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Abstract: Clarifying the mechanisms by which the micro-scale built environment influences
urban vitality is an important scientific challenge, to guide precise urban planning in the
context of urban renewal. In this study, we quantify the intensity of human activities
through Baidu heat maps, analyze social interaction patterns using social media check-in
data, and integrate built environment elements such as road network topology, 3D building
morphology, and the spatial distribution of points of interest (POIs). A machine learning
technique combining a real-encoded Accelerated Genetic Algorithm-Projective Pathfinding
Model (RAGA-PPM) and Shapley Additive Projection for Interpretability (SHAP) for Inter-
pretability Analysis (IPA) was used to investigate the nonlinear mechanisms of 17 factors
affecting urban vitality in Macau Peninsula, China. Firstly, the explanatory power of the
built environment for comprehensive vitality was significantly better than the other dimen-
sions. Two factors, population vitality and microblogging check-in vitality, contributed the
most to the composite vitality value. Secondly, road network density was the most impor-
tant built environment factor affecting urban vitality in Macau Peninsula (SHAP = 0.025).
Finally, the impacts of built environment factors on urban vitality showed nonlinearities,
and the threshold effects of the core factors (road network density, spatial fractal dimension,
and openness to the sky) showed a consistent neighborhood-level pattern. This study
establishes a framework for micro-vitality mechanisms in high-density cities, addressing
the limitations of traditional methods in modeling complex nonlinear relationships. The
methodological integration of RAGA-PPM and SHAP advances the innovative paradigm
of applying interpretable machine learning to the study of urban form.

Keywords: built environment; urban vitality; projection pursuit; genetic algorithm;
Macau Peninsula

1. Introduction
With the acceleration of global urbanization, the relationship between urban vitality

and the built environment has increasingly become a crucial research topic in the fields of
urban planning and management. Urban vitality generally refers to the comprehensive
performance of a city in economic, social, cultural, and environmental aspects, directly in-
fluencing residents’ quality of life, social interactions, and economic development levels [1].
The built environment, as a core component supporting urban functions, encompasses
multiple dimensions such as urban spatial structure, transportation facilities, green space
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distribution, and building density. Its quality and layout play a vital role in the generation
and development of urban vitality [2]. Traditional research has often simplified the relation-
ship between urban vitality and the built environment into linear correlations, employing
statistical methods like regression analysis for exploration [3]. However, the relationship
between urban vitality and the built environment is inherently nonlinear, influenced by the
intertwining and interaction of various factors, and this interaction is highly complex [4].
Existing linear models fail to effectively capture this complex nonlinearity, leading to certain
limitations in the prediction and optimization of urban vitality. In the context of sustainable
urban development, there is an urgent need for more refined research on how to balance
high-density development with ecological preservation, optimize transportation networks
to reduce carbon emissions, and enhance environmental comfort. Although existing studies
have recognized the nonlinear association between the built environment and urban vitality,
there are still significant gaps in the analysis of specific nonlinear mechanisms of action.
Complex relationships such as the inverse inhibitory characteristics of built environment
elements for urban vitality in the threshold effect, the differential response mechanism
of the same element for vitality under spatial heterogeneity, as well as the delayed and
cumulative impacts of environmental changes on vitality in the dynamic time lag effect
have not yet been adequately quantified and deciphered [5]. Traditional linear models have
difficulty capturing multidimensional nonlinear features, due to the restriction of fixed
coefficient assumptions, leading to insufficient guidance on key issues such as synergistic
paths for high-density development and ecological protection, marginal benefit thresholds
for transportation network optimization, and scale effects of green infrastructure imple-
mentation. Therefore, exploring a modeling method that can systematically identify and
reveal the multiple types of nonlinear relationships between the built environment and
urban vitality is an important direction, to promote the progress of urban research theory
and practice.

In recent years, with the rapid development of artificial intelligence and big data tech-
nologies, modeling methods based on complex systems have gradually become important
tools in urban research [6,7]. In particular, the Real-coded Adaptive Genetic Algorithm
(RAGA) can achieve global optimization in complex, multidimensional, and multivariate
data, while the Probabilistic Potential Model (PPM) reveals deep-seated correlations among
various factors in urban systems through latent factor modeling [8]. Although existing
research has made some progress in theoretical construction and model application, there
has been a lack of exploration into urban vitality measurement based on the RAGA-PPM
model [9]. The integration of machine learning algorithms with Shapley Additive Ex-
planations (SHAP) provides intuitive interpretability for complex nonlinear models. By
quantifying the contribution of each feature to the model’s output, it can reveal how built
environment elements nonlinearly influence urban vitality, further enhancing the model’s
transparency and practicality [10].

In this study, we aim to construct a hybrid computational framework capable of
characterizing the nonlinear dynamics of the built environment and urban vitality by
coupling the global optimization capability of the real-encoded adaptive genetic algorithm
(RAGA) with the potential factor inference advantages of the probabilistic potential model
(PPM). On this basis, SHAP is introduced to decouple the differentiated paths of the
contribution of multi-dimensional built environment elements to vitality generation and
their interaction effects. Based on multi-source high-precision urban data, a cross-scale
empirical study was carried out to quantitatively verify the superiority of the model for
vitality prediction accuracy, generation of spatial intervention strategies, and resolution of
nonlinear relationships, forming a complete closed loop of “theory construction–mechanism
analysis–decision-making support”, and providing a combination of machine learning
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and explanatory planning and decision-making capabilities for the optimization of the
built environment in the context of a smart city. We provide a methodological tool for the
optimization of built environment in the context of smart cities, which combines machine
learning, sophistication, and interpretability of planning and decision-making.

2. Literature Review
The term “vitality” in Chinese was originally used to describe and express the state

of activity of living organisms. Later, it was understood as the vigorous vitality of living
organisms or the activity of individual organisms in their actions, communication and
expression, and thinking. The term “vitality” was initially mainly applied in the field of
physics. With the research and exploration of the natural world, it further was expanded
to the field of biology. Later, it was introduced into various scientific research fields and
has also developed different connotations in various research processes within different
disciplinary systems. Ultimately, the term “vitality” has a rich meaning that transcends its
original meaning, and there are certain differences in its representation and interpretation in
different fields and specific research issues. The concept of “vitality” in this study is mainly
in reference to cities and urban areas. It mainly represents the “vitality” within the city itself
or the urban block space. The definition of “urban vitality” begins with understanding the
nature of a city’s continuous operation and regards the overall framework of the city as a
complex organic life or physical system. Urban vitality, as a crucial indicator for assessing
urban health and sustainable development, has long attracted attention from the academic
community. At the macro level, urban statistical data, interviews, and questionnaires have
been utilized as data sources [11,12]. However, these data sources are often plagued by
issues such as insufficient timeliness, limited sample sizes, and being time-consuming and
labor-intensive, making them difficult to apply to fine-grained perspectives. At the meson
and micro levels, Jacob’s explanatory indicator framework, which approaches from various
dimensions, has been widely accepted [13–15]. Scholars have explored urban vitality from
aspects such as urban morphology, design, land use, population density, mobility, and
transportation accessibility [16–21]. Most research on urban vitality has focused on the
exploration of indicators and their impact levels, with relatively limited studies on the
formation mechanisms of vitality itself and comprehensive evaluations. Furthermore, more
granular indicators have also not been fully developed [22,23].

2.1. Research on the Relationship Between Urban Vitality and Built Environment

Early studies on urban vitality primarily focused on the role of urban economic
development, social structure optimization, and infrastructure improvement in promoting
urban vitality. Scholars have extensively investigated the impact of built environment
variables such as traffic density [1], green space [14], public facility provision [20], and
building density [24] on urban vitality through regression analysis and spatial econometric
models [24]. In her seminal work “The Death and Life of Great American Cities”, Jacobs
defined urban vitality as a self-regenerating force capable of nurturing and promoting
diverse pedestrian activities and the connections between neighborhood and street-level
activities [25].

With the rapid advancement of information technology, a new data environment cen-
tered around big data and open data has gradually emerged. The availability of diverse data
sources, including GPS data, mobile phone signaling, social media check-ins, and street view
images, has provided richer possibilities for measuring urban vitality, thereby expanding
the depth and breadth of built environment research [26–32]. Building upon this foundation,
studies conducted at various urban scales—from administrative districts [30,33,34] to neigh-
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borhoods [12,35], streets [36–38], and public spaces [39,40]—have consistently demonstrated
the significant role of the built environment in fostering urban vitality.

2.2. Application of Nonlinear Models and Complex Systems Approache

Existing studies have mainly used linear regression models, spatial measurement
models, and geographically weighted regression models to analyze the effects of built
environment factors on urban vitality and their significance [20,31,33,34,36,39–41]. Al-
though these methods can verify the statistical significance among variables, their linear
assumptions have difficultly capturing the nonlinear nature of multi-factor interactions
within urban systems. In recent years, scholars have gradually introduced complex model-
ing techniques to overcome this limitation. For example, the adaptive genetic algorithm
(RAGA) optimizes the global solution of a high-dimensional nonlinear problem by simulat-
ing biological evolutionary mechanisms (e.g., selection, crossover, and mutation), which
significantly improves the efficiency of parameter finding [42]. Its advantage lies in its
ability to process multi-objective optimization tasks in parallel and adaptively adjust the
search interval to approximate the optimal solution [43]. However, the RAGA is sensitive
to the initial parameter settings, and the computational complexity increases exponentially
with the increase in the dimensionality of the variables, which may lead to a decrease in
the convergence speed, or falling into a local optimum [42,44]. In addition, its “black-box”
nature limits the interpretability of the model results, making it difficult to directly guide
the planning practice. Gradient boosted decision tree (GBDT) is an iterative approach that
builds weak classifiers and weighted combinations by integrating learning strategies, and
it has been shown to perform well in identifying the threshold effects and interactions of
built environments for urban vitality [35,44–47]. The GBDT method is particularly suit-
able for multi-source heterogeneous urban big data analysis, as it can deal with multiple
covariations between features under loose assumptions on data distribution. However,
its limitations are equally significant: on the one hand, the model tends to over-rely on
high-frequency features and may ignore low-frequency but high-impact variables; on the
other hand, the complexity of the tree structure undermines the interpretability of the re-
sults, and although methods such as SHAP (Shapley Additive Properties for Interpretation)
have been used for post hoc interpretations, they are computationally costly and rely on
sample independence assumptions [48]. In addition, GBDT is more sensitive to outliers and
noisy data, which may affect the robustness of threshold determination. Future research
could compensate for the shortcomings of a single algorithm through a hybrid modeling
framework. The RAGA could be combined with local search algorithms to balance global
exploration and local exploitation capabilities; or an attention mechanism could be intro-
duced to improve the feature weight allocation logic of GBDT and enhance the ability to
capture sparse features. Meanwhile, the integration path between Explainable ML and Spa-
tially Explicit Modeling should be further explored to reveal the spatial heterogeneity and
spillover effect of built environment elements, to provide improved operational theoretical
support for refined urban planning.

In summary, significant progress has been made in the current literature regarding the
exploration of nonlinear relationships between urban vitality and the built environment.
However, there remains considerable room for improvement regarding the complexity of
model construction and the breadth and depth of multifactor analysis in existing studies.
Most research still relies on linear assumptions or simplified variable settings, failing to
comprehensively capture the complex interactive effects between the built environment
and urban vitality. Future research should focus on developing more sophisticated and
refined modeling methods, while emphasizing the integration of interdisciplinary theories,
particularly the incorporation of sociological and behavioral economic theories. This will
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not only enhance the explanatory power of existing models but also provide crucial support
for advancing innovation in urban planning theory and practice.

3. Study Area and Data Sources
3.1. Study Area

As one of the three core areas of the Macau Special Administrative Region, the Macau
Peninsula is located on the west bank of the Pearl River Delta (latitude 22◦11′ to 22◦13′ N,
longitude 113◦32′ to 113◦35′ E), adjacent to the Gongbei Border Crossing of Zhuhai City
in the north, and connected to the islands of Taipa and Coloane in the south by crossing
the Sai Van Bridge, making it the political, economic, and cultural hub of Macau (Figure 1).
According to the 2024 data of the Statistics and Census Bureau of the Macau SAR Govern-
ment [47], the region has a land area of 9.1 km2 and a resident population of about 452,700,
with a population density of 49,747 inhabitants/km2, which is among the most densely
populated regions in the world. The topographic features are dominated by hilly terrain,
with Pine Hill as the highest point (93 m above sea level), and artificial land areas such as
the New Border Crossing and Nam Van Lake formed along the coast through reclamation
projects, constituting a spatial superposition of the characteristics of a historical urban
area and a modern new district. The Macau Peninsula is divided into 159 neighborhoods,
among which the Historic District (which concentrates 22 historical building clusters such
as the Ruins of St. Paul’s, the A-Ma Temple, the Senado Square, etc.) demonstrates the
unique urban texture of Sino-Portuguese cultural fusion.
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As an important node of the Guangdong–Hong Kong–Macau Greater Bay Area, the
Macau Peninsula has close transportation and economic links with cities such as Zhuhai and
Hong Kong through the Hong Kong–Zhuhai–Macau Bridge and the Guangzhou–Zhuhai
Intercity Railway. The urban space has undergone a transformation from a single-core
agglomeration in the historical city center to a multi-core expansion in the peripheral new
reclamation area, forming a “dual-center” structure: first, a historical, cultural, and tourism
center with the Senado Square as the core, concentrating 80% of the world cultural heritage
and traditional commercial districts, and facing contradictions between heritage preser-
vation and high-density development; and second, a modern business and entertainment
center in the Outer Harbor New Reclamation Area. The second area is the modern business
and entertainment center of the Outer Harbor New Reclamation Area, which contains
integrated resorts such as MGM MACAU and Wynn Palace, but suffers from an imbalance
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in daytime and nighttime vitality due to its single function. The transportation network in
the area is dense but limited by the narrow street pattern of the historical city center, where
walking and public transportation are the main modes of travel. The Macau Peninsula,
with its high-density urbanization, cultural diversity, and spatial compactness, has become
a typical sample for exploring the non-linear interaction mechanisms between the built
environment and urban vitality, and its experience has important theoretical value and
practical significance for the sustainable regeneration and vitality enhancement of historic
cities around the world.

3.2. Variables and Data
3.2.1. Vitality Measurement

The measurement of urban vitality is conducted from three perspectives: human
activity, online interaction, and built environment. Among these, human activity serves as
a crucial indicator for assessing urban vitality, with the distribution and movement patterns
of people being key drivers of regional prosperity [48]. Baidu’s heatmap population data
provide real-time population density and activity information, revealing areas of high hu-
man concentration and dynamic population movements, thereby offering scientific support
for urban planning and management. As behavioral records from a mainstream social
media platform, Weibo check-in data reflect peak demand and distribution characteristics
of users of public facilities and services [46,49–52], unveiling the activity patterns and
preferences of both residents and tourists, which provide valuable references for urban
operations and decision-making.

3.2.2. Measurement of the Built Environment

In this study, we adopted the “5D” built environment indicator system proposed by
Ewing et al. [2], which includes density, diversity, design, destination accessibility, and
distance to transit. Building upon previously established indicator systems [33,35,45], and
considering data availability and indicator suitability, we selected 15 indicators to measure
the built environment across seven dimensions: urban vitality, spatial form, functional
characteristics, socio-economic environment, psychological perception, transportation ac-
cessibility, and street quality. Given that geographical elements exhibit spatial dependency
effects, empirical models using machine learning algorithms are unable to capture the
dependency between spatial units or measure the direct effects and spatial spillover effects
between variables [53]. The specific calculation methods for each indicator are detailed in
Table 1.

Table 1. Variable definitions and descriptive statistics.

Variable Detection Metric Calculation Formula Formula Description

Urban
Vitality

Population
Density

R = H
A

R represents the density value of a specific neighborhood unit;
H denotes the kernel density value of a particular
neighborhood unit; A is the area of a given neighborhood unit.Weibo Check-in

Density

Spatial Con-
figuration

Spatial
Compactness c =

2√
π*Aera

l

C represents the compactness of a block, which is
determined by the area of the land parcel within the block
unit and the lengths of the boundaries of the parcel.

Fractal
Dimension D =

2ln( h
4 )

In(A)

D value typically ranges between 1.0 and 2.0, with a higher
D value indicating greater complexity in the spatial
configuration of land parcels within the region.
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Table 1. Cont.

Variable Detection Metric Calculation Formula Formula Description

Functional
Attribute

Functional
Density fdi =

Ni
Si

fdi represents the total number of Points of Interest (POI)
within the i-th urban block, Si refers to the area of the i-th
category of urban blocks.

Functional Mix I = −∑n
i=1 (pi*Inpi)

I represents the functional mix of the block, “i” denotes the
number of POIs within the i-th block unit, and “Pi” signifies
the ratio of the i-th category of POIs to the total number of
POIs within the block unit.

Socio-
Economic

Environment

Cultural Facility
Density

D = N
A

D represents the ratio of the total number of cultural
facilities, public facilities, and commercial facilities within a
specific region to the total area of that region.Public Facility

Density

Psychological
Perception

Building Density P = ∑n
i=1 mi

s

P represents the building density, i denotes the identification
number of different buildings, mi refers to the base area of
the building with the i-th identification number, and s stands
for the usable area.

Hydrophilic
index WI = K − NER _DIST

WI denotes the hydrophilicity index of spatial blocks, while
K is a constant term representing the search radius value for
neighborhood analysis.

Transportation
Accessibility

Road Network
Densit D = N

A
D represents the ratio of the total number of commercial
facilities and bus stops to the total area within the study region.

Bus Stop Density

Street Quality

Green View
Index GVIi = PVegetation

The visibility of vegetation as perceived by the human eye
was measured to assess the level of greenery on
urban streets.

sky view factor SVFi = Psky

The term refers to the proportion of the sky visible within the
field of view at a specific location, typically expressed as a
value ranging from 0 to 1.

Enclosure

Enclosurei =
PBuilding+PWall + PFence
+PPole + PLight + PSign +

PVegetation

The sense of enclosure measures the extent to which an
individual feels surrounded by the surrounding
environment within a space.

Walkability Walkabilityi =
PFence+PSidewalk

Proad

Refers to the level of pedestrian-friendliness of a street or
urban area.

3.3. Data Sources and Preprocessing

The data were categorized into two main dimensions: comprehensive urban vitality
and built environment. The datasets utilized primarily consisted of fundamental geo-
graphic data and open-source data obtained from the Internet, as detailed in Table 2.

Table 2. Data sources and acquisition timeline.

Data Type Data Name Data Source Time Preprocessing

Fundamental
Geospatial Data

Macau Road
Network Tianditu (https:

//www.tianditu.gov.cn/
accessed on 3 April 2024)

2024

The data were uniformly projected onto
the WGS84 coordinate system to classify

road and building categories, and metrics
such as road density, building area, and

water system area were
subsequently calculated.

Macau
Architectural

Structures
Hydrological Data

Open-source
Web Data

Baidu Heatmap
Population Data

Baidu Map Smart Eye
Population Big Data Platform
(https://huiyan.baidu.com/

accessed on 3 April 2024)

2024
The Kernel Density analysis tool within

ArcGIS was employed to convert the data
into a continuous raster density map.

Macau Housing
Price Data

Estate Information Network of
Macau (https:

//www.malimalihome.net/
accessed on 3 April 2024)

2023

The core fields, including unit price, total
price, gross floor area, and property type,

were collected to calculate key metrics
such as price per square meter and
average housing prices by region.

https://www.tianditu.gov.cn/
https://www.tianditu.gov.cn/
https://huiyan.baidu.com/
https://www.malimalihome.net/
https://www.malimalihome.net/
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Table 2. Cont.

Data Type Data Name Data Source Time Preprocessing

Open-source
Web Data

Points of Interest
(POI) Data GaoDe Map 2024

The dataset underwent comprehensive
data cleaning, including the handling of

missing values and outliers. Classification
and standardization processes were

implemented to ensure field uniformity
across all 45,708 records.

Weibo Check-in
Data

Sina Weibo
(https://weibo.com/ accessed

on 3 April 2024)
2020

The data cleaning process involved
handling missing values and outliers,

followed by categorizing the data based
on check-in locations. The total number of
Weibo check-ins processed was 145,370.

Street View
Imagery

Baidu Street View Map Open
Platform

(https://lbs.baidu.com/
accessed on 3 April 2024)

2023

Sampling points were generated at 100 m
intervals based on road network data.

Utilizing the Baidu API endpoint with a
pitch angle of 0 degrees, images were

captured at four different azimuth angles:
0◦, 90◦, 180◦, and 270◦. A total of

10,442 images were collected.

3.3.1. Basic Geographic Data

The basic geographic data included the administrative division data of Macau Penin-
sula, road network data, water system data, building data, and road network data, all of
which came from the Tianditu.

3.3.2. Open-Source Data

(1) Baidu Heat Population Data

Baidu thermal population data were obtained based on the Baidu Map Wise Eye de-
mographic geographic big data platform, whose location information covers almost every
aspect of daily life. Compared with “check-in” or census data, this heat map dataset is
almost unbiased [32], can provide almost real-time demographic data, and can well demon-
strate the direction of urban population movement and spatial aggregation status. The
platform includes functions within a certain spatial range to provide online data analysis
and visualization services, including statistical and dynamic visualization information such
as regional population, occupancy and residence, passenger flow, facilities, brands, ODs,
and heat maps. Baidu Map Wise Eye population location data are mainly derived from
calling Baidu Map Positioning SDK terminal positioning data. It has been demonstrated
that crowd movement conforms to similar distribution and evolution laws based on Baidu
heat map data from Monday–Friday (weekdays) and Saturday and Sunday (weekends) [48].
In this paper, the statistical information of the heat map in Baidu Map Wise Eye urban
population data platform was used to obtain the data of 24 moments on May 15 (Monday)
and May 20 (Saturday), 2024 as the basic data.

(2) Macau Property Price Data

Macau house price data were obtained based on the preferred real estate information
platform of Macau (Malimali Home), which integrates real-time transaction information of
residential and commercial properties in the Macau Peninsula, covering core fields such as
the unit price of the property, the total price, the floor area, the type of property ownership,
and the time of the transaction. Compared with the government’s periodic statistical
reports, such market transaction data can capture the spatial and temporal characteristics
of house prices more dynamically and avoid the lagging bias of traditional statistics [47].
The platform provides historical transaction records and regional price indices through a

https://weibo.com/
https://lbs.baidu.com/
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standardized data interface, and its data cover more than 90% of the real estate agencies in
the Macau Peninsula. It has been demonstrated that such data have high reliability and
validity in parsing the spatial differentiation of urban settlements and the distribution of
commercial vitality [51]. In this study, we extracted transaction data for the whole year of
2023, cleaned the outliers (excluding records with unit prices exceeding three times the
standard deviation of the mean or with missing key fields), and calculated the average
house price, price gradient, and the proportion of the distribution of the property types in
each neighborhood, in order to quantify the mechanism by which the built-up environment
affects the spatial differentiation of house prices.

(3) POI data

POI data, as a kind of point data representing geographic entities, include attribute
information, such as name, type, location, etc., which is mainly used for density calculation
and functional area diversity calculation. According to the Urban Land Use Classification
and Planning and Construction Land Use Standards [49] and the actual situation of Nanjing,
POIs are classified into seven major categories, which are residential land, commercial land,
industrial land, public service land, science, education and culture land, green space and
square land, and transportation facility land. In this paper, the POI data points of MSAR in
2024 obtained from Gaode Map totaled 145,370.

(4) Weibo check-in data

The Weibo check-in function allows users to record their whereabouts in real time
and show their life status and activity experience. Users can express their favorites, and
support or comment on a certain place or activity, by checking in, and at the same time, they
can also browse the check-in information of others to understand their activity trajectories
and locations. By analyzing Weibo check-in data, we could understand the distribution
of people flow, heat index, and activity density of different locations in the city, revealing
the population flow patterns and social activity hotspots in the city. In this paper, a total of
145,370 Weibo check-ins of Macau SAR in 2020 were obtained from Sina Weibo.

(5) Street View Image

Street View image data were acquired based on the Baidu Street View map open
platform, which covers urban street space through high-resolution panoramic photography
technology and can objectively present the material form and spatial enclosure charac-
teristics of street façades. Compared with traditional field research, this dataset has the
advantages of standardized collection process and simultaneous acquisition from multiple
viewpoints, which can effectively avoid the subjective bias of human observation [50]. The
platform provides API interface services to support researchers in batch acquiring street
view images of specified locations based on geographic coordinates or road network nodes,
and it allows customization of parameters such as shooting angle, elevation angle, and
image resolution. It has been shown that streetscape images have significant application
value in the fields of street greening-rate measurement [51], building interface continuity
assessment [52], and walking environment quality quantification [46]. In this study, based
on the road network data of Macau Peninsula, sampling points were set up at 100 m
intervals, and street view images were obtained from four horizontal viewpoints, (0◦ pitch
angle 0◦) at 0◦ (due north), 90◦ (due east), 180◦ (due south), and 270◦ (due west), of each
point location through the Baidu Street View API, and 10,442 effective street view images
were finally collected for the year 2023.

4. Research Methodology
This study employed the Macau Peninsula as a case study, dividing the research

area into 159 urban blocks based on road network data. A comprehensive urban vi-
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tality assessment framework was constructed, encompassing three dimensions: human
activity, network interaction, and built environment. The projection pursuit model op-
timized by the accelerated genetic algorithm (RAGA-PPM) was utilized to reduce the
dimensionality of block indicators, extract optimal projection directions, and calculate both
single-dimensional and comprehensive vitality values across various aspects. Subsequently,
vitality centers were identified and compared with results from the entropy weight method
(EWM) to validate the effectiveness of RAGA-PPM. Furthermore, the study investigated
the nonlinear impact mechanisms of the built environment on urban vitality by integrating
machine learning with Shapley additive explanations (SHAP), providing scientific support
for urban planning. The technical framework is illustrated in Figure 2.
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4.1. Calculation of Projection Pursuit Model Based on Real-Coded Genetic Algorithm
4.1.1. Projection Pursuit Model (PPM)

In urban vitality assessment, traditional methods typically rely on expert scoring and
multi-indicator comprehensive evaluation, such as factor analysis, the entropy [54] weight
method, and TOPSIS method. Although these methods have achieved certain results,
they are limited by strong subjectivity, fewer dimensions, and difficulty in handling high-
dimensional nonlinear data. Given that urban vitality involves multiple high-dimensional
and nonlinear dimensions, 15 indicators were selected for calculation. The Projection
Pursuit Model (PPM) [55] can effectively identify the optimal projection direction in high-
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dimensional data. This method reveals the structural characteristics of data by mapping
high-dimensional data into a low-dimensional space [26]. The specific steps are as follows:

(1) Since the data sources of projection indicators have different numerical types and
dimensions, in order to eliminate the dimensions and unify the range of indicator changes,
the following formula is used for standardization; for defined positive indicators, as shown
in Formula (1), and for negative indicators, as shown in Formula (2):

X(i, j) =
x*(i, j)− xmin(j)
xmax(j)− xmin(j)

(1)

X(i, j) =
xmin(j)− x*(i, j)
xmax(j)− xmin(j)

(2)

In the given formula, x*(i, j) represents the value of the j indicator for the i sample.
Additionally, xmax(j) and xmin(j) correspond to the minimum and maximum values, re-
spectively, of the j evaluation indicator within the i sample.

(2) Construct the projection index function z(i), project x(i,j) onto the projection direc-
tion a, let a= (a (1), a (2), . . ., a (j)), where a is the unit length vector, and the projection value
z(i) is

z(i) = ∑p
j=1 (aj × xij) (3)

where z(i) is the projection vector of the i th sample, xij is the i th value in the j th index,
and aj is the projection direction of the projection vector z(i).

(3) Construct the projection objective function ρ(a) to identify the structural combina-
tion features of the data within the multidimensional indicators. During the comprehensive
projection process, the projection value Z(i) should maximize the extraction of variation
information from x(i,j), ensuring that the standard deviation Sz of Z(i) is as large as possible.
Simultaneously, the local density Dz of the projection values Z(i) should be maximized.
Based on these principles, the projection objective function can be formulated as ρ.

ρ(a) = SzDz (4)

Sz =

√
∑

p
i=1 (Z(i)− Z*)

2

n − 1
(5)

Dz = ∑n
i=1 ∑n

j=1 (R − rij)u(R − rij) (6)

where Sz is the standard deviation of Z; Dz is the local density of Z; Z* is the mean
of Z(i)(i = 1~n); rij is the window radius of the local density, which is related to the
search radius of the projection point; rij refers to the difference between Z(i) and Z(j);
u
(
R − rij

)
istheunitstepfunction. Its function value is 1 when R − rij ≥ 0, and its function

value is 0 when R − rij≥ 0.
(4) Optimizing the projection objective function to determine the optimal projection

direction, different projection directions reflect various structural characteristics of the
data. The optimal projection direction is the one that maximizes the likelihood of revealing
specific structural features of high-dimensional data. To estimate the optimal projection
direction, the projection objective function is maximized, ensuring that the most informative
structural properties are exposed.

Max = (ρ(a)) = SzDz (7)

s*t∑p
j=i a2(j) = 1,−1 ≤ a(j) ≤1 (8)
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(5) Substituting the optimal projection direction into Equation (3), the projection
values for each sample can be obtained, enabling a unified evaluation of the sample set.
Given that Equations (7) and (8) represent a complex nonlinear optimization problem and
involve parameter settings, conventional optimization methods may struggle to provide
an effective solution. Therefore, a genetic algorithm (GA), a general global optimization
approach that incorporates the principles of biological selection and intra-population
chromosome information exchange, is introduced to address the high-dimensional global
optimization problem.

4.1.2. Accelerated Genetic Algorithm Based on Real-Coded Encoding (RAGA)

In this study, an improved genetic algorithm—the Accelerated Genetic Algorithm
based on Real-Coded Encoding (RAGA)—was employed to optimize the Projection Pursuit
Model (PPM) and address challenges in the solution process. RAGA integrates the global
search capability of genetic algorithms with the continuous optimization advantages of
real-coded encoding, significantly enhancing optimization performance [41–44]. By sim-
ulating the biological evolution process, this algorithm executes selection, crossover, and
mutation operations in parallel, expanding the search space and increasing the likelihood
of identifying the global optimal solution. The adaptive mechanism of RAGA progres-
sively narrows the search range of optimization variables, thereby improving the solution
accuracy. As the number of iterations increases, the precision of the solution continues to
improve [42].

4.1.3. Projection Pursuit Model Optimized by Accelerated Genetic Algorithm with
Real-Coded Encoding (RAGA-PPM)

The Projection Pursuit Model (PPM) effectively handles complex nonlinear relation-
ships, while the Real-coded Adaptive Genetic Algorithm (RAGA) enhances PPM’s capa-
bility in processing high-dimensional nonlinear data through global search and adaptive
adjustment. Compared to traditional methods, RAGA autonomously optimizes parameters,
minimizing human intervention, improving the efficiency and accuracy of the evaluation
process, and mitigating the risk of local optima. Notably, RAGA has demonstrated out-
standing performance in multimodal function optimization. However, the model has
certain limitations, such as a high computational complexity and sensitivity to parameter
settings. By optimizing the calculation of 17 indicator factors, this study provides a more
accurate representation of urban vitality, as illustrated in Figure 3.
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4.2. Machine Learning Models and SHAP Interpretability Method

Both XGBoost [34] and LightGBM [35] are based on the Gradient Boosting Decision
Tree (GBDT) algorithm, which iteratively adds new trees to optimize the model. Although
the two algorithms differ in specific details and optimization strategies, they share a similar
fundamental formulation. Their objective functions consist of two main components: a loss
function and a regularization term.

Objective = ∑n
i=1 L(yi, y̌i) + ∑k

k=1 Ω(fk) (9)

The loss function is defined as the squared error loss, which measures the squared
error between the model predicted value y y̌i and the true value yi.

L(yi, y̌i) = (yi, y̌i)
2 (10)

The regularization term controls the complexity of the model and prevents overfitting.

Ω(fk) = γM +
1
2
λ∑M

j=1 ω
2
j (11)

where Ω(fk) is the regularization term of the k th leaf in the tree; γ is the penalty coefficient
of the number of leaf nodes, used to limit the complexity of the model and reduce overfitting;
M is the number of leaf nodes; λ is the penalty coefficient of the leaf node fraction, used to
control the L2 regularization strength of the leaf node fraction in the model; and ωj is the
fraction of the j th leaf node.

For the t th tree, the objective function is

Objective = ∑n
i=1

{
yi −

[
y̌(t−1)

i + ft(xi)
]}2

+γM +
1
2
λ∑M

j=1 ω
2
j (12)

where y̌(t−1)
i is the predicted value of the t − 1 tree for the i th sample, n is the number of

training samples, and ft(xi) is the predicted value of the t th tree for the sample xi.
The final prediction model is obtained by summing up of the iteratively gener-

ated trees:
y̌i = ∑T

t−1 ft(xi) (13)

where y̌i is the predicted value of the i th sample, which is the predicted vitality of the block
sample; T is the total number of trees; and ft(xi) is the predicted value of the t th tree for xi.

The SHAP interpretability method [36] aims to quantify the contribution of each
feature to the model’s prediction, expressed as the SHAP value. This method considers
all possible feature combinations and calculates the average contribution of each feature
across all possible combinations. The calculation formula is as follows:

SHAPij = ∑S⊆{x1,x2,··· ,xn}\{xj}
|S|!(n−|S|−1)!

n
× [f(S ∪ {xj})− f(S)] (14)

5. Results and Analysis
The projection pursuit model optimized by the accelerated genetic algorithm based on

real-number encoding (RAGA-PPM) was applied to calculate the comprehensive vitality
of the streets in the Macau Peninsula. A database consisting of 15 indicators was used
as the foundation, and multiple experiments were conducted to determine the optimal
projection direction when α = 0.05. The resulting best projection direction was found to be
a = (−0.038, 0.002, 0.003, −0.056, −0.056, −0.097). The values of each component represent
the contribution of the corresponding indicators to the overall evaluation goal. The order
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of the indicators represented by each component was as follows: population density, Weibo
check-in density, spatial compactness, functional density, and functional mix. It is evident
that the largest coefficients in the projection direction correspond to population density
and Weibo check-in density. These two factors contribute the most to the comprehensive
vitality value, indicating that they have the greatest impact on the overall vitality of urban
neighborhoods. For visualization, the vitality was classified into five levels using the
natural breaks classification method, arranged from high to low vitality: high-vitality areas,
relatively high-vitality areas, moderate-vitality areas, relatively low-vitality areas, and
low-vitality areas.

5.1. Spatial Distribution Analysis of Unidimensional Activity

The distribution of the vitality of people’s activities in the Macau Peninsula presents a
significant spatial characteristic of “high value at the core and low value at the periphery”,
which reflects a high degree of agglomeration in the functional layout and spatial utilization
of the city, as shown in Figure 4a. High-vitality areas are mainly concentrated in the
integrated commercial and entertainment functional areas centered on the Grand Lisboa
Hotel, Wynn Macau, and MGM MACAU, and at the same time cover important historical
and cultural landmarks such as the Senado Square, the Ruins of St. Paul’s, and Our Lady
of the Rosary Church. The Central Vitality Zone is distributed in Hac Sa Wan and New
Boundary Control Point, showing the transitional characteristics of function and vitality.
Hac Sa Wan is predominantly residential in function but has the advantage of strong spatial
connectivity due to its proximity to the core business district. Low-vitality areas are mainly
located in traditional residential districts such as Chopstick Key and Taishan. These areas
are single-function, mainly residential, and lack large public spaces and highly attractive
commercial facilities, resulting in a low frequency of crowd activity.
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The spatial pattern of network interaction vitality in the Macau Peninsula generally
showed “predominantly medium-vitality and scattered low-vitality”, as shown in Figure 4b.
Medium-vitality areas are mainly concentrated in functionally diversified areas such as
the New Boundary Crossing Area and Hac Sa Wan. As a combination of business and
life service functions, the New Port area has created active online participation through
digital activities such as check-ins and reviews, while the Hac-Sa-Huan area, although
mainly residential, shows a certain degree of online interaction activity due to its proximity
to the core business district and good transportation conditions. Areas with low online
interaction vitality are mainly located in traditional residential areas such as Chopsticks
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Key, Tsing Chau, and Ha Wan. These districts are significantly less active, due to their
single function and lack of large public spaces and commercial facilities.

The vibrancy of the built environment of the Macau Peninsula shows a clear hierarchi-
cal distribution, closely related to the functional layout of the area, the land use pattern,
and the transportation conditions, as shown in Figure 4c. Highly vibrant areas are mainly
concentrated around the Outer Harbour, Nam Van, Senado Square, and Ruins of St. Paul’s.
These areas are characterized by commercial, tourism, and cultural functions. These ar-
eas attract many people due to the high integration of commercial, tourism, and cultural
functions. With Hotel Lisboa and Wynn Macau as the core, these landmark districts have
become the main driving centers of the vibrancy of Macau’s built environment by virtue
of their high-density building layouts, diversified forms of land use, and well-developed
transportation networks. The central vitality areas are distributed at the periphery of the
core area, mainly covering the New Border Crossing and Hac Sa Wan areas. These areas are
mainly residential, with certain commercial and living service functions, moderate building
density, and convenient transportation conditions. Low-vitality areas are concentrated in
the urban fringe areas such as Chopstick Key, Taishan, and Xia Huan.

In terms of unidimensional vitality, high-vitality areas in the Macau Peninsula are
primarily concentrated around locations such as the New Lisboa, Ruins of St. Paul’s,
and A-Ma Temple. These areas exhibit significant advantages in terms of human activity,
network interaction, and built environment. In contrast, low-vitality areas are primarily
found in the northern region, mainly due to the lack of diverse functions and insufficient
infrastructure. This distribution of vitality provides important data support for optimizing
urban functions and adjusting the spatial structure of Macau.

5.2. Comprehensive Vitality Space Analysis

The comprehensive vitality evaluation results based on the RAGA-PPM algorithm
indicate that the urban spatial structure of Macau exhibits significant hierarchical and
central aggregation characteristics in Figure 5. The values for the spatial distribution
pattern of vitality show a gradual transition from high-vitality areas in the core region
to low-vitality areas at the periphery, forming a distinct central–peripheral hierarchical
structure. The core area, characterized by its highly concentrated commercial activities,
convenient transportation network, and high-quality spatial environment, emerged as
the most vibrant zone. High- and relatively high-vitality areas on the Macau Peninsula
are primarily concentrated in the urban center, which includes landmarks such as the
Ruins of St. Paul’s, Senado Square, and the areas surrounding the A-Ma Temple and
Nam Van. These regions, where the city’s historical, cultural, and commercial resources
converge, exhibit a prosperous commercial atmosphere and dense pedestrian traffic, thus
serving as the main sources of urban vitality. Additionally, areas such as Praça de Amizade,
Wynn Macau, Fisherman’s Wharf, Casino Lisboa, and the New Porto Area, owing to
their rich entertainment, accommodation, and dining functions, also constitute relatively
high-vitality zones. In contrast, low-vitality areas are mainly found in peripheral regions
such as the Lower Ring, Ka I, and Taipa, where high building density, complex road
networks, and a lack of diversified functions result in relatively lower vitality levels.
Compared with previous studies, this research identified more potential vitality centers.
Key vitality regions, such as Hác Sá, Ka Ho, Senado Square, New Porto Area, and Nam
Van, were recognized as the main vitality hubs, forming the core vitality zone of the Macau
Peninsula. These areas not only concentrate rich historical and cultural resources, but
also feature bustling commercial districts and diverse transportation networks, making
them the largest gathering points for crowds and economic activities. Specifically, notable
vitality centers in various districts include the Vista Bay (1) and Hai Ming Ju (2) in the
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Our Lady of Fátima Parish, the Macau German School (3), the Post Office Building (4)
in the Senado Square area, Casino Lisboa (5) and the Xian Xinghai Memorial (6) in the
New Porto Area, Wynn Macau (7) and the Gung Ding Theatre (8) in Praça de Amizade,
the Port Authority (9) in the Lower Ring, Ka I Square (10), the New Era Commercial
Center (11) in Nam Van, and the Haihui School (12) in the Border Gate area. These
vitality centers reflect the close relationship between the spatial distribution and functional
layout of Macau’s urban vitality, highlighting the intensity of regional commerce and
population flows.

Buildings 2025, 15, x FOR PEER REVIEW 16 of 25 
 

diversified functions result in relatively lower vitality levels. Compared with previous 
studies, this research identified more potential vitality centers. Key vitality regions, such 
as Hác Sá, Ka Ho, Senado Square, New Porto Area, and Nam Van, were recognized as the 
main vitality hubs, forming the core vitality zone of the Macau Peninsula. These areas not 
only concentrate rich historical and cultural resources, but also feature bustling commer-
cial districts and diverse transportation networks, making them the largest gathering 
points for crowds and economic activities. Specifically, notable vitality centers in various 
districts include the Vista Bay (1) and Hai Ming Ju (2) in the Our Lady of Fátima Parish, 
the Macau German School (3), the Post Office Building (4) in the Senado Square area, Ca-
sino Lisboa (5) and the Xian Xinghai Memorial (6) in the New Porto Area, Wynn Macau 
(7) and the Gung Ding Theatre (8) in Praça de Amizade, the Port Authority (9) in the 
Lower Ring, Ka I Square (10), the New Era Commercial Center (11) in Nam Van, and the 
Haihui School (12) in the Border Gate area. These vitality centers reflect the close relation-
ship between the spatial distribution and functional layout of Macau’s urban vitality, 
highlighting the intensity of regional commerce and population flows. 

 

Figure 5. Comprehensive activity and activity center map based on RAGA-PPM. 

The comprehensive vitality evaluation results based on the EWM entropy weight 
method indicate that the spatial distribution of urban vitality in the Macau Peninsula pre-
sents a hierarchical pattern of “core-functional nodes-periphery” in Figure 6. The core area 
of the Gongbei Port exhibits the highest vitality level, due to its high commercial density, 
convenient transportation, and strong population mobility. The functional node areas, 
such as the MGM Macau Hotel District and the harbor area, show concentrated vitality, 
due to their unique service functions and high foot traffic, though their radiation effect is 
limited. The peripheral areas, such as Heshawan and Haoshi, primarily serve ecological 
and residential functions, displaying relatively weaker vitality but with significant poten-
tial for development. Overall, the urban vitality distribution shows a trend of multi-core 
development, with the core areas maintaining a dominant advantage. 

Figure 5. Comprehensive activity and activity center map based on RAGA-PPM.

The comprehensive vitality evaluation results based on the EWM entropy weight
method indicate that the spatial distribution of urban vitality in the Macau Peninsula
presents a hierarchical pattern of “core-functional nodes-periphery” in Figure 6. The core
area of the Gongbei Port exhibits the highest vitality level, due to its high commercial
density, convenient transportation, and strong population mobility. The functional node
areas, such as the MGM Macau Hotel District and the harbor area, show concentrated
vitality, due to their unique service functions and high foot traffic, though their radiation
effect is limited. The peripheral areas, such as Heshawan and Haoshi, primarily serve
ecological and residential functions, displaying relatively weaker vitality but with signifi-
cant potential for development. Overall, the urban vitality distribution shows a trend of
multi-core development, with the core areas maintaining a dominant advantage.
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5.3. Analysis of Spatial Differences in Vitality Using RAGA-PPM and EWM

A comparative analysis of the spatial distribution of urban vitality in Macau using
the RAGA-PPM and EWM revealed significant differences in vitality assessment between
the two methods. The RAGA-PPM approach primarily relies on a genetic algorithm to
optimize the weights of multivariable data. Its results predominantly reflect the vitality
distribution patterns of urban functional zones, emphasizing the vitality contributions
from functional nodes and ecological areas. In contrast, the EWM method uses objective
weighting based on information entropy, focusing on the spatial distribution characteristics
of regional vitality under a comprehensive set of indicators. It placed greater emphasis on
the performance of core areas and functional complexity, as illustrated in Figure 7.
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The differences between the two methods In vitality evaluation are also reflected In
the level of spatial scale detail. RAGA-PPM provides a more refined description of vitality
distribution in small-scale functional areas, effectively identifying small commercial and
public spaces around hotel districts. In contrast, EWM focuses more on the urban vitality
patterns at a macro scale, making it suitable for holistic planning analysis.

5.4. The Impact of the Built Environment on Urban Vitality

In this study, an urban vitality prediction model was constructed based on a Bayesian
optimization framework and the LightGBM algorithm, with 14 built environment elements
of 159 neighborhoods as feature variables, systematically balancing the model accuracy
and generalization ability in Table 3. A hierarchical random partitioning strategy was
used to construct a training set (80%) and independent test set (10%), and the optimal
hyperparameter combinations were determined by Bayesian optimization (5-fold cross-
validation, 25 iterations): learning rate (0.262), number of trees (364), maximal depth (9),
and feature/test sub-sampling rate (0.860/0.823). The early stopping method (terminate
without improvement in 10 consecutive rounds of validation set) was enabled in training,
the best model converged in the 30th round and the independent test set showed significant
performance (RMSE = 0.082, MAE = 0.065, R2 = 0.555), which confirmed its effective
capture of nonlinear relationships for urban vitality, without overfitting. The method was
further combined with SHAP interpretability analysis to reveal the threshold effect and
nonlinear influence mechanism of key elements such as BC, BFD, FD, etc., which provided
a quantitative decision-making basis for the optimization of the built environment. The
method achieves a synergistic breakthrough in accuracy, efficiency, and mechanism analysis
for multi-source urban data modeling through an efficient search of hyperparameters, an
anti-overfitting strategy, and interpretability enhancement.

Table 3. The fitting accuracy of the indicators.

Dataset MAE RMSE R2

Training Set Results 0.0256 0.0375 0.8170
Test Set Results 0.0650 0.0817 0.5548

5.4.1. Relative Importance of Built Environment Elements

This study revealed the hierarchical characteristics of the impact of built environment
elements on vitality in Macau’s districts through SHAP value analysis (Figure 8). Panel (a)
of Figure 8 shows the contribution and importance ranking of the 14 built environment
elements, while panel (b) presents the specific influence patterns of each element on vi-
tality prediction through SHAP value distribution. In the feature importance ranking,
the top six built environment elements by relative importance were road network den-
sity (0.025), spatial fractal dimension (0.020), sky openness (0.015), public facility density
(0.012), functional mix (0.010), and building density (0.008). Road network density, spatial
fractal dimension, and sky openness were identified as key factors influencing district
vitality. Road network density enhances traffic connectivity and accessibility, facilitating
economic activities and the walking experience, thereby attracting more pedestrian flow.
The spatial fractal dimension strengthens spatial diversity and social interaction through
complex spatial structures, improving environmental attractiveness. Sky openness, by
offering a sense of open space and environmental comfort, promotes outdoor activities
and the gathering of crowds. These three factors work synergistically to improve traffic
convenience, spatial diversity, and environmental quality, significantly enhancing the vi-
tality and attractiveness of a district. Public facility density, functional mix, and building
density are secondary key factors influencing district vitality. The high rankings of sky
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openness and green visibility indicate that the micro-scale street design plays a crucial
role in the overall vitality of the district. In comparison, factors such as enclosure and
green visibility have a relatively smaller impact, yet still influence district vitality to some
extent. A greater sense of enclosure may enhance walking comfort, while districts with
higher green visibility are likely to attract more outdoor activities. Walkability, waterfront
index, and functional density have a relatively minor impact on vitality, possibly due to the
specific environmental characteristics of the study area.
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5.4.2. Nonlinear Relationship Between Built Environment Elements and Urban Vitality

To further investigate the localized nonlinear relationship between urban vitality
and the built environment, we focused on the top three most globally significant built
environment elements. Figure 9 illustrates the nonlinear relationship between these top
three elements at the block level and their contributions to predicting vitality, represented
by SHAP values. The color legend indicates the value of the interacting element that
had the strongest influence on each sample. The impact of road network density on
urban vitality exhibited a complex nonlinear relationship. When the road network density
was less than 0.2, the SHAP values were relatively high. As the density increased, the
SHAP values decreased rapidly and reached negative values within the range of road
network density from 0.2 to 0.4. This suggests that overly dense road networks may reduce
block vitality, possibly due to street fragmentation or excessive road occupation of public
spaces. However, when the road network density exceeded 0.6, the SHAP values stabilized,
indicating that the marginal effect of extremely high road network density on vitality had
diminished. The SHAP values for spatial fractal dimension generally showed a downward
trend, particularly when the spatial fractal dimension exceeded 0.8, where the SHAP values
decreased sharply. This suggests that excessively high spatial fractal dimensions may
negatively impact urban vitality. Such an effect could be attributed to overly complex
spatial forms, which may hinder block vitality due to factors like visual obstruction or
decreased accessibility. Sky openness demonstrated a positive relationship with urban
vitality, especially when the sky openness increased from 0.2 to 0.8, during which the SHAP
values steadily rose. This suggests that appropriately increasing sky openness could help
enhance block vitality. However, when sky openness exceeded 0.8, a decrease in SHAP
values for some points was observed, possibly reflecting the negative impact of excessively
open environments on block vitality.

In summary, urban vitality is influenced by the complex and nonlinear effects of built
environment factors. A moderate spatial fractal dimension, an appropriate road network
density, and a balanced sky openness may be more conducive to enhancing vitality. Future
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planning and design should consider the interactions between different elements, in order
to optimize urban spatial forms.
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6. Conclusions and Discussion
6.1. Conclusions

This paper proposes a new framework for evaluating urban vitality that integrates
crowd activities, network interactions, and the built environment. By introducing the
RAGA-PPM method, it provides a quantitative assessment of the overall vitality of the
Macau Peninsula. Unlike traditional methods that introduce biases due to subjective
weighting, this approach identifies the contribution of each indicator to overall vitality
based on the inherent structural characteristics of the data, resulting in a more objective and
accurate identification of vitality outcomes. Using machine learning algorithms combined
with the SHAP interpretability method, this study explored the nonlinear impacts and
interactive effects of the built environment on urban vitality in the urban areas of the Macau
Peninsula. The findings were as follows:

(1) There are certain spatial distribution differences in the urban vitality across the three
dimensions—crowd activity, network interaction, and the built environment—on the
Macau Peninsula. However, a common feature across all dimensions is that they
exhibit high values at the center, with urban vitality values gradually decreasing
toward the periphery. The vitality of crowd activities is concentrated around tourism,
commerce, entertainment, and cultural functions, with a high value at the center
and secondary vitality clusters in each district. The vitality of network interactions
is centered around the New Port and Hac-Sa Bay, presenting a spatial pattern of
“moderate vitality as the dominant feature, with scattered areas of low vitality”. The
spatial distribution of built environment vitality shows clear hierarchical patterns,
closely related to the regional functional layout, land use patterns, and transportation
conditions, with high-vitality areas primarily concentrated around the Outer Harbor,
Nanhai, Senado Square, and the area surrounding the Ruins of St. Paul’s.

(2) The spatial distribution of overall vitality on the Macau Peninsula is like that of
the individual dimensions. Specifically, the largest vitality center is located around
the historic district, with vitality decreasing as it moves outward, and the lower
vitality areas are distributed at the urban periphery. The RAGA-PPM method used in
this study provided a more accurate identification of vitality areas, revealing more
potential vitality centers. Each district contains a vitality center, with the historic
district—comprising the Ruins of St. Paul’s, New Road, A-Ma Temple, and Senado
Square—serving as the main vitality hub for the entire Macau Peninsula. The areas
around New Road and Nanhai exhibited the highest vitality, while the areas around
Lower Harbor and Taishan showed the lowest vitality. The spatial distribution of
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urban vitality on the Macau Peninsula is influenced by various factors, showing
heterogeneity in distribution.

(3) This study reveals that, at the neighborhood level, the six built environment factors
most significantly influencing urban vitality in the Macau Peninsula are, in order of
importance, street network density, spatial fractal dimension, sky openness, public
facility density, functional mix, and building density. These factors were ranked based
on their relative significance to urban vitality and form a key set of built environment
indicators that impact the urban vitality of the Macau Peninsula.

(4) The built environment on the Macau Peninsula has a nonlinear effect on urban vitality.
Regarding the key factors that influence the vitality of streets and blocks, road network
density, spatial fractal dimension, and sky openness had similar threshold values,
with all demonstrating a positive impact on vitality when the value was below 0.2.

6.2. Discussion

Exploring the similarities and differences in the spatial distribution of vitality across
different dimensions and the overall vitality of the central urban area of the Macau Penin-
sula can contribute to refining the urban comprehensive vitality assessment system and
offer targeted strategies for urban governance. The urban vitality of the Macau Peninsula is
predominantly concentrated in the historic districts and commercial centers, while areas
with lower vitality are mainly located at the outskirts of the city. Therefore, greater em-
phasis should be placed on fostering and developing a polycentric structure, to prevent
excessive resource concentration in a single center. By clearly defining the developmental
direction of each area, identifying distinct regional growth paths, and optimizing the layout
of public service facilities, commercial outlets, and cultural and entertainment amenities,
the vitality of each district can be enhanced, ultimately achieving a more balanced distribu-
tion of urban vitality. Additionally, lower vitality areas are primarily situated at the urban
periphery. It is necessary to further strengthen the radiating role of transportation hubs
and implement specific development policies for low-vitality regions. Improving the qual-
ity and coverage of public infrastructure and transportation services will facilitate better
connections between peripheral and central areas. By leveraging the flow of resources and
population, both within and outside the city, industries can be guided toward development,
employment opportunities increased, and living conditions improved, thus gradually
elevating the vitality levels of these areas. Furthermore, the historic districts play a central
role in the vitality of the Macau Peninsula. In the planning and construction process, it is
essential to protect and utilize the rich historical and cultural resources, while preserving
the historical features and cultural characteristics of these areas. Through appropriate up-
dates and renovations, the livability and attractiveness of the old districts can be enhanced.
Lastly, the distribution of urban spatial vitality in the Macau Peninsula is influenced by
multiple factors and exhibits significant heterogeneity. Smart city development should
be promoted, utilizing big data, the Internet of Things, and other technologies for refined
management and the establishment of innovative platforms. Real-time monitoring and
analysis of dynamic changes in urban vitality can provide scientific evidence for urban
planning and decision-making. Based on the development status and potential of different
areas, targeted policies and measures should be formulated to improve urban governance
levels and efficiency.

Based on the traditional Geographic Information System (GIS) and general map tools
(Google Maps), this study overcomes the limitations of existing tools in the analysis of
complex urban systems through multidimensional data fusion, nonlinear modeling ap-
proaches, and interpretability enhancement techniques in the following three respects.
First, traditional GIS and map tools mainly rely on static spatial data (road networks,



Buildings 2025, 15, 1557 22 of 24

building contours) and basic statistical functions, while this study constructed a more com-
prehensive framework for urban vitality assessment by fusing heterogeneous big data from
multiple sources. Secondly, compared with the linear regression or spatial autocorrelation
models relied on by traditional GIS, this study combined machine learning algorithms and
optimization methods to achieve an accurate resolution of complex nonlinear relationships.
This paper constructed a systematic and refined set of independent variables using multi-
source data science, analyzing the distribution of urban vitality in the Macau Peninsula
at the micro-scale of street block units. By integrating machine learning algorithms and
the SHAP interpretability method, it explored the nonlinear effects of built environment
factors on urban vitality. This approach provided new insights into the mechanisms of how
the built environment influences urban vitality, offering practical and actionable guidance
for more detailed urban planning. It can contribute to the coordinated design of street and
block planning, strengthening the connection and interaction between the urban skeleton
and its “muscles”. Although this study has made progress in methodological innovation
and data analysis, it still has some limitations. The study mainly focused on the measure-
ment of dynamic population density, and future research could incorporate Jiang Difei’s
theory to comprehensively assess vitality from economic, social, and cultural perspectives.
Furthermore, this study investigated the spatial heterogeneity of the built environment’s
impact on urban vitality at the block level; however, future studies could explore temporal
heterogeneity to deepen the understanding of the dynamic mechanisms of urban vitality.
Lastly, the conclusions drawn from the Macau Peninsula may need further validation in
other regions. Future research could expand data sources and incorporate more dimensions,
such as economic, social, and cultural data, to build a more comprehensive urban vitality
evaluation system. Additionally, time-series data could be integrated to investigate the
dynamic changes in urban vitality, providing more accurate decision-making support for
urban planning.
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