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Abstract: A series of vertical loading tests on stone columns based on transparent soil were
conducted to investigate the failure modes and bearing characteristics of stone columns in
layered soils. The influences of different layer thicknesses, different layer distributions, and
different aggregate gradations on the bearing capacity of stone columns were examined.
Based on the experimental results, a bearing capacity calculation method is proposed for
stone columns subjected to bulging failures in lower soft soils. This new calculation method
incorporates the self-weight of both the column and the surrounding soil. Verification
through an engineering case study shows that, compared with the existing calculation
methods, the outcomes derived from the proposed approach exhibit superior agreement
with field measurements.
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1. Introduction
In ground improvement projects, holes are typically formed by methods such as vi-

broflotation or driven casing. Afterward, coarse-grained materials such as gravel or sand
are filled and densified within the holes. This process forms large-diameter, high-density
columns that work together with surrounding soils to support loads, thus creating a com-
posite foundation of granular columns. Stone columns, a classic form of granular columns,
can effectively enhance drainage in soft ground by accelerating the consolidation process.
They also improve the strength of the columns and the surrounding soil. Stone column
technology is cost-effective, exhibits significant improvement effects, and provides a reli-
able means for soft soil foundation treatment [1]. Numerous engineering practices confirm
that the use of stone columns is effective for mitigating poor ground conditions, such as
soft soil. Projects such as the Yangshan Port in Ningbo-Zhoushan Port under the Shanghai
International Shipping Center, the Tongshan Cement Plant, the main plant of the Longkou
Power Plant in Shandong Province, and the Hong Kong–Zhuhai–Macao Bridge island-
tunnel works all employed stone columns to treat soft soils. After treatment, the bearing
capacities of the foundations were significantly enhanced—by factors of two to four—while
the potential liquefaction risks were mitigated, ensuring both safety and stability.

Despite their success in engineering applications, the bearing mechanism and design
theory for stone columns still require further research and development [2–5].

Many researchers have investigated the bearing mechanism of stone columns from
various perspectives using different methods. Sivakumar et al. [6] performed undrained
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triaxial tests and observed that increasing the length of sand columns significantly im-
proves the load-bearing capacity of composite specimens. However, due to the limited
sample dimensions, boundary effects could not be entirely eliminated in those tests.
Shivashankar et al. [7] employed laboratory model tests to demonstrate that stone columns
in layered soils with top weak layers exceeding twice the column diameter exhibit dras-
tically reduced bearing capacity and stiffness, with bulging localized in the weak upper
layer. Kim et al. [8] conducted centrifuge model tests to show that gravel compaction piles
(GCPs) achieve a 1.25–2.6 times higher bearing capacity than sand compaction piles (SCPs)
at a 50% area replacement ratio. Ali et al. [9] and Fattah et al. [10] conducted model tests to
demonstrate that fully geosynthetic-encased end-bearing stone columns enhance soft soil
bearing capacity by up to 250% compared to untreated soil, while fully encased floating
columns yield only a 28% improvement—underscoring the critical role of mobilized hoop
stresses and the need for refined predictive models incorporating area replacement effects.

Hughes [11] revealed through radiographic techniques that stone columns in soft
clay exhibit concentrated vertical settlement and radial bulging within the upper four
diameters, with deformations attenuating rapidly with depth. Wood et al. [12,13] employed
the exhumation technique to reveal that stone column groups exhibit deformation modes
(bulging, shear plane formation, or axial compression) dependent on the column geometry
and spacing. Black et al. [14] employed tubular wire mesh, metal bridging rods, and con-
crete plugs in laboratory plate loading tests, revealing the reduced bulging and enhanced
settlement control of stone columns in peat. McKelvey et al. [15] utilized transparent
clay and kaolin in laboratory tests to visualize deformation, revealing that long vibrated
stone columns predominantly bulge, while short columns fail by punching, with optimal
performance at six times the column diameter. Gupta et al. [16] performed static and cyclic
model tests on geopolymer-stabilized columns, revealing that end-bearing configurations
minimized the embankment settlement more effectively than floating columns, with higher
area replacement ratios further enhancing the deformation resistance. Savvides et al. [17]
utilized gravel pile groups and preloading through numerical analysis, showing a 50%
displacement reduction in soft soils under seismic loads.

Existing studies on stone column behavior have predominantly focused on homo-
geneous soil conditions, with limited attention to the failure mechanisms in stratified
profiles—particularly in sand-over-clay layered systems. A critical gap persists in under-
standing how bulging failure initiates and propagates within the underlying clay layer, as
the conventional methods for estimating bearing capacity often neglect the unique stress
re-distribution and deformation constraints imposed by layered soils. To address these
limitations, this study pioneers the use of transparent soil visualization technology to
experimentally characterize the failure patterns in stratified soil–column systems. This
approach enables the direct observation of deformation mechanisms, including bulging
localization in clay layers beneath sand overburdens—a phenomenon previously inferred,
but rarely quantified.

Building on these insights, we propose a novel analytical method specifically designed
to calculate the bearing capacity of stone columns undergoing bulging failures in clay layers
under sand overburdens. Unlike prior methodologies that rely on empirical adjustments for
layered soils, our framework explicitly integrates soil stratification effects, including varia-
tions in the layer thickness and interfacial shear resistance. Validation through controlled
model tests and comparisons with field data underscore the method’s ability to resolve
the discrepancies inherent in traditional approaches, offering a robust tool for practical
applications in layered ground improvement.
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2. Model Test Based on Transparent Soil
2.1. Transparent Soil

Transparent soil technology has been rigorously validated as a reliable modeling
medium in geotechnical research, offering unique capabilities to visualize subsurface defor-
mation while maintaining essential mechanical behaviors [18]. By synthesizing granular
and cohesive materials with refractive index-matched fluids, this approach enables the
non-invasive observation of failure mechanisms in layered systems—a critical advantage
over traditional destructive excavation methods. Building on this established methodology,
the present study employs a customized transparent soil system to investigate the stone col-
umn behavior in sand–clay strata. The following section details the material formulations
ensuring both the optical clarity and geomechanical equivalence to natural soils.

The transparent soil used to simulate natural ground must not only approximate the
physical and mechanical properties of real soils, but also have a low light absorption, low
reflectivity, and uniform internal composition. Based on previous studies [18,19], fused
quartz sand was used to simulate transparent sand, and precipitated silica was used to
simulate transparent clay. The fused quartz sand has a particle size of 0.1–0.5 mm, mainly
composed of silica (SiO2) with a content of 99.99%, a Mohs hardness of 7.0, a specific gravity
of 2.21, a refractive index of approximately 1.4585, and a maximum and minimum dry
density of 1.344 g/cm3 and 1.02 g/cm3, respectively. The precipitated silica used as the
transparent clay has a major chemical component of SiO2, a refractive index of 1.442, and a
relative density between 2.000 and 2.653, with a specific gravity of 2.01.

For the pore fluid, its refractive index must match that of the solid particles. According
to prior research [20], for the transparent sand, an organic blend of 3# and 15# white oil
was mixed in a 1:8 volume ratio with dodecane as an intermediate. This mixture matched
the refractive index of the fused quartz sand.

Because precipitated silica has very fine particles, lasers passing through its interior
do not naturally generate a speckle pattern. To solve this problem, tracer particles were
added. Titanium oxide was chosen for its high chemical stability. The mass ratio between
the titanium oxide and precipitated silica was set to 0.015% to minimize potential effects on
the mechanical behavior and transparency [21].

The main physical and mechanical properties of the transparent sand and clay are
listed in Table 1. To prevent any mixing of the different pore fluids used for the transparent
clay and sand, a separating layer was placed between the bottom and top soil layers during
the sample preparation.

Table 1. Physical and mechanical properties of transparent sand and clay.

ρ (g/cm3) E (MPa) v φ c/(kPa) e

Transparent sand 1.532 40 0.32 34◦ 0 0.663

Transparent clay 0.906 2 / 17◦ 11 1.69

2.2. Model Stone Column and Test Protocol

Based on the typical stone column design parameters, the prototype column length is
10 m and the diameter is 1 m, with the particle size ranging from 20 to 50 mm. Adopting a
50:1 similarity ratio, the model column length was 200 mm, the diameter was 20 mm, and
the infill material was Fujian standard sand (Xinyi Wanhe Mining Co., Ltd., Xuzhou, China)
with a particle size of 0.2–2 mm. To ensure full visibility during testing, a transparent acrylic
container was used as the model box, with dimensions of 150 mm × 150 mm × 200 mm and
a 5 mm thick wall. The ratio of the distance from the stone column center to the container
wall (L) over the column diameter (D) exceeded 3 (L/D > 3), eliminating significant
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boundary effects [22]. Schematic diagrams of the model column and test container are
illustrated in Figure 1.
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Figure 1. The model column and the test container (unit: mm): (a) the plan view; (b) the front view.

To account for the size effects induced by particle dimensions and testing apparatus,
the experimental groups were classified based on the particle size fraction within the
0.8–1.6 mm range, with those containing 25%, 50%, and 75% mass fraction percentages of
this specific particle size designated as Gradation 1, 2, and 3 respectively, as detailed in
Table 2.

Table 2. Stone gradation schemes for model tests.

Gradation 1 Gradation 2 Gradation 3

d10/mm 0.20 0.20 0.20
d30/mm 0.45 0.71 0.92
d60/mm 1.00 1.25 1.43

Cu 5.00 6.25 7.15
Cc 1.01 2.02 2.96

At a relative density of 0.7 [23], the stone backfill for each gradation had slightly
different physical properties (Table 3). To approximate the real construction process in
the model, the pile was formed by (1) pre-boring, (2) pouring the gravel, (3) vibrating the
gravel, and (4) withdrawing the casing. The gravel was filled in layers, each no more than
2 cm thick.

Table 3. Physical properties of stone column fill.

Stone
Gradations

Specific
Gravity

Minimum
Dry Density

(g/cm3)

Maximum
Dry Density

(g/cm3)

Compacted
Dry Density

(g/cm3)

Angle of
Friction (◦) Void Ratio

Gradation 1 2.513 1.540 2.285 1.995 35.048 0.259
Gradation 2 2.542 1.531 2.272 1.984 35.728 0.281
Gradation 3 2.582 1.487 2.253 1.951 38.881 0.232

The static load tests were carried out using a slow-maintained loading method. The
objective was to analyze how different layer thicknesses (total thickness 200 mm), layer
distributions, and aggregate gradations affected the column bearing capacity. The test
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matrix is shown in Table 4. Notably, ST3, SL1, and SG3 share the same parameters; they are
labeled differently only to facilitate discussion in the results.

Table 4. Test matrix.

Label Layer Distributions Sand Layer
Thicknesses (mm) Stone Gradations Experimental

Objectives

Reference test Upper sand and
lower clay 100 Gradation 1 Initial estimate of stone

column load capacity

ST1
Upper sand and

lower clay

50

Gradation 1 Analyze effect of layer
thickness

ST2 75

ST3 100

SL1 Upper sand and
lower clay

100 Gradation 1 Analyze effect of layer
distributionSL2 Upper clay and

lower sand

SG1
Upper sand and

lower clay 100

Gradation 1
Analyze effect of

aggregate gradation
SG2 Gradation 2

SG3 Gradation 3

A preliminary trial was conducted to determine the ultimate bearing capacity of the
single column. During the formal testing, weights were applied stepwise. At each load
step, the total weight of the applied masses and the column top area were used to calculate
the column’s vertical load.

The formal test procedure is as follows, and Figure 2 shows the test setup.
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3. Test Results and Discussion 

Figure 2. Test setup: (a) schematic diagram; (b) photographic view.

(1) Prepare the transparent soil layers according to the designated scheme, then allow the
sample to stand for 24 h.
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(2) Construct the stone column in layers and allow it to stand for another 24 h.
(3) Install and calibrate the data acquisition system, including earth pressure cells at the

column base and a dial gauge above the loading plate. Position the camera so that the
entire test container is in view. Turn on the laser device and ensure the laser plane
aligns with the center of the test container and the column axis.

(4) Load in increments of 1/8 of the column’s ultimate bearing capacity. At each load step,
maintain the load and observe the dial gauge readings. If the settlement increment is
less than 0.1 mm within 30 min, the settlement is considered stable, and the next load
step is applied. If the total settlement exceeds 20 mm or the settlement rate increases
sharply, the test is terminated. Throughout the loading process, photographs are
taken at each stage.

3. Test Results and Discussion
3.1. Load–Settlement Curves

Figure 3 shows the load–settlement curves under different sand layer thicknesses. In
test ST1, a turning point appears at a settlement of about 12 mm (at a load of 12.48 kPa); in
ST2, it occurs at about 8 mm (21.84 kPa); and in ST3, around 6 mm (21.84 kPa). Along with
these turning points, the stone columns clearly lose stability. Moreover, the column head
exhibits noticeable bulging, confirming the occurrence of failure. In ST1, failure occurs
at the fourth loading step as the column intrudes into the clay layer and bulges. Thus,
ST1’s load–settlement curve shows a sharp drop, while ST2 and ST3 exhibit more moderate
settlements and smaller settlement rates. When loaded to 12.48–24.96 kPa, the settlement
in ST3 is smaller than that in ST2, and its curve lacks a distinct inflection point. Comparing
the final settlements among the three conditions shows that ST2 has 36.35% less settlement
than ST1, while ST3 has 10.37% less than ST2. Therefore, increasing the thickness of the
sand layer leads to a higher stone column bearing capacity—a finding consistent with
numerical studies on layered soil systems [24].
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Figure 3. Load–settlement curves for different layer thicknesses (ST1: sand layer thickness = 50 mm;
ST2: 75 mm; ST3: 100 mm).

Figure 4 shows the load–settlement curves for the columns in upper sand–lower clay
(SL1) and upper clay–lower sand (SL2). With incremental loading, the settlement–load
relationships differ significantly between these two layering schemes. The column in SL2
undergoes an abrupt increase in settlement (the reasons for this behavior will be discussed
in Section 3.2), indicating a lower bearing capacity. Under a load of 8.19 kPa, the settlement



Buildings 2025, 15, 913 7 of 18

in SL1 is 0.70 mm, whereas it reaches 13.51 mm in SL2. Thus, for the same load level, the
settlement is obviously smaller in SL1. When comparing the final settlements, SL1 has
42.95% less settlement than SL2. Consequently, stone columns perform better in situations
where the upper layer has a higher strength, i.e., the upper layer is sand and the lower
layer is clay.
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Figure 5 compares the load–settlement curves for different aggregate gradations for
the stone columns. Starting from the fifth load step, at the same load level, the settle-
ment of the columns with Gradations 1 and 2 is 22.68–211.61% larger than those with
Gradation 3. Compared with Gradation 1 (with a smaller coefficient of uniformity and
friction angle), Gradation 3 (with a larger uniformity coefficient and friction angle) shows a
marked advantage in bearing capacity. When comparing the final settlements, SG2 is 8.85%
lower than SG1, and SG3 is 25.87% lower than SG2. Thus, a stone column with a larger
uniformity coefficient and friction angle more effectively develops its bearing capacity and
overall stiffness.
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3.2. Failure Modes and Bulging Deformation

Based on the images captured during loading, two major failure modes were identified:

(1) Bulging failure in the clay layer caused by the downward penetration of the column
through the sand layer:

For columns in the upper sand–lower clay configuration, bulging appears in the zone
below the column top, as well as the upper portion of the clay layer. The maximum bulging
occurs within 0–2 column diameters from the top of the clay layer. Eventually, the pile fails
by bulging in the clay layer and intrusion from the sand layer, as seen in Figure 6.
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(2) Bulging failure at the column top:

For columns in the upper clay–lower sand configuration, bulging occurs in the top
region (0–2.5 column diameters), with the maximum bulging in the 1–2 column diameter
zone below the column head. As the top settlement grows excessive, the pile ultimately
fails, as shown in Figure 7.



Buildings 2025, 15, 913 9 of 18

Buildings 2025, 15, x FOR PEER REVIEW 9 of 19 
 

 

Figure 7. Bulging failure in upper clay–lower sand. 

Under all tested conditions, the column failed due to significant bulging in the clay 
layer. Further analysis was performed using PIVview2C (version 3.0.3) to quantify the 
bulging at various depths. Several measuring points were placed every 5 mm along the 
column–soil interface, recording their lateral displacement to capture the bulging at each 
depth. 

Figure 8 shows the final bulging profiles along the column length under different 
layer thicknesses. In all three cases, the bulging is prominent within one column diameter 
below the top of the clay layer, and the maximum bulge appears in the clay. It is observed 
that the three groups of curves exhibit distinct bulging deformation positions. Specifi-
cally, ST1 initiates bulging deformation at approximately 25 mm in depth, ST2 at ap-
proximately 50 mm in depth, and ST3 undergoes two bulging events at approximately 40 
mm and 90 mm in depth. Considering the overlying sand layer thicknesses in the three 
tests—50 mm (ST1), 75 mm (ST2), and 100 mm (ST3)—it is evident that the onset of the 
bulging deformation correlates with the sand layer thickness. This behavior is attributed 
to the higher strength of the sand layer, which provides enhanced lateral confinement, 
thereby suppressing significant bulging deformation within this stratum. For the cases 
with thinner sand layers (e.g., ST1 and ST2), once the load transfers to the underlying clay 
layer, the reduced confinement leads to pronounced bulging. Due to the influence of the 
internal friction angles of both the soil and stone column fills, this deformation propa-
gates upward within a zone of approximately one column diameter above the soil inter-

Figure 7. Bulging failure in upper clay–lower sand.

Under all tested conditions, the column failed due to significant bulging in the clay
layer. Further analysis was performed using PIVview2C (version 3.0.3) to quantify the
bulging at various depths. Several measuring points were placed every 5 mm along
the column–soil interface, recording their lateral displacement to capture the bulging at
each depth.

Figure 8 shows the final bulging profiles along the column length under different
layer thicknesses. In all three cases, the bulging is prominent within one column diameter
below the top of the clay layer, and the maximum bulge appears in the clay. It is observed
that the three groups of curves exhibit distinct bulging deformation positions. Specifically,
ST1 initiates bulging deformation at approximately 25 mm in depth, ST2 at approximately
50 mm in depth, and ST3 undergoes two bulging events at approximately 40 mm and 90 mm
in depth. Considering the overlying sand layer thicknesses in the three tests—50 mm (ST1),
75 mm (ST2), and 100 mm (ST3)—it is evident that the onset of the bulging deformation
correlates with the sand layer thickness. This behavior is attributed to the higher strength
of the sand layer, which provides enhanced lateral confinement, thereby suppressing
significant bulging deformation within this stratum. For the cases with thinner sand
layers (e.g., ST1 and ST2), once the load transfers to the underlying clay layer, the reduced
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confinement leads to pronounced bulging. Due to the influence of the internal friction
angles of both the soil and stone column fills, this deformation propagates upward within
a zone of approximately one column diameter above the soil interface. Consequently,
bulging initiates near one pile diameter above the interface in ST1 and ST2. In contrast,
ST3 demonstrates a unique response: the thicker sand layer allows the stone column to
experience shear failure within the upper sand stratum under the applied loading, resulting
in an initial bulging at 40 mm depth, governed by the fill’s friction angle and sand layer
strength. The secondary bulging at 90 mm in depth aligns with the mechanism observed in
ST1 and ST2, driven by the reduced confinement in the clay layer.
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Figure 8. Bulging profiles for different layer thicknesses (ST1: sand layer thickness = 50 mm; ST2:
75 mm; ST3: 100 mm).

Among the three cases, the largest maximum bulge is in ST3, followed by ST1, then ST2,
indicating that peak bulging does not always correlate directly with the bearing capacity. On
one hand, bulging increases the passive earth pressure around the column, thus increasing
the frictional resistance; on the other hand, excessive bulging may cause the soil around
the column to enter a plastic state and reduce the friction. Large lateral deformations also
cause substantial column settlement, leading to final failure. Crucially, the load–settlement
trends (Figure 3) reveal a nonlinear relationship: increasing the sand thickness from 50 mm
to 75 mm reduces the settlement by 60%, while further thickening to 100 mm yields only
47% in additional reduction under 15 kPa. The stabilization coincides with the partial
mobilization of sand–column interaction, as evidenced by the emerging lateral strains in the
sand layers beyond 75 mm in thickness (Figure 8). These observations suggest an optimal
thickness ratio (h1/h2 ≈ 0.6, where h1 and h2 denote the thicknesses of the sand layer and
clay layer, respectively), balancing the settlement control and constructability. Regardless
of the sand layer thickness, the maximum column bulge consistently appears within about
one column diameter below the soil interface. Hence, in real projects, additional measures
can be considered in this zone for reinforcement or confinement.

Figure 9 shows the final bulging profiles under different layer distributions. In the
upper sand–lower clay (SL1), bulging occurs in the lower layer as the column penetrates
into the clay. In contrast, for the upper clay–lower sand (SL2), appreciable bulging occurs
only near the column top, and the deeper sand layer or even the lower half of the clay layer
do not develop significant frictional resistance before excessive settlement occurs. This
leads to a notably lower bearing capacity in SL2.
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Figure 9. Bulging profiles for different layer distributions (SL1: upper sand and lower clay; SL2:
upper clay and lower sand).

Figure 10 compares the final bulging profiles under different aggregate gradations
for the stone columns. Columns with larger uniformity coefficients show more uniform
bulging along the shaft and a smaller maximum bulge. In SG3, only a relatively small lateral
deformation is needed to attain a good overall compaction degree, contributing to the
higher bearing capacity and stability. Regarding the locations of the bulging deformations,
SG2 exhibits a pattern similar to SG1 (ST3). As previously described, the first bulging
deformation occurs within the sand layer at approximately 45 mm in depth, while the
second deformation initiates near the soil interface at approximately 80 mm in depth.
Although the positions of the maximum bulging and initial deformation of these two
columns are comparable, slight discrepancies arise due to differences in the load levels
at column failure. In contrast, SG3 demonstrates distinct behavior. Benefiting from its
well-graded fill material, which provides enhanced shear strength, the stone column in
SG3 does not undergo a complete failure even under the ultimate load. Consequently, its
bulging deformation remains minimal and uniformly distributed along the column length,
with no distinct peak observed. Therefore, optimizing the stone column gradation to
include a wider range of particle sizes not only improves the overall packing and stiffness,
but also helps prevent excessive local bulging.
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Figure 10. Bulging profiles for aggregate gradations (SG1: Gradation 1; SG2: Gradation 2; SG3:
Gradation 3).
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3.3. Load Transfer

A single column’s vertical bearing capacity is primarily carried by two components:
the shaft resistance Qs along the column–soil interface, and the end resistance Qb from the
column tip. Following findings on the end-bearing ratios of rigid piles [25], a load transfer
factor α was introduced to quantify the ratio of the stress transmitted to the column base. It
is defined as follows:

α =
σp2

σp1
=

Qb
Q

= 1 − Qs

Q
(1)

where σp1 is the stress at the column top, σp2 is the stress at the column base, and Q is the
total load at the top.

Figure 11 depicts the variations in α under different layer thicknesses. Overall, α

decreases as the sand thickness increases. In ST1, α initially rises sharply after the second
load level, then stabilizes around 0.15. This matches the steep slope in the load–settlement
curve (Figure 2) from the first to second load steps, indicating limited shaft resistance
during early loading, causing more load to be transmitted to the column tip. In ST2 and
ST3, α remains stable throughout loading: 0.04–0.08 in ST2 and 0.03–0.06 in ST3. This
suggests that the shaft resistance is fully mobilized over the entire loading process.
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Figure 11. Load transfer factors for different layer thicknesses (ST1: sand layer thickness = 50 mm;
ST2: 75 mm; ST3: 100 mm).

Numerically, the average load transfer factors for ST1, ST2, and ST3 are αST1 = 0.189,
αST2 = 0.064, and αST3 = 0.045, respectively. All are less than 0.5, indicating that under
the conditions tested, most of the load is carried by shaft friction rather than end bearing.
Moreover, as the sand thickness grows, the stone column can develop a greater bearing
capacity and α gets smaller, showing that the enhancement of the column bearing capacity
mainly results from the shaft friction. When the sand layer is too thin (as in ST1), a large
portion of the load is prematurely transferred into the clay. This triggers bulging in the soft
clay and undermines the stable shaft resistance, ultimately reducing the column capacity.

Figure 12 shows the evolution of α under different layer distributions. In SL1, αSL1 = 0.045,
whereas in SL2, αSL2 = 0.090. The average α of SL2 is higher and generally increases
with loading, which is due to the delayed shaft resistance mobilization. The underlying
sand layer’s high stiffness restricts the clay-to-column stress transfer, forcing gradual end-
bearing engagement as the clay weakens. After the fourth load increment, it drops slightly,
indicating that the shaft friction in the lower part of the sand layer starts contributing.
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Nonetheless, α eventually continues to grow with loading, signifying that in the upper
clay–lower sand (SL2), the column side friction does not mobilize as stably as in SL1,
leading to a lower overall bearing capacity compared with SL1.
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Figure 12. Load transfer factors for different layer distributions (SL1: upper sand and lower clay; SL2:
upper clay and lower sand).

Figure 13 compares α under different aggregate gradations. From Gradation 1 to
Gradation 3, the coefficient of uniformity and the friction angle both increase. The mean
α values are αSG1 = 0.045, αSG2 = 0.034, and αSG3 = 0.026. Thus, a larger coefficient
of uniformity and friction angle help reduce the proportion of the load carried by the
pile tip, increase the contribution of the side friction, and enhance the column capacity.
Notably, αSG2 and αSG3 show a clear downward trend throughout loading, indicating
that the columns with better gradation (larger uniformity coefficients and friction angles)
stabilize more quickly after bulging, enabling earlier and more extensive side friction
mobilization, which in turn increases the bearing capacity.
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Figure 13. Load transfer factors for different aggregate gradations (SG1: Gradation 1; SG2: Gradation
2; SG3: Gradation 3).
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4. Bearing Capacity Calculation Method for Stone Columns in
Stratified Soil
4.1. Calculation Model and Basic Assumptions

Based on the laboratory model test, stone columns in layered soils (upper sand–lower
clay) fail predominantly via bulging in the soft layers. Accordingly, the derivation below is
based on the bulging failure. For simplicity, the following assumptions are made:

(1) Under vertical loading, the bearing capacity of the stone column follows the Mohr–
Coulomb failure criterion. The effect of the layered soil is considered by assuming the
bulging failure takes place in the clay layer.

(2) The circumferential stress and shear resistance at the column–soil interface are simplified.

With these assumptions, the calculation model is shown in Figure 14. In this fig-
ure, Pp is the column top stress, PR is the radial thrust by the stone particles, G0 is the
self-weight stress of the column, h1 is the column length in the sand layer, h2 is the failure
length in the clay layer, R is the column radius, δ is the angle between the failure surface
and the horizontal, γ1 and γ2 are the unit weights of the sand and clay, respectively, cu is
the undrained shear strength of the clay, and δp is the angle between the column’s failure
surface and the horizontal. According to the assumption, δp = 45◦ + φp/2, where φp is the
internal friction angle of the stone infill.
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4.2. Bearing Capacity Formula Considering Self-Weight

By the equilibrium of forces in the failing portion of the clay layer,

pR fmcosδ = cu fn + Fg (2)

where fm is the area on which pR acts (the lateral surface of the pile within h2), fn is
the area of the clay failure surface, and Fg is the weight of the soil (both clay and upper
sand) above the failure surface projected onto that surface. Geometric considerations yield
the following:

fm = 4πR2tanδp (3)

fn = 4πR2[1 + tanδpcotδ
] tanδp

sinδ
(4)

Fg = 4πR2tanδpcotδ
[
γ1h1

(
1 + tanδpcotδ

)
+ γ2Rtanδp

]
(5)
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Substituting Equations (3)–(5) into Equation (2) gives

pR =
( cu

cotδsinδ
+ γ1h1

)(
1 + tanδpcotδ

)
+ γ2Rtanδp (6)

Considering the self-weight of the column,

Pp + G0 = pRtan2 δp (7)

G0 = γp
(
2Rtanδp + h1

)
(8)

Substituting Equations (6) and (8) into Equation (7) yields the following:

Pp =
[( cu

cotδsinδ
+ γ1h1

)(
1 + tanδpcotδ

)
+ γ2Rtanδp

]
tan2 δp − γp

(
2Rtanδp + h1

)
(9)

Taking the derivative with respect to δ and setting ∂pR
∂δ = 0 provides the angle that

maximizes pR. Consequently, the angle δp (related to φp) can be solved from the following:

tanδp =
cusin3 δ

cos2 δ
[
cucos δ + γ1h1

(
cos δ + sin2 δ

)] (10)

Once φp, γ1, h1, and the undrained shear strength cu are known, δ (the angle of the
failure surface in the clay) can be found, and then δp can be obtained. The ultimate bearing
capacity ppmax of the stone column is as follows:

ppmax =
[( cu

cotδsinδ
+ γ1h1

)(
1 + tanδpcotδ

)
+ γ2Rtanδp

]
tan2 δp − γp

(
2Rtanδp + h1

)
(11)

The above derivation is based on the bulging failure mode observed in layered soils
with an upper sand layer and a lower soft clay layer. It accounts for the self-weight of both
the column and the surrounding soil. This formula applies when the stone infill friction
angle φp lies in the range of 35–43◦, the ratio of the upper sand layer thickness to the lower
soft layer thickness is between 0.33 and 1.66, and the ratio of the column diameter to the
upper sand layer thickness ranges from 0.2 to 0.4.

4.3. Engineering Verification

To verify the proposed formula, it was applied to stone columns in the Yingliangbao
Hydropower Station project. Four test columns were subjected to static load tests. The
soil profile from top to bottom is as follows: (1) a gravel layer (10 m thick, a density of
2.24 g/cm3, an undrained shear strength of 60 kPa), (2) a fine-grained sediment layer (10 m
thick, a density of 1.99 g/cm3, an undrained shear strength of 15 kPa), (3) another gravel
layer (20 m thick, a density of 2.31 g/cm3, an undrained shear strength of 60 kPa), (4) a
fine-grained fill layer (20 m thick, a density of 1.89 g/cm3, an undrained shear strength of
18 kPa), and (5) a gravelly layer (50 m thick, a density of 2.33 g/cm3, an undrained shear
strength of 65 kPa).

The four stone columns—S1, S2, S3, and S4—have the following parameters:
S1: length—23.8 m, diameter—1.3 m.
S2: length—21.4 m, diameter—1.3 m.
S3: length—21.4 m, diameter—1.3 m.
S4: length—21.4 m, diameter—1.1 m.
All columns have a unit weight γp of 26.487 kN/m3 and an internal friction an-

gle δp of 38.66◦.
The field static load tests showed that the failure planes for all columns were confined

to the first soil layer. Thus, the parameters for the calculation are cu = 60 kPa, δp = 64,
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and γp = 27 kN/m3. Substituting these into Equations (10) and (11) yields the ultimate
bearing capacity predicted by the proposed method. Figure 15 compares the proposed
method with the field test results and the other existing methods [11,26–28]. The relative
errors between the calculation methods and the measured results are summarized in Table 5.
The proposed formula, which explicitly accounts for the column and soil self-weights and
bulging in the soft layer, delivers more accurate bearing capacity estimates and aligns better
with the actual measurements. Therefore, it provides a theoretically sound basis for stone
column design.
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Figure 15. Comparison of calculated and measured bearing capacities of stone columns [11,26–28].

Table 5. Discrepancies in bearing capacity calculations for stone columns.

Error Relative to Measured
Values of S1 and S2/%

Error Relative to Measured
Values of S3/%

Error Relative to Measured
Values of S4/%

Brauns method −25.00 −25.90 −25.40
H—W method −11.60 −11.74 −11.11

Passive earth pressure
method +14.20 +14.07 +14.89

Wong H.Y method −42.20 −42.29 −41.88
Proposed method −4.07 −6.94 −6.76

It should be noted that the proposed methodology is primarily applicable to stone
columns in sand-over-clay layered systems where failure is governed by bulging deforma-
tion within the soft clay layers. The formulation assumes the dominance of clay plasticity
over interfacial shear resistance, as validated in the scenarios where the sand overburden
stiffness does not significantly constrain the clay layer yielding. For conditions involving
stiff sand overburdens or complex multi-layered clay sequences, supplementary numerical
modeling is recommended to account for advanced soil–structure interactions.

5. Conclusions
In this study, a series of laboratory tests on single stone columns in layered transparent

soil were conducted. The tests examined the load–settlement behaviors, failure modes,
bulging deformations, and load transfer patterns, focusing on the effects of the sand layer
thicknesses, layer distributions, and column gradations. A new bearing capacity formula is
also proposed. The main conclusions are as follows:
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(1) In an upper sand–lower clay configuration, the stone column bulges in the lower clay
layer after penetrating downward from the sand layer. As the sand layer thickness
increases, pronounced bulging may also occur in the sand, activating greater shaft
friction and improving the column’s overall bearing capacity. Under the tested
conditions, stone columns perform better if the thickness ratio of the upper sand to
the lower clay exceeds approximately 0.6.

(2) In an upper clay–lower sand configuration, bulging often initiates at the column top,
with the maximum bulging at 1–2 column diameters below the top. In this case, the
bearing capacity is noticeably lower, demonstrating that stone columns are more
suitable when the upper layer is relatively strong.

(3) Higher uniformity coefficients and friction angles in the stone infills favor faster post-
bulging stabilization. This results in a higher bearing capacity and a better overall
stiffness. Therefore, optimizing the stone infill gradation to include a wide range
of particle sizes not only increases the bearing capacity, but also mitigates excessive
local bulging.

(4) The proposed bearing capacity calculation method accounts for the self-weights of
the stone column and surrounding soil. Compared with conventional approaches,
the revised formula yields predictions that are closer to the field test data, with a
maximum discrepancy within 10%. Under specific conditions, this approach can
guide the engineering design of stone columns in layered soils.

While the transparent soil system successfully captures the failure mechanisms in
layered soils, its synthetic composition precludes the long-term physicochemical processes
inherent to natural clays. Future studies should integrate multi-scale modeling with field
instrumentation to bridge the laboratory observations and prototype behaviors, particularly
for time-dependent settlements and micro-scale soil–column interactions.
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