weight of m-th
alternative with respect to the l-th sub-criterion (e lm) can be obtained. The overall weight
of the m-th alternative regarding the l-th sub-criteria, (r m) is given by Equation (13), written
as follows:

rm = sl × eml (13)

Finally, the overall weight of the m-th alternative regarding all sub-criteria, Rm, can be
found by Equation (14), written as follows:

Rm =
k

∑
k=1

sl × eml (14)

2.4. Consistency Checks

If the maximum eigenvalue λ_max = n, where n is the matrix size, then the comparison
matrix is consistent. The deviation of the judgments is measured using the consistency
index (CI), which is defined and stated by Saaty [30] Equation (15), written as follows:

CI =
λmax−n

n − 1
(15)

Given the same values from randomly generated matrices, the consistency ratio (CR)
is determined using Equation (16), written as follows:

CR =
CI
RI

(16)
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The random index (RI) simulates numerous pairwise comparisons that are created at
random for varying matrix sizes Saaty [30]. To be considered acceptable, the value of CR
must be 10% or less. In some circumstances, a limit of 20% may be accepted [14]. It should
be emphasized, nevertheless, that we may find values considerably bigger than 0.10 due to
the fuzzy structure of the model and the left (pessimistic) leaning of some decisions and the
right (optimistic) leaning of others. That’s still okay if you can figure out what’s causing
the difference. As λmax represents a triangular number computed individually for matrices
AL, AM and AU using Equation (8) for each decision-maker, the recommendation by Durán
and Aguilo [31] is to employ the central value of λ_max. This suggestion stems from the
symmetry inherent in triangular numbers, where the central value aligns with the centroid
of the triangular area. Consequently, it is advocated to calculate λmax, along with CI and
CR, specifically for the matrix AM.

2.5. Synthesis of Group Decisions

After determining the relative weight, it is necessary to combine the opinions of several
evaluators into one. The average weight is used in this work because it is a simple and
faster method than most similar ones. When a fuzzy number needs to be converted to
a single representative value, defuzzification is crucial. The three fuzzy numbers’ lower,
middle, and upper values are defuzzified into a single crisp value (Equations (17) and (18)).

wl =
∑n

n=1 wl,n

n
, wm =

∑n
n=1 wm,n

n
, wu =

∑n
n=1 wu,n

n
(17)

Mcrisp =
wl + 4wm + wu

6
(18)

where wl , wm, and wu represent the lower, middle, and upper final weights assigned to
the main criteria, sub-criteria, and alternatives, respectively. Additionally, n denotes the
number of experts involved in the evaluation process.

All fuzzy AHP calculations, including the construction of pairwise comparison matri-
ces, consistency checks, and synthesis of group decisions, were performed using Microsoft
Excel. Custom Excel templates were developed to implement the fuzzy AHP steps, in-
cluding the use of triangular fuzzy numbers and defuzzification formulas. This approach
ensured transparency, reproducibility, and ease of validation for the calculations presented
in this study.

3. Case Study and Model Implementation
A real-world problem is addressed by the use of the proposed framework; the process

followed is illustrated in Figure 4. These steps were performed after defining the overall
goal, which is selecting the appropriate ESS.

3.1. Criteria Hierarchy Development

The decision problem was broken down to create a hierarchy of criteria. As seen in
Figure 5, nodes in the hierarchy stand in for primary criteria with sub-criteria. Figure 5
illustrates the hierarchical structure of the decision-making framework, with the selection
of the optimal excavation support system as the overarching goal at Level 1. Level 2 com-
prises the two primary criteria: safety (encompassing structural stability) and cost (covering
economic feasibility). These criteria branch into Level 3 sub-criteria: Safety includes soil
condition, underground water condition, excavation depth, and adjacent buildings, while
cost consists of construction cost, progress rate, and crossing utilities. This structure, vali-
dated through expert input and aligned with industry standards, systematically organizes
the critical factors influencing ESS selection.
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3.2. Constructing Fuzzy Comparison Matrix

Ten experts made up the decision committee that evaluated the pairwise comparisons
after the hierarchy was established. Those experts were instructed to offer their comparison
judgments using the linguistic scale specified in Figure 1 through a series of question-
naires constructed based on Figure 4. For every criterion in the hierarchy, comparisons
were carried out independently. Questionnaires were created specifically for each of the
three tiers of the hierarchy. Table 3 displays the questionnaire that was used to assess the
sub-criteria. Tables 4 and 5 present the comparative findings of all primary criteria with
respect to the overall goal and sub-criteria with respect to the main criteria, respectively.
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Table 3. Questionnaire used to evaluate sub-criteria Pan [28].

Question No. Comparison Criteria Question

Q1 Soil Condition vs. Underground
Water Condition

How does the significance of soil condition
compare to that of underground water condition?

Q2 Soil Condition vs. Excavation Depth How does the significance of soil condition
compare to excavation depth?

Q3 Soil Condition vs. Condition of
Adjacent Buildings

How does the significance of soil condition
compare to the condition of adjacent buildings?

Q4 Underground Water Condition vs.
Excavation Depth

How does the significance of underground water
condition compare to excavation depth?

Q5 Underground Water Condition vs.
Condition of Adjacent Buildings

How significant is underground water condition
compared to the condition of adjacent buildings?

Q6 Excavation Depth vs. Condition of
Adjacent Buildings

How significant is excavation depth compared to
the condition of adjacent buildings?

Table 4. Assessment of results of the main criteria regarding the overall goal.

Pairwise Criteria 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Safety vs. cost 4 4 3 3 3 4 5 4 4 3

Table 5. Assessment results of the sub-criteria with respect to safety.

Pairwise Criteria 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Soil vs. water 3 3 5 3 3 2 2 3 3 3
Soil vs. depth 3 5 5 3 3 4 3 3 3 4
Soil vs. adjacent 4 5 5 3 3 4 3 3 5 3
Water vs. depth 3 5 5 3 3 4 3 3 3 5
Water vs. adjacent 3 4 5 3 3 3 4 3 4 3
Depth vs. adjacent 3 4 5 3 3 4 3 3 3 4

3.3. Assigning Criteria Weights

Only the pairwise comparison assessments of the first and second experts’ findings
regarding safety (B1) in relation to soil condition (B11), underground water condition (B12),
excavation depth (B13), and condition of nearby buildings (B14) are provided to improve
the comprehensibility of the proposed model’s methodology. First, applying the fuzzy
numbers defined in Figure 1 and Equations (2)–(6), the fuzzy comparison matrices of 1

under ∝= 0.5 are given by the following:

Ã1

B11 B12 B13 B14
B11 1 (2.5, 3, 4.5) (2.5, 3, 4.5) (3.5, 4, 4.5)
B12 (2.5, 3, 4.5) 1 (2.5, 3, 4.5) (2.5, 3, 4.5)
B13 (2.5, 3, 4.5) (2.5, 3, 4.5) 1 (2.5, 3, 4.5)
B14 (1.5, 2, 3.5) (2.5, 3, 4.5) (2.5, 3, 4.5) 1

The first row in 1 represents the relative preference given by the first expert from Table 5.
Applying Equations (8)–(10) the lower bound matrix Ã1

L and eigenvector estimation are
derived as shown in Table 6.
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Table 6. Lower bound matrix and eigenvector calculations.

Safety B11 B12 B13 B14

Ã1
L

B11 1 2.5 2.5 3.5 (1 × 2.5 × 2.5 × 3.5)1/4 = 2.16 (2.16/7.89) = 0.27
B12 2.5 1 2.5 2.5 (2.5 × 1 × 2.5 × 2.5)1/4 = 1.99 (1.99/7.89) = 0.25
B13 2.5 2.5 1 2.5 (2.5 × 2.5 × 1 × 2.5)1/4 = 1.99 (1.99/7.89) = 0.25
B14 1.5 2.5 2.5 1 (1.5 × 2.5 × 2.5 × 1)1/4 = 1.75 (1.75/7.89) = 0.23

∑ 7.5 8.5 8.5 9.5 7.89 1.00

The matrices Ã1
M and Ã1

U, corresponding to the first and second experts, respectively,
can also be determined. The eigenvector of Ã1

L is found to be (0.27, 0.25, 0.25, 0.23) (0.27,
0.25, 0.25, 0.23) (0.27, 0.25, 0.25, 0.23), where each value, ordered from left to right, represents
the weight of the weight of B11 corresponding to B12, B13, and B14, respectively. Following
the same approach, the eigenvectors for for Ã1

M and Ã1
U are obtained as (0.27, 0.25, 0.25,

0.23) and (0.27, 0.25, 0.25, 0.23), respectively. Consequently, the eigenvector for B11 is given
by (0.27, 0.27, 0.27) (0.27, 0.27, 0.27) (0.27, 0.27, 0.27), representing its lower, middle, and
upper relative weights.

Similarly, the computed relative weights for B12, B13, and B14 are (0.25, 0.25, 0.25)
(0.25, 0.25, 0.25) (0.25, 0.25, 0.25), (0.25, 0.25, 0.25) (0.25, 0.25, 0.25) (0.25, 0.25, 0.25), and (0.22,
0.23, 0.23) (0.22, 0.23, 0.23) (0.22, 0.23, 0.23), respectively. Applying the same methodology
to the second expert’s pairwise comparisons, the relative weights for B11 corresponding to
B12, B13, and B14 are determined as (0.34, 0.34, 0.32), (0.32, 0.33, 0.31), (0.18, 0.17, 0.19), and
(0.16, 0.17, 0.18) respectively.

3.4. Consistency Checks

Consistency checks are performed subsequent to the estimation of relative weights. It
is possible to determine the eigenvalue λmax for the medium matrix Ã1

M with respect to the
first expert by using Equation (11) as follows:

λmax = 9 × 0.27 + 10 × 0.25 + 10 × 0.25 + 11 × 0.23 = 9.96

Equations (15) and (16) are used to obtain CR and CI, in that order, according to
Saaty [30], where RI is 0.56 and 0.9, respectively, meaning that n = 3 and 4.

CI =
9.96 − 4

4 − 1
= 1.98

CR =
1.98
0.9

= 2.20

The fact that every CI and CR value is greater than zero suggests that the comparative
evaluations based on the opinions of ten experts are reliable [32].

3.5. Synthesis of Group Decisions

These two distinct experts’ measurements are grouped. Concerning soil condition by
using Equation (17) as follows:

wL =
0.27 + 0.34

2
= 0.31, wM =

0.27 + 0.34
2

= 0.31, and wU =
0.27 + 0.32

2
= 0.30

Consequently, Equation (18) can be used to estimate the weight of soil condition
as follows:

Msoil condition =
0.31 + 4 × 0.31 + 0.30

6
= 0.30
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Therefore, by applying the same procedures, the final weights of the main criteria
regarding the overall goal and under ∝= 0.5 are safety (0.56) and cost (0.44).

Likewise, the final sub-criteria weights regarding the main criteria under ∝= 0.5 result
in Table 7.

Table 7. Sub-criteria weights regarding the main criteria.

α
Soil

Condition
Water

Condition
Excavated

Depth
Adjacent
Buildings

Construction
Cost

Progress
Rate

Crossing
Utilities

0.5 0.281 0.277 0229 0.212 0.416 0.294 0.295

Using Table 7’s weights for the primary criteria and Equation (12), the results are
displayed in Table 8. This yields the synthetic weights for the sub-criteria. For instance, the
soil condition’s synthetic weight at ∝ = 0 is calculated as follows:

rsoil condition = 0.281 × 0.56 = 0.157

Table 8. Synthetic sub-criteria weights regarding the main criteria.

α
Soil

Condition
Water

Condition
Excavated

Depth
Adjacent
Buildings

Construction
Cost

Progress
Rate

Crossing
Utilities

0.5 0.157 0.155 0.128 0.118 0.183 0.129 0.129

3.6. Alternatives Evaluation

This paper presents a case study of the Pfizer solid oral dosage production facility
at El Nozha, Cairo, Egypt. The two-story, 3000 m2 facility, constructed between 2012
and 2013, includes an underground water tank requiring a 30,000 m3 excavation (3000 m2

area × 10 m depth) in predominantly sandy soil. During planning, the contractor evaluated
four ESS: diaphragm walls, secant piles, sheet piles, and soldier piles. The 10-m excavation
depth and low-cohesion soil necessitated a rigorous ESS selection process, prioritizing
waterproofing and structural stability. Diaphragm walls were ultimately chosen for their
superior performance in sandy conditions.

The evaluation of these alternatives was conducted by a project decision-making
group consisting of three experienced professionals: the project manager, the construction
manager, and the consultant engineer. They have over ten years of experience in planning,
designing, and constructing excavation works in Egypt, ensuring that the assessment
reflected both technical rigor and local industry knowledge, as illustrated in Table 9. The
total planned duration for the project was 18 months, with the excavation depth for the
underground tank specified at 10 m. The rigorous assessment process, leveraging the
collective experience of the decision team, ensured a comprehensive and context-sensitive
evaluation of the available ESSs tailored to the unique requirements of this facility.

Table 9. Expert panel: roles, education, and experience.

Expert No. Role Education Years of Experience Area of Expertise

1 Project Manager MSc Civil Engineering 15 Project management,
excavation planning

2 Construction
Manager BSc Civil Engineering 13 Construction supervision,

site operations

3 Consultant PhD Geotechnical
Engineering 20 Geotechnical design,

excavation support systems
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To determine the most suitable excavation method for the project’s specific require-
ments, discussions focused on four alternatives: diaphragm wall, secant pile, soldier pile,
and sheet pile. Leveraging their expertise, the evaluators engaged in a rigorous process
of fuzzy comparisons to derive judgments and evaluations. Additionally, a comparative
analysis was conducted for the four excavation construction systems concerning each
sub-criterion. Notably, Table 9 presents the comparison outcomes with respect to soil
condition. The values of λmax, CI, and CR can also be referenced in Table 10, providing a
comprehensive overview of the assessment results.

Table 10. Comparison results for alternative weights regarding the soil condition.

Alternative Comparisons
Results

1st Expert 2nd Expert 3rd Expert

Diaphragm wall vs. secant pile 2 2 3
Diaphragm wall vs. soldier pile 3 3 3
Diaphragm wall vs. sheet pile 4 3 3

Secant pile vs. soldier pile 5 5 4
Secant pile vs. sheet pile 5 5 4
Soldier pile vs. sheet Pile 3 3 3

λmax 8.89 9.21 9.87
CI 1.63 1.73 1.95
CR 1.81 1.92 2.17

3.7. Determine the Final Ranking

The synthetic relative alternative weights relating to each sub-criterion shown in
Table 11.

Table 11. Alternative weights regarding the sub-criteria.

Sub-Criteria
Alternatives

∝ Diaphragm Wall Secant Pile Solider Pile Sheet Pile

Soil condition 0.5 0.25 0.33 0.21 0.20
Underground water condition 0.5 0.24 0.30 0.25 0.22

Excavated depth 0.5 0.25 0.30 0.24 0.21
Adjacent buildings 0.5 0.25 0.25 0.25 0.25
Construction cost 0.5 0.31 0.27 0.22 0.20

Construction progress rate 0.5 0.27 0.32 0.26 0.15
Crossing utilities 0.5 0.22 0.28 0.19 0.32

3.8. Selecting the Appropriate System

Using Equation (13), it is possible to estimate the final alternative weight as indicated
in Table 11. For instance, the weight of the secant pile considering the soil condition at
∝= 0.5 can be obtained by the following:

rsecant pile = 0.155 × 0.33 = 0.051

Using Equation (14), the sum of all weights can be determined as shown in the last
row of Table 12.

Table 11 demonstrates that the secant pile is the heaviest. The secant pile arrangement
is therefore thought to be the best option. This result is consistent with the real system
chosen for the Pfizer project. A higher weighting indicates the most suited option rather
than necessarily a superior one.
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Table 12. Overall alternatives weights assed by the proposed model.

Sub-Criteria
Alternatives

∝ Diaphragm Wall Secant Pile Solider Pile Sheet Pile

Soil condition 0.5 0.039 0.052 0.033 0.031
Underground water condition 0.5 0.037 0.047 0.039 0.034

Excavated depth 0.5 0.032 0.038 0.031 0.027
Adjacent buildings 0.5 0.030 0.030 0.030 0.030
Construction cost 0.5 0.057 0.049 0.040 0.037

Construction progress rate 0.5 0.035 0.041 0.034 0.019
Crossing utilities 0.5 0.028 0.036 0.025 0.041

∑ 0.5 0.258 0.293 0.230 0.219

4. Discussion
The findings of this study underscore the efficacy of the proposed fuzzy AHP method-

ology in identifying the most appropriate ESS for construction projects. By integrating the
subjective insights of industry experts and addressing the uncertainties inherent in decision-
making, the fuzzy AHP model offers a reliable and structured framework for evaluating
alternatives against multiple criteria. This section delves into the key insights, practical
implications, and limitations of the study, providing a comprehensive understanding of its
contributions and areas for future exploration.

The hierarchical structure developed for this study, as illustrated in Figure 5, suc-
cessfully encapsulated the primary and sub-criteria critical to the selection of ESSs. The
weighting of these criteria revealed their relative significance in the decision-making pro-
cess. For example, safety emerged as the top priority with a weight of 0.56, surpassing
cost at 0.44. This prioritization aligns with the construction industry’s emphasis on en-
suring structural stability and minimizing risks during excavation activities. Among the
sub-criteria, soil condition (0.281) and underground water condition (0.277) were assigned
the highest weights, reflecting their substantial influence on the stability and feasibility of
ESSs. These results are consistent with real-world observations, as soil and groundwater
conditions are often decisive factors in excavation planning.

The consistency of expert judgments was rigorously evaluated through consistency
checks, including the calculation of CI and CR values. While some CR values exceeded
the traditional threshold of 0.1, they were considered acceptable given the complexity of
the decision problem and the involvement of multiple experts. This finding highlights the
value of incorporating diverse perspectives for a well-rounded and reliable evaluation.

In evaluating alternative ESSs—diaphragm wall, secant pile, soldier pile, and sheet
pile—the secant pile system emerged as the most suitable option, with a weight of 0.293.
This outcome aligns with the system chosen for the Pfizer project, thereby validating the
practical applicability of the proposed model. The secant pile system performed excep-
tionally well across several sub-criteria, particularly in soil condition (0.052), underground
water condition (0.047), and construction progress rate (0.041). This indicates that the secant
pile system balances safety, efficiency, and cost-effectiveness, making it a robust choice for
similar projects.

5. Practical Implications
5.1. Relevance to Construction Practice

The fuzzy AHP approach introduced in this study has significant implications for the
construction industry. By providing a structured and systematic method for evaluating
ESSs, the model reduces reliance on subjective intuition and enhances the transparency
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and reliability of decision-making. It emphasizes the importance of considering multiple
criteria, such as soil conditions, groundwater levels, and proximity to adjacent structures,
which are often overlooked or underestimated in traditional decision-making processes.
This study is a valuable resource for raising awareness among industry professionals
about the need for a holistic and data-driven approach to selecting ESSs. Moreover, its
ability to incorporate uncertainties and expert judgments ensures its relevance across
various applications.

5.2. Benefits of the Fuzzy AHP Approach

Adopting the fuzzy AHP approach in this study provides significant advantages over
traditional decision-making methods for selecting ESSs in construction projects. First,
it addresses the inherent uncertainty and subjectivity often encountered when experts
express their judgments in linguistic rather than numerical terms. By incorporating fuzzy
logic, the model captures the imprecise nature of human assessments more realistically,
leading to a more robust and reliable prioritization of criteria and alternatives. Second,
the method enhances transparency and consistency by structuring complex multi-criteria
evaluations into a clear and systematic framework. This improves the quality of decisions
and increases stakeholder confidence in the outcomes. Third, the fuzzy AHP model
demonstrates flexibility and adaptability, making it applicable to various construction
scenarios where site conditions, environmental risks, and technical requirements vary
significantly. The model’s ability to synthesize diverse expert opinions and defuzzify
the results into crisp, actionable priorities further ensures that decision-makers can make
informed choices even in complex and uncertain environments. Finally, the successful
application of the fuzzy AHP method in the Pfizer project case study, where the selected
system aligned with real-world decisions, validates its practical utility and highlights its
potential for broader use in enhancing construction projects.

5.3. Potential Broader Applications

Beyond ESS selection, the fuzzy AHP approach demonstrated in this study holds
significant potential for broader applications across various construction and civil engi-
neering areas. Its ability to integrate expert judgment with uncertainty modeling makes
it an ideal tool for complex decision-making scenarios where multiple, often conflicting,
criteria are considered. For instance, it can be applied to optimize the selection of founda-
tion systems, construction materials, contractor selection, and project delivery methods.
Moreover, in large-scale infrastructure projects such as tunnels, bridges, and metro systems,
where ground conditions and stakeholder requirements are highly variable, the fuzzy AHP
framework can guide engineers and managers toward more balanced and sustainable
solutions. By extending its use beyond the excavation context, the fuzzy AHP method can
support a wide range of decision-making needs in the construction industry, ultimately
promoting more informed, transparent, and resilient project outcomes.

6. Limitations and Future Research
6.1. Study Limitations

While effective, the proposed fuzzy AHP model has some limitations that should be
acknowledged. First, the model relies on expert judgments, which may introduce bias due
to subjective experiences or preferences despite fuzzy logic mitigating such subjectivity.
Second, its validation is based on a single case study, limiting generalizability to other
regions or construction contexts. Third, the framework is static and does not account for
dynamic site conditions, such as unexpected groundwater changes or adjacent structure
movements, which could impact system performance. Finally, the model assigns equal
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weight to all expert opinions, overlooking potential variations in expertise, which could
skew results.

Additionally, although the current criteria hierarchy was developed based on literature
review and expert consultation, factors such as contractor experience and equipment avail-
ability were not included. The exclusion of these factors may limit the comprehensiveness
of the model.

6.2. Opportunities for Future Research

Future research should focus on enhancing the model’s robustness and applicability.
One direction is validating the framework through multiple case studies across diverse
conditions to ensure broader reliability. Another opportunity includes the use of machine
learning that could refine expert judgments by analyzing historical data, reducing bias, and
optimizing decision-making. Additionally, hybrid approaches combining fuzzy AHP with
other MCDM methods (e.g., TOPSIS) could better capture complex uncertainties. Moreover,
future research will aim to incorporate other context-specific criteria to further improve
decision-making accuracy and model robustness.

6.3. Recommendations for Practice

To facilitate practical adoption, construction firms should pilot the fuzzy AHP model
on small-scale projects to evaluate its feasibility before full implementation. Training
programs for engineers and project managers are essential to ensure accurate pairwise
comparisons and consistency checks. Developing user-friendly software and automating
calculations, streamlining integration into project management workflows. Collabora-
tive platforms for knowledge sharing among industry experts would help refine criteria
hierarchies and linguistic scales based on collective insights. Additionally, maintaining
dynamic libraries of excavation support criteria updated with new materials, technologies,
and regulations would ensure the model remains aligned with industry advancements,
ultimately improving safety and cost in excavation projects.

7. Conclusions
This study’s proposed fuzzy AHP model provides a practical and reliable framework

for selecting excavation support systems in construction projects. The model effectively ad-
dresses the complexities and uncertainties inherent in decision-making by balancing critical
factors such as safety and cost-effectiveness. The case study of the Pfizer project demon-
strates the model’s effectiveness, with the secant pile system emerging as the most suitable
option. This outcome aligns with the actual system chosen for the project, validating the
model’s practical applicability and its ability to replicate real-world decisions.

The study’s findings reveal several key insights. First, the hierarchical structure of
the decision problem successfully captured the primary criteria (safety and cost) and sub-
criteria (soil condition, underground water condition, excavation depth, and adjacent
buildings) that influence the selection process. Safety was prioritized with a weight of
0.56, reflecting the construction industry’s emphasis on minimizing risks and ensuring
structural stability. Among the sub-criteria, soil condition (0.281) and underground water
condition (0.277) were identified as the most critical factors, underscoring their significant
impact on excavation stability and feasibility.

Second, the consistency checks performed on the pairwise comparison matrices con-
firmed the reliability of the expert judgments, despite some CR values exceeding the con-
ventional threshold. This highlights the importance of incorporating diverse perspectives to
achieve a comprehensive and balanced evaluation. The evaluation of alternative excavation
support systems—diaphragm wall, secant pile, soldier pile, and sheet pile—revealed that
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the secant pile system (0.293) was the most suitable option for the Pfizer project. The secant
pile system performed exceptionally well across multiple sub-criteria, particularly in soil
condition (0.052), underground water condition (0.047), and construction progress rate
(0.041), demonstrating its balanced combination of safety and cost-effectiveness.

In summary, this study highlights the value of integrating fuzzy AHP into construction
decision-making processes, providing a structured and systematic approach to address com-
plex, multi-criteria problems. It serves as a foundation for further research and innovation,
paving the way for more robust and adaptive decision-making tools in the construction
industry. By advancing safer, more efficient, and cost-effective construction practices,
the proposed model contributes to the ongoing evolution of construction management
and engineering.
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