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Abstract

Human–Robot Collaboration (HRC) in construction projects promises enhanced productiv-
ity, safety, and quality, yet realizing these benefits requires understanding the multifaceted
human and robotic factors that influence team performance. This study develops and
validates a multidimensional framework that links key human abilities (operational skill,
decision-making ability, and learning ability) and robot capacities (functionality and oper-
ability) to HRC team performance, with task complexity considered as contextual influence.
A field survey of construction practitioners (n = 548) was analyzed using partial least
squares structural equation modeling (PLS-SEM) to test direct effects and human–robot
synergies. Results reveal that all five main effects are positive and significant, indicating
that both human abilities and robot capacities have significant contribution. Moreover,
every hypothesized two-way interaction is supported, evidencing strong interaction ef-
fects. Three-way moderation analyses further reveal that task complexity significantly
strengthened the interactions of human abilities with robot functionality, whereas its inter-
actions with robot operability were not significant. The study contributes an integrated
and theory-driven model of HRC team performance that accounts for human abilities
and robot capacities under varying task complexity, and validated constructs that can be
used to diagnose and predict performance. The findings offer actionable guidance for
project managers by recommending that they prioritize user-friendly robot operability to
translate worker expertise into performance across a wide range of tasks, invest in training
to strengthen operators’ skills and decision-making, and, for complex tasks, pair highly
skilled workers with high-functionality robots to maximize performance gains.

Keywords: human–robot collaboration; construction projects; team performance; influencing
factors; PLS-SEM

1. Introduction
The construction industry accounts for more than 13 percent of global GDP [1], while

it has struggled for decades to shake off a reputation for low productivity, labor shortages,
and high accident rates. Occupational diseases like musculoskeletal disorders [2] stemming
from manual, repetitive, and strenuous tasks remain prevalent, directly influencing project
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profitability and bringing a heavy human cost. Most construction work is still performed
by human workers now [3,4]. As a result, the quality in construction is rarely as stable
as that in manufacturing with widely applied robots. Even skilled workers can complete
only a limited number of components per shift, which restricts productivity [4]. Advanced
technologies, especially construction robots, are critical for safe, efficient, and sustainable
construction [5]. Human–robot collaboration (HRC) combines robots’ speed, precision
and repeatability with workers’ intelligence, creativity, adaptability and reasoning [6].
Studies show that HRC can reduce worker workload by about 20%, improve efficiency by
nearly 30%, and increase assembly accuracy by more than 80% compared with human-only
teams [7]. Robots can take over rule-based, repetitive, hazardous or monotonous activities,
completing them more safely and efficiently [8]. In site applications, such collaboration has
been shown to reduce costs, shorten project schedules, and enhance construction quality
by minimizing worker errors [9–11]. Therefore, HRC is not only another productivity tool,
but also a pathway toward a safer and more sustainable construction sector.

Although the potential of HRC in construction is widely acknowledged, on-site adop-
tion and effectiveness remain limited [12], partly because the mechanisms that shape HRC
team performance are insufficiently understood. This limits our ability to predict and
manage performance on site. First, prior studies have identified a range of factors that may
influence HRC success [13–19]. Most of them, however, focus on human-centered variables
such as trust, workload, and acceptance. Far less attention is given to robot attributes or to
the technical and task dimensions that also matter. Consequently, the existing literature
still lacks a holistic, empirically validated theoretical model capable of integrating these
disparate strands into an explanatory framework. Second, the field rarely treats humans
and robots as an integrated team unit, even though performance on construction sites
emerges from socio-technical interactions among operators, robotic systems, and their
task context [15,20]. Construction work is executed by heterogeneous and dynamically
reconfigurable HRC teams (e.g., rebar tying, façade installation, site inspection) rather than
by isolated humans or robots [21]. “Heterogeneous” refers to teams with a mix of workers
with different skills and robots with varying functions. For example, in façade installation,
skilled humans perform tasks like alignment, while robots handle heavy lifting. “Dynamic”
emphasizes the teams’ ability to adjust based on changing task needs, such as integrating
new robots or reallocating human workers to optimize efficiency. Instead, explicit comple-
mentarities between human abilities and robot capacities are seldom modeled, interaction
pathways (e.g., how operability enables operators to translate skill into performance) are
under-theorized, and construct-valid measures remain scarce [22,23]. Third, boundary
conditions are not well specified. The task complexity, a defining feature of construction
that ranges from routine to highly uncertain work [24], is rarely modeled as a moderating
factor, leaving unclear when HRC will succeed or fail.

Together, these limitations constitute a clear research gap. The related research field
remains descriptive, cataloging factors rather than clarifying their interaction mechanisms,
and cannot yet predict the HRC team performance. The motivation of this paper is to
form a holistic, empirically grounded, and predictive team-level framework that integrates
human, robot, and task dimensions, clarifies their interaction mechanisms, and understand
and optimize HRC team performance. Therefore, this study aims to answer the following
research questions:

RQ1: What are the key latent constructs that influence HRC team performance in con-
struction?

RQ2: What are the specific, measurable indicators that constitute each latent construct?
RQ3: What are the causal relationships between these key factors and HRC team

performance?
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RQ4: How can a PLS-SEM model be developed and validated to provide practitioners
with suggestions for predicting and improving HRC team performance?

To answer these questions, this study adopts a partial least squares structural equa-
tion modeling (PLS-SEM), a prediction-oriented approach that characterizes influencing
mechanism research now widely used in construction management, because it can estimate
complex causal networks and remain reliable with small samples [25].

The following are the study’s main goals: (1) identifying a comprehensive set of HRC
team-performance factors from different dimensions so that corresponsive enhancement can
be tracked in the future, (2) testing whether these factors influence HRC team performance,
(3) modeling the direct, indirect, and moderating pathways among constructs using PLS-
SEM to enhance the team performance, and (4) interpreting the findings into actionable
guidance for decision-makers and construction management practitioners.

By delivering the empirically validated and multidimensional model of HRC team
performance in construction, the study makes a dual contribution. On the one hand, this
paper provides a theoretical framework of factors influencing HRC team performance
and addresses the knowledge gap in the literature through a narrative approach. On the
other hand, the result will help practitioners in HRC practical applications through the
identification of strategies to improve team performance, thereby improving construction
project performance and success.

2. Literature Review
2.1. Development of HRC in Construction

HRC in the construction sector is best understood not as a single technology but as a
spectrum of interaction modalities [26]. It is the cooperative work of robots and humans
in a shared or adjacent workspace across tasks such as assembly, inspection, material
handling, fabrication, and maintenance. To structure this field, scholars classify HRC
by robot autonomy and the matching degree of human involvement [21]. These levels
range from simple, pre-programmed robotic actions with high human oversight to fully
autonomous systems requiring minimal human intervention. This classification is critical
because the factors influencing team performance will differ across autonomy levels. For
instance, a teleoperated robot handling a hazardous task is a different collaboration pattern
than a semi-autonomous robot assisting a human in assembly. The evolution of HRC
in construction has been gradually promoted by the goals of improving safety, boosting
productivity, and enhancing quality [27]. Early single-task construction robots (STCRs)—for
bricklaying, excavation, and curtain-wall installation—were built to reduce physical strain
and safety risks and borrowed heavily from pre-programmed industrial methods [28].
These robots typically operate in highly structured environments and are designed for
repetitive tasks. On construction sites, strict safety considerations confine STCRs to fixed
zones, a practice that effectively keeps them physically separate from human workers [29].
As a result, the status of HRC can rarely be achieved under this situation. Instead, robots
and humans merely coexist, with little direct interaction between the two parties.

Recent scholarship on construction robotics indicates a gradual shift from single-
purpose automation to mobile and cyber-physically integrated systems that operate in
shared workspaces with humans [30–32]. On the sensing and mobility side, quadruped and
wheeled platforms are increasingly used for repeatable site inspection and progress verifi-
cation, improving temporal consistency of observations and linking field data to project
records. Studies report autonomous or supervised navigation and human–robot teaming
benefits in on-site monitoring tasks [33,34]. Beyond inspection, field robots have advanced
in repetitive and physically demanding operations. Rebar tying and cage fabrication
systems now combine active perception, robust pose estimation, and coverage planning,
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showing reliable tying of intersections and automated assembly workflows [35–37]. Brick-
laying research continues to refine force–position control and task-level planning, with
BIM-informed strategies improving placement accuracy and cycle consistency [38]. Interior-
finish robots have progressed from feasibility demonstrations to intelligent spraying sys-
tems with stable operation and safety features, while on-site thin-layer printing with cemen-
titious plaster extends robotic finishing toward continuous, mobile fabrication [39–41]. At
the equipment scale, autonomy modules for excavators integrate multi-sensor perception,
trajectory generation, and hydraulic control, enabling operation on uneven, cluttered ter-
rain; the literature spans autonomous walking excavators, hybrid data-driven motion plan-
ning, and database-driven model predictive control, alongside shared-control frameworks
that blend operator input with autonomy [42–44]. These capabilities are increasingly cou-
pled with integrated UAV–UGV mapping to accelerate site digitization and model-based
management, providing higher-frequency updates for planning and exception handling [9].
In parallel, construction-specific human–robot interaction research proposes pre-task plan-
ning tools for risk identification and examines multidimensional impacts on efficiency,
quality, workload, and worker perceptions, emphasizing operability, predictability, and
calibrated autonomy when people and robots share tasks and space [7,45].

Similar trends have been reported in North America, Europe and Australia, where
autonomous mobile robots have been tested for structural inspection and laser-based
surveying in complex built environments [23,46–48]. Recent reviews and case studies
document mobile manipulators and legged platforms performing repeatable site traversals,
LiDAR-based mapping, and progress capture under obstacle conditions, laying the per-
ception and navigation foundations for HRC [33,49,50]. Beyond North America, Europe,
and Australia, similar technological momentum is evident across Asia where academic
and industry are actively advancing robotic construction systems. In Singapore and Hong
Kong, research into construction automation has culminated in the deployment of mo-
bile robotic platforms for tasks such as facade installation, autonomous rebar tying, and
progress tracking using vision and LiDAR systems [5,51–53]. Notably, the integration of
mobile manipulators with digital twin frameworks and BIM-enabled environments to en-
able context-aware planning and semantic navigation in dynamic construction sites [54,55].
In recent years, quadruped robots have been trialed not only in infrastructure inspection
but also in autonomous progress monitoring and real-time 3D reconstruction of construc-
tion environments under unstructured and dynamic conditions [34,56,57]. These trials
have highlighted the growing emphasis on adaptive locomotion, terrain-aware path plan-
ning, and robust localization in partially known environments—factors critical to safe
and effective HRC. Furthermore, initiatives like the SAM robotic bricklaying platforms
(Semi-Automated Mason) illustrate how collaborative robots can augment skilled masons
by improving productivity and ergonomics [21,57]. These initiatives also underscore a
global convergence toward multi-robot coordination, heterogeneous sensor fusion, and
resilience to occlusions and environmental changes [58].

Building on these advances, HRC teams combine human flexibility and problem-
solving with robotic strength and precision to achieve higher overall productivity and safety
performance [7,59]. For example, robots excel at handling heavy, repetitive, and precise
tasks, which can raise output rates and relieve workers of strenuous labor. A modeling
study showed that introducing proactive HRC could boost construction productivity by up
to 22% [60]. Safety performance also tends to improve with well-designed HRC. Robots
can be delegated to perform dangerous jobs such as demolition and reduce workers’
exposure to harm [61]. In collaborative scenarios, separating human and robot working
zones or using safety control measures has been shown to significantly mitigate collision
risks. Experiments in virtual settings found that keeping a defined distance or barrier
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increases workers’ safety perception and awareness, improving overall team safety [62]. In
general, HRC can realize safety first better. In practice, robots handle hazardous work while
humans focus on planning and problem-solving [63]. This lowers accident risk and reduces
physical strain and fatigue. The result is a healthier, more sustainable workforce. The most
important objective of HRC is to lower the human physical and cognitive workload while
increasing productivity [64]. For example, the wearable assistant robots have lessened
manual handling loads and injuries on sites [7].

Recent studies show that effective human–robot teams can improve efficiency, work
quality, and safety in construction projects compared with all-human workflows [59].
However, realizing these gains consistently requires careful consideration of the factors
that influence HRC team performance.

2.2. Factors of HRC Team Performance in Construction

The components of HRC teams, including workers, robots, and tasks, as well as the
way workers and robots collaborate, determine the overall performance of the collabo-
rative team [13,19,64–67]. The characteristics of these components and their interactions
significantly impact team performance, including efficiency, safety, quality, flexibility, and
creativity [63,64,68–71]. These elements rarely operate in isolation and instead they interact
dynamically, with the strengths or weaknesses in one domain amplifying or mitigating the
effects of another. Understanding these factors comprehensively is essential for designing
HRC systems that optimize team performance across diverse construction scenarios. There-
fore, it is fundamental to analyze the key influencing factors across various dimensions to
predict and improve overall team performance.

2.2.1. Human-Level Factors

In HRC, understanding the human factors that contribute to team performance is
crucial for effective collaboration between workers and robotic systems. A key distinction
in human-level factors is between trainable skills and psychological attitudes, as these
two categories influence team performance in fundamentally different ways [72–74]. This
differentiation is essential because skills are external and observable, whereas psychological
attitudes are internal and subjective [75,76]. Skills, such as the operational skill, are external,
observable, and can be systematically improved through training, practice, and experi-
ence [77]. From a managerial perspective, these skills can be directly enhanced by structured
training programs, knowledge transfer initiatives, and on-site practice, thereby enabling
workers to more effectively operate robots, make sound decisions under uncertainty, and
adapt to evolving technologies [7]. By contrast, psychological attitudes—including trust in
robots, openness to innovation, and willingness to communicate—are internal and subjec-
tive [78,79]. They are shaped less by technical training and more by organizational culture,
leadership style, and team climate [80,81]. For managers, this implies that while skills
require targeted investment in capability building, attitudes must be nurtured through
fostering trust, transparent communication, and supportive work environments.

The capabilities and characteristics of the human workers are pivotal in HRC team
performance. The skill levels, decision-making abilities and learning abilities of operators
determine how effectively they can work with robots. Humans can make high-level deci-
sions from complex information, adjust to unexpected changes, and solve novel problems
that robots cannot handle autonomously [82]. For instance, a well-trained construction
worker can intuitively intervene if a robot encounters an unforeseen site condition, prevent-
ing errors and downtime. Studies highlight that adequate training and learning capacity
are essential: workers must develop new technical skills and mental models to collabo-
rate smoothly with robots [83]. Positive attitudes and psychological factors like trust in
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the robot, openness to innovation, and communication efficacy also critically affect HRC
outcomes [84–86]. If workers distrust a robot or feel anxious about its actions, coordination
suffers. By contrast, when humans perceive robots as a reliable partner, they engage more
in collaboration. Empirical research in construction has found that operators’ trust and com-
fort levels can influence team performance, which is that higher trust often correlates with
more efficient task execution and information flow [13,87]. Thus, human factors such as
technical proficiency, cognitive readiness, decision-making abilities and skills individually
influence how well the team functions.

2.2.2. Robot-Level Factors

On the robotic side, the functionality, reliability, and usability of the robots are key
performance drivers. A robot’s capabilities set the upper bound of what the team can
accomplish. Robust hardware and software ensure the robot can operate consistently
without frequent breakdowns or errors, thereby avoiding work interruptions. The robot
must be operable and responsive to human input. Factors like an intuitive user interface,
effective communication, and appropriate autonomy greatly affect collaboration quality [88–
90]. Research indicates that HRC success depends on robots that can adapt to changing site
environments and integrate into existing workflows [26]. For example, a site-inspection
robot with autonomous navigation and obstacle avoidance reduces oversight burden and
lets the human focus on analysis [33]. The robot that moves in a predictable and human-
like way tends to improve the operator’s comfort and task performance, whereas erratic
or opaque behavior can reduce team efficiency [91]. In sum, high HRC performance
requires capable, user-friendly robots that meet task demands and collaborate smoothly
with humans.

2.2.3. Task-Level Factors

The nature of the task being performed, such as its complexity, uncertainty, and
structure, fundamentally shapes HRC team dynamics. Task complexity is a critical factor.
The complex construction tasks, like involving many interdependent steps or real-time
problem solving, tend to demand greater human oversight and decision-making, which
can strain the team if not properly managed [7]. In such cases, the human must frequently
intervene or guide the robot, potentially slowing down work if the interfaces or role
allocations are not optimized. High complexity or novel tasks also increase cognitive
workload on the human operator, as they must monitor the robot closely and handle
unpredictable situations [92]. By contrast, for well-structured or repetitive tasks, robots
can take on a larger share of the work with minimal human input. Effective HRC thus
depends on matching the task to the appropriate level of automation [93]. Another task
factor is whether the collaboration is physical at a distance. Physical collaboration demands
careful safety measures, whereas remote collaboration places emphasis on communication
bandwidth and interface design [94]. The hazard level of the task also matters because tasks
in hazardous environments will benefit more from robotic involvement [95]. In summary,
factors like task complexity, uncertainty, and structure influence how the human–robot
team (HRT) should be organized and how performance will be affected. Simplifying task
workflows and clearly defining roles can substantially improve HRC productivity and
safety in construction.

2.2.4. Interactive Effects

Human, robot, and task factors do not operate in isolation and their interactions
determine the team performance which should be considered jointly [96]. For example, a
highly autonomous robot might improve efficiency, but if the operator is not adequately
trained or mentally prepared, they may mistrust the robot or struggle to intervene when



Buildings 2025, 15, 3685 7 of 51

needed, undermining performance [97]. Conversely, if the autonomy of the robot is too
low on a complex task, the human may become overburdened, leading to errors or slower
progress [98]. Finding the optimal balance is crucial for HRC team performance. Empir-
ical evidence shows that human factors directly affect performance. On the other hand,
robots are designed to be cognitively compatible, such as moving in human-like ways and
providing timely feedback, enhancing the team performance [99]. Studies have identified
trust and communication as particularly important interactive factors. High mutual trust
and clear communication correlate with better collaboration [100]. These findings highlight
that optimizing HRC performance requires us to consider how human abilities, robot
capabilities, and task characteristics dynamically influence each other. Successful HRC
teams emerge when human strengths are effectively augmented by robot strengths in a
way that fits the task. Achieving this collaboration involves tuning both human and robot
factors to the specific task context.

2.3. PLS-SEM Modeling in Construction

In construction management research, Partial Least Squares Structural Equation Model-
ing (PLS-SEM) has become an increasingly popular analytic method for exploring complex
and multi-factor relationships [25]. As a component-based variant of structural equation
modeling, PLS-SEM is designed to estimate latent variables and the causal paths between
them simultaneously. It is especially suited to exploratory studies with predictive aims,
handling small to medium sample sizes and non-normal data distributions common in
field research [101,102]. PLS-SEM has been widely used in construction to investigate a
variety of topics of new technology adoption [103–105]. For instance, recent research has
made extensive application of PLS-SEM in examining drivers of innovation in robotics,
automation, and drone deployment on building projects, reflecting the method’s capacity
to accommodate diverse human, technical, and organizational variables in one analytical
framework [106,107].

Within HRC research specifically, PLS-SEM enables rigorous analysis of how human
factors, robot characteristics, and task characteristics influence team performance. You, Kim,
Lee, Kamat and Robert [62] used the method to investigate safety perceptions in human–
robot construction teams under different workspace configurations in a virtual environment.
Their model linked constructs such as trust in the robot, team identification, perceived
safety, and intention to collaborate, revealing that separating human and robot work zones
improved perceived safety indirectly by increasing trust. Likewise, Parvez et al. [108]
applied an extended Technology Acceptance Model (TAM) via SEM to demonstrate that
perceived usefulness and ease of use were significant predictors of the intention to adopt
robots on site. These studies illustrate how PLS-SEM can integrate human, technical, and
contextual variables into a causal network, uncovering pathways of factors of HRC team
performance.

PLS-SEM is well suited for building and validating HRC team performance models.
Its flexibility enables integrated frameworks that capture the multidimensional nature of
HRC and link human–robot–task interactions to outcomes such as productivity, safety,
and quality.

2.4. Knowledge Gap in the Literature

Although the potential of HRC in construction has been widely acknowledged, its
successful implementation continues to face significant challenges. A growing body of
scholarship has identified a diverse set of factors that may influence the performance of
HRC teams, ranging from human characteristics such as skill level, trust, and adaptability
to robot-related attributes such as autonomy, reliability, and usability, as well as task and
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environmental conditions [24,109–111]. Despite this substantial descriptive groundwork,
the current state of knowledge remains fragmented. Most studies have approached these
factors in isolation, generating valuable catalogs of potential influences that provide a strong
foundation for integration into a coherent theoretical structure [15,26,112,113]. Building on
this groundwork, the opportunity now lies in advancing theory by clarifying how these
variables interact, reinforce, or counteract one another in shaping HRC team performance—
a domain that remains ripe for further exploration and theoretical development. This lack
of integration has two important consequences. First, without a unifying framework, it
is difficult to compare results across studies. The existing literature offers little guidance
on the relative importance of different factors and on the pathways through which they
influence performance. Second, the absence of validated predictive models constrains the
ability of practitioners to design and manage HRC teams with confidence that specific
interventions (like training, robot interface design, or task allocation) will reliably lead to
improved outcomes.

The existing research remains descriptive or exploratory based on controlled laboratory
experiments with small and homogeneous participant groups [62,114]. These studies help
surface candidate variables but do not capture the complexity and variability of real projects.
Interaction mechanisms among human, robot, and task factors are seldom modeled to
enable empirical tests of causal relationships. As a result, the field struggles to move
from qualitative observations to quantitative predictions—progress that is essential for
advancing theory and guiding practice.

Addressing this gap requires a methodological shift from analyzing potential factors
qualitatively toward developing and validating structural models that explicitly represent
the relationships among factors. PLS-SEM offers a particularly suitable approach, as it
enables the simultaneous estimation of measurement models for latent constructs and
the evaluation of complex causal paths [25]. By employing such a method, it becomes
possible to move beyond descriptive listings of influences toward constructing a scientifi-
cally grounded and predictive framework for understanding and optimizing HRC team
performance in construction.

3. Research Methodology
A conceptual model is first rooted in a clear research strategy. Guided by the results of

a literature survey, this strategy provides the basis for formulating hypotheses to be tested
with empirical evidence [115]. In this study, the research methodology strictly follows the
sequential hybrid approach of qualitative and quantitative data collection, interpretation,
and modeling [116], which is a systematic methodology consisting of conceptual study,
empirical study, and study output, as shown in Figure 1.

In the conceptual stage, the study reviewed the literature to identify gaps in HRC for
construction. From this review, the main factors influencing HRC team performance were
extracted and grouped into three dimensions: human abilities, robot capacities, and task
characteristics. Guided by related theory, the study then developed hypotheses for both
main effects and interactions.

In the empirical stage, the study collected data with a structured questionnaire targeted
at construction professionals experienced in robotics and automation. A total of 548 valid
responses were obtained. To ensure measurement robustness, reliability and validity
were assessed using Cronbach’s α, composite reliability, average variance extracted, and
discriminant validity. The theoretical model was validated with PLS-SEM, model fit indices
were examined, and hypothesized paths were tested. Both main and moderating effects
were analyzed to capture HRC performance under varying task complexities.
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Finally, the study produced a validated PLS-SEM model of HRC team performance
and its implications. The model explained variance in team performance, demonstrated
that human and robot factors contribute through both direct and interaction effects, and
confirmed the moderating role of task complexity. These results advance HRC theory in
construction and provide practical guidance for projects.

Conceptual Study Empirical Study Study Output

Literature Review 

to Define a 

Knowledge Gap

Identification of 

Factors of HRC 

Team Performance 

Hypotheses 

Development

Data Collection and 

Analysis

Questionnaire 

Collection

Reliability and Validity 

Testing

Theoretical Model

Validation

Reliability and Validity 

Testing

Model Fit Assessment

Structural Path

Analysis

Moderating Effect 

Testing

Main Effect Testing

PLS-SEM Model 

for HRC Team 

Performance

Implications and 

Conclusions

 

Figure 1. Research Methodology.

4. Conceptual Framework and Hypotheses Development
4.1. Related Theory Foundations

To deeply explore HRC team performance in construction, it is necessary to build a
solid theoretical foundation [117]. The Technology-to-Performance Chain (TPC) model, pro-
posed by Goodhue and Thompson [118], is a core theoretical framework for explaining how
information technology affects performance. It is highly instructive for understanding the
role of technology in collaborative teams. The TPC model believes that two prerequisites
must be met simultaneously for information technology to be transformed into individual or
team performance: (1) technology is effectively utilized; and (2) there is a good fit between
technology and tasks (Task-Technology Fit, TTF) [118]. TTF is defined as the degree of fit
between technical functions and task requirements, emphasizing whether technology can
effectively support users in completing their work tasks. The TPC model structure aligns
with HRC. The robotic systems, as a new technological medium, are introduced into the
construction production process to assist humans in completing complex tasks such as han-
dling, inspection, and execution. Their value must be demonstrated through collaboration
with human workers and their alignment with specific construction tasks. Only when the
capabilities of robots match on-site task requirements and workers are willing and able to
effectively use the technology can the expected team performance be achieved [119]. This
corresponds to the technology–task–human coupling mechanism in the TPC model.

Therefore, guided by the TPC and TTF logic, this study deliberately scopes the an-
tecedents to HRC team performance to human abilities that determine whether the technol-
ogy can be effectively utilized, and robot capacities that determine whether the technology
fits the task demands [118]. Within this socio-technical coupling, the human side is repre-
sented by three ability constructs—operational skill, decision-making ability, and learning
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ability—that are repeatedly identified in human–robot interaction (HRI) and construc-
tion management literature as first-order drivers of effective technology use in dynamic
construction environments [120–123].

The operational skill captures the worker’s technical proficiency in operating and
supervising robots [124]. In construction HRC, such proficiency reduces procedural
errors, shortens intervention time, and improves handoffs between manual and auto-
mated steps [122]. Decision-making ability reflects the capability to make timely, context-
appropriate judgments under uncertainty—allocating tasks between human and robot,
overriding robot actions, and replanning when site conditions change [16,125]. Learning
ability represents adaptive capacity to acquire new procedures as robot autonomy levels
evolve; in practice, adaptive learners close the utilization gap and unlock more of the
robot’s capability over time [126]. Collectively, these three ability constructs map to the
user capability and utilization of the TPC. On the robot side, the model includes function-
ality and operability as distinct capacity constructs [124,127]. Functionality denotes what
the robot can do (e.g., reliability, responsiveness, and autonomy level) and therefore sets
the technical ceiling of task–technology fit in construction settings [128,129]. Operability
denotes how easily humans can direct and collaborate with the robot (e.g., interface clarity,
predictability, controllability), aligning with the ease-of-use pathway highlighted by TAM
and HRI usability research as a core determinant of effective use and performance [130–132].
Prior empirical and design work in collaborative manufacturing and construction shows
that operability frequently amplifies human expertise and moderates breakdowns at the
human–robot boundary [133,134]. This construct set can better explain HRC team per-
formance that capable workers (skillful, decisive and adaptive) effectively utilize capable
technologies (functional and operable) on tasks that those technologies fit.

Other frequently discussed constructs in HRC research, such as trust, communication,
and safety, are not modeled as focal antecedents in this framework [82,110]. Trust and com-
munication emerge only when humans and robots interact. They are relational mechanisms
shaped by human abilities, robot capacities, and task context, rather than attributes of either
party alone [135,136]. In line with TPC and TTF logic, these constructs are more appropriately
conceptualized as interactional pathways whose influence is captured through the comple-
mentarities between human and robot factors and the moderating role of task complexity,
rather than as exogenous inputs [96,137]. Safety, by contrast, is treated as a performance out-
come rather than an antecedent [138]. Similarly to productivity and quality, safety is realized
during task execution and not a pre-existing trait of the human or the robot. Positioning safety
as an outcome preserves a clear causal chain from abilities and capacities, through interaction
mechanisms, to team performance, and avoids conflating predictors with results.

In summary, although TPC originated in the field of information systems, its core logic,
that technological value depends on the utilization and TTF, is highly consistent with the
mechanisms of HRC. Therefore, introducing TPC theory into the HRC scenario not only
has theoretical rationality, but also provides a clear theoretical basis for identification and
analysis of the factors affecting HRC team performance. The TPC theory provides a clear
theoretical perspective for identifying the key factors influencing the HRC team performance.
By emphasizing the logic of technology, utilization, and performance, it indicates that efforts to
advance the intelligent transformation of the construction sector must systematically consider
the interactive mechanism among human factors, technology and tasks.

4.2. Identification of Related Factors

A structured literature investigation was conducted to discover the factors affecting
HRC team performance with the three steps: journal selection, article screening, and
paper analysis.
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Firstly, to ensure the broadest coverage of construction engineering and automation
research, this study selected Scopus as the literature source because Scopus has been
adopted in numerous reviews related to construction robots compared with other plat-
forms [21,27,109,139,140]. Moreover, Scopus provides wider reach across interdisciplinary
domains [141], making it well suited to the cross-cutting nature of HRC studies.

The second step is searching for relevant research based on the selected database with
a Boolean search between 2010 and 2025. The title/abstract/keywords fields were selected
in Scopus to ensure that only papers explicitly addressing these terms were captured. The
Boolean string adopted was as follows:

TITLE-ABS-KEY = (“human robot collaboration” OR “human robot interaction” OR
“construction robot*”) AND (“construction site*” OR “building project*” OR “civil engi-
neering” OR “construction engineering” OR “construction management” OR “building
engineering” OR “off-site construction” OR “industrialized construction”) AND (“team
performance” OR “productivity” OR “safety” OR “quality”)

The initial sweep yielded 521 publications. Titles, abstracts, and keywords were
then examined against three criteria: (1) the study must focus explicitly on HRC within a
construction context; (2) the study must discuss factors, metrics, or determinants of team
or task performance; (3) this study must provide either empirical data or a conceptual
framework linking factors to performance. After this first pass, 118 papers met all criteria.

The third step is factor extraction based on grounded theory which is often used in
construction management research [142–144]. Through iterative coding and categoriza-
tion, this paper identified three overarching dimensions that recur across the literature,
including human ability, robot capacity, and task characteristics. The first is human ability.
Successful HRC depends critically on the abilities of the human worker, since humans are
not only robot operators but also decision-makers and learners in dynamic construction
environments [145]. Within human capacity, the operational skill, decision-making ability,
and learning ability were identified as key competencies [146,147]. Operational skill reflects
the technical proficiency of workers in operating and supervising robots, thereby reducing
errors and improving coordination efficiency [148,149]. Decision-making ability captures
the cognitive capability to make timely and effective judgments under uncertainty, which
is crucial in construction’s dynamic and variable conditions [16]. Learning ability repre-
sents the adaptability of workers to acquire new skills and adjust to novel robotic systems,
enabling performance improvement [150]. Second is robot capacity. Within robot capacity,
two determinants of functionality and operability were highlighted [151,152]. Functionality
refers to the technical performance of the robot, including autonomy, reliability, precision,
and responsiveness, which directly influence productivity and safety [153]. Operability
reflects the usability and interface design of the robot, capturing how easily humans can
control and interact with it, which affects the fluency of collaboration [154]. Finally, under
task characteristics, task complexity was identified as a critical contextual determinant, as
tasks that are novel, interdependent, or uncertain impose higher cognitive and coordination
demands on both humans and robots, thereby amplifying or decreasing the influence of
the aforementioned factors on team performance [155].

In summary, six specific factors, including operational skill, decision-making ability,
learning ability, robot functionality, robot operability, and task complexity, emerged as the
most significant determinants of HRC team performance, forming the foundation for the
hypothesis development presented in the following section [112,156].

4.3. Hypotheses Development

Building on the conceptual framework, this paper develops specific hypotheses for
how human abilities, robotic capacities, and their interactions influence HRC team per-
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formance, as well as how these relationships may depend on task complexity. Human
operators’ abilities are expected to be a fundamental driver of HRC team outcomes. First,
a construction worker’s operational skill defined as proficiency in operating and inter-
acting with robots should enhance the team performance. Skilled operators can better
utilize robotic functions and avoid errors, leading to more efficient and accurate task com-
pletion [13]. Research shows that adequate training and technical knowledge on how
to use robots enable humans to intervene effectively to prevent downtime when robots
face issues. For example, training improved HRC performance by increasing operators’
confidence and coordination with robots [83]. Thus, a higher level of operational skill is
good for collaboration to improve overall team productivity and quality. Therefore, this
study hypothesizes:

H1: Operational skill is positively related to HRC team performance.

Second, the decision-making ability of human workers is considered as the factor to
improve HRC team performance [109]. In complex construction tasks, human judgment
is critical for handling uncertainty and making real-time adjustments that automated
systems alone cannot [157]. An operator with strong decision-making skills can optimally
allocate tasks between themselves and the robot, choose when to intervene or override
robot actions, and adapt plans at any time, thereby enhancing team effectiveness [158].
Human decision-making capabilities are key factors affecting outcomes in HRC [16]. When
faced with unexpected site conditions, human workers can instruct the robot or replan the
task to avoid delays. Teams with workers who make sound decisions will achieve better
performance than those with less decisive workers. Hence:

H2: Decision-making ability is positively related to HRC team performance.

Third, this paper considers the human operator’s learning ability, which is the capacity
to acquire new skills and adapt to new technologies or procedures. This factor should
have a positive impact on HRC team performance, especially given the introduction of
robots into construction [159]. A learning-oriented operator can more quickly master the
robot’s interfaces and functions, continually improve how they collaborate with the robot,
and update their mental models for coordination. Operators who actively learn and adapt
contribute to HRC work and can unlock more robot potential over time [160]. Workers who
try to understand new HRC processes tend to find innovative ways to divide labor with
robots and overcome workflow bottlenecks. In contrast, low learning ability may result in
low utilization of robots [161]. This study therefore hypothesizes:

H3: Learning ability is positively related to HRC team performance.

In addition to human factors, the capabilities of the robot are hypothesized to signifi-
cantly influence HRC team performance [60]. One critical dimension is robot functionality,
which encompasses the robot’s technical performance, like autonomy level, reliability,
precision, and ability to handle complex tasks [42,162]. A highly capable robot can execute
more tasks independently named high task-technology fit [118], and with fewer errors
or breakdowns to improve team productivity and quality. Prior research in construction
robotics has shown that advanced functionality enables robots to contribute meaningfully
without constant human correction, which in turn raises overall team efficiency [33]. Hence:

H4: Robot functionality is positively related to HRC team performance.

Another key technical factor is robot operability, referring to the ease with which
humans can operate and interact with robots. A functional robot may not contribute to
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team performance if it is difficult to control or communicate with. Intuitive operability
with user-friendly interfaces, clear feedback and ergonomics could reduce the cognitive
burden on workers and facilitate the collaboration. When robots are easy to operate, human
workers can more quickly learn the controls, confidently adjust robot actions, and effectively
supervise the collaboration process. This aligns with TAM showing that perceived ease of
use is a strong predictor of technology effectiveness and adoption in teams [163]. Therefore,
a robot designed for high operability will significantly enhance team performance. Thus:

H5: Robot operability is positively related to HRC team performance.

Beyond their individual impacts, human and robot factors also reinforce each other
in shaping team performance [164]. According to the TPC theory, technology yields
performance benefits only when users are both willing and able to utilize it effectively, and
when the technology’s capabilities suit the task at hand [165]. Thus, pairing high human
ability with high robot capacity should yield synergistic gains, whereas weakness in either
constrains the other. For example, a skilled operator cannot compensate for a low-capability
robot, and a capable robot is underused by an untrained operator. Prior work likewise finds
that HRC success depends on joint optimization, as changes in robot behavior influence
outcomes differently depending on the operator’s state [166]. Accordingly, this study
hypothesizes positive interactions between each human ability and each robot capacity,
and states the formal hypotheses as follows:

H6: The interaction between operational skill and robot functionality is positively related to HRC
team performance.

H7: The interaction between operational skill and robot operability is positively related to HRC
team performance.

H8: The interaction between decision-making ability and robot functionality is positively related to
HRC team performance.

H9: The interaction between decision-making ability and robot operability is positively related to
HRC team performance.

H10: The interaction between learning ability and robot functionality is positively related to HRC
team performance.

H11: The interaction between learning ability and robot operability is positively related to HRC
team performance.

Each of the above reflects the expectation that when humans and robots both contribute
their strengths, the HRC team achieves more than the sum of its parts. For example, H6
posits that an operator’s expert skill in using robots magnifies the performance gains from
an advanced robot’s functions. Similarly, H8 suggests that a worker’s strong decision-
making, combined with a versatile robot, leads to better strategy execution and problem-
solving on site. These hypotheses echo prior findings that human–robot fit is crucial [167].
A good match of human competencies with robot capabilities leads to higher efficiency,
better safety, and smoother teamwork [168,169].

As tasks grow more complex, these relationships are increasingly moderated by task
complexity [92]. Task complexity in construction refers to the degree a task is novel, difficult,
or involves many interdependent steps and uncertainties [170]. Complex tasks typically
demand greater human abilities [171]. Under high complexity, the value of a skilled human
and a capable robot should be even more pronounced, since each can compensate for
the challenges the other faces [172]. Prior studies indicate that as task complexity rises,
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performance increasingly depends on effective HRC and shared decision-making [173,174].
Therefore, this paper hypothesizes that task complexity positively moderates the interaction
effects between human and robot factors on performance. Specifically:

H12: The more complex the task is, the stronger the positive effect of the interaction between human
operational skill and robot functionality on HRC-team performance.

H13: The more complex the task is, the stronger the positive effect of the interaction between human
operational skill and robot operability on HRC-team performance.

H14: The more complex the task is, the stronger the positive effect of the interaction between human
decision-making ability and robot functionality on HRC-team performance.

H15: The more complex the task is, the stronger the positive effect of the interaction between human
decision-making ability and robot operability on HRC-team performance.

H16: The more complex the task is, the stronger the positive effect of the interaction between human
learning ability and robot functionality on HRC-team performance.

H17: The more complex the task is, the stronger the positive effect of the interaction between human
learning ability and robot operability on HRC-team performance.

In summary, H12–H17 propose that high task complexity will magnify the perfor-
mance impact of having both high human and high robot factors. When tasks are straight-
forward, a moderate human–robot pairing may suffice, but as complexity grows, any
weakness is exposed, and a well-matched and highly capable HRT becomes critical for
productivity and safety. This set of hypotheses extends the theoretical framework by incor-
porating context that not only do human and robot factors matter, but when they matter
most depends on task conditions. Figure 2 illustrates the conceptual model summarizing
these hypotheses, including human ability, robot capacity, and their interactions affecting
team performance, under the moderating influence of task complexity.
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HRC team 
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Figure 2. Conceptual Framework of HRC Team Performance.
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4.4. Robot Technology Scope

Building on the design considerations in Section 4.3, the scope of robotic systems
assessed is delineated to anchor subsequent measurement and analyses in authentic on-site
collaboration contexts.

To ensure that construct measurement reflects real HRC on construction sites, the
robot technology scope is defined as field-deployed systems used in shared or adjacent
workspaces. The scope was specified a priori and applied consistently in participant
screening and survey instructions for both the pilot and main studies. The included
categories are:

(1) Interior wall finishing robots: systems for surface material application and prepara-
tion, including spraying/painting and plastering (mortar application, leveling, compacting,
troweling), as well as automated putty sanding with force control and dust collection.

(2) Floor construction and finishing robots: systems for sub-base leveling and surface
treatment, including concrete floor screeding/leveling (with elevation control), floor grind-
ing/polishing (from rough to precision), and floor coating application (closed-loop delivery
of primer/intermediate/top coats).

(3) Tiling and panel installation robots: systems that automate or assist placement tasks,
including floor tile-laying (grabbing, adhesive application, placement, seam alignment)
and wall/prefabricated panel positioning and installation.

(4) Inspection and surveying robots: systems for dimensional/quality inspection
and site monitoring, including wheeled/quadruped platforms with integrated measure-
ment modules and UAV-based progress/safety inspection with automated data capture
and analysis.

The scope reflects two principles: (i) practice representativeness—prioritizing HRC sys-
tem types widely used in current Chinese construction practice, thereby aligning measures
of human capabilities (e.g., operational skill, decision-making, learning), robot character-
istics (functionality, operability), and task complexity with actual site conditions; and (ii)
policy alignment—mapping the scope to promotion lists of governments for robotics and
intelligent construction [175–180], ensuring congruence with governmental priorities and
facilitating interpretation.

5. Developing PLS-SEM Model
To empirically test the hypotheses, this paper designed a field study in the construction

industry using a questionnaire-based survey and analyzed the data with PLS-SEM. This
section describes the questionnaire sample, the survey procedure and instrument, and the
data analysis approach.

5.1. Pilot Study and Pre-Survey Analysis

Prior to the main survey, a pilot study is conducted to verify item clarity and content
validity, and to optimize items via item analysis and exploratory factor analysis (EFA).
The pilot also examines potential common method bias and data-quality issues, thereby
supporting robust measurement and structural modeling.

Pilot participants are frontline personnel recruited from 2 to 3 active construction
projects. The sample size is 80. Data is collected through paper and online channels. Table 1
presents the demographic characteristics of the respondents. Respondents were predom-
inantly male (88.75%). Age was concentrated in the 45–54 (36.25%) and 35–44 (31.25%)
groups, indicating a middle-aged workforce. Educational attainment clustered around mid-
dle school (28.75%) and high school (27.50%), with 11.25% at primary or below and 15.00%
at junior college and above. Occupationally, concrete workers (28.75%), interior decorators
(25.00%), and rebar workers (22.50%) comprised the largest shares. Site experience focused
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on 2–5 years (38.75%) and 5–10 years (28.75%). Most participants worked on residential
building sites (58.75%). Regionally, respondents were drawn primarily from West China
(38.75%), followed by East China (32.50%) and Central China (28.75%).

Table 1. Demographic information of the respondents in the pilot study.

Variable Category Frequency Percentage

Gender
Male 71 88.75%

Female 9 11.25%

Age

18–24 2 2.50%
25–34 21 26.25%
35–44 25 31.25%
45–54 29 36.25%
≥55 3 3.75%

Education

Primary school or
below 9 11.25%

Middle school 23 28.75%
Technical secondary

school 14 17.50%

High school 22 27.50%
Junior college and

above 12 15.00%

Role

Equipment operator 2 2.50%
Concrete worker 23 28.75%

Rebar worker 18 22.50%
Form worker 4 5.00%

Interior decorator 20 25.00%
Other 13 16.25%

Years of experience on construction site

≤2 7 8.75%
2–5 31 38.75%
5–10 23 28.75%

10–15 17 21.25%
≥15 2 2.50%

Type of construction sites
Residential building 47 58.75%

Public building 22 27.50%
Office building 11 13.75%

East China 26 32.50%
Region Central China 23 28.75%

West China 31 38.75%

Table 2 delineates the latent constructs, providing operational definitions aligned with
the study’s HRC context and explicit boundaries to safeguard discriminant validity. Each
construct is defined by what it captures in practice and what it excludes to avoid conceptual
spillover. Operational skill is defined as workers’ procedural proficiency in setting up,
operating, and supervising robots to minimize procedural errors and intervention time;
it is restricted to routine technical handling and standardized procedures, explicitly ex-
cluding higher-order judgment and adaptive learning. Decision-making ability denotes
timely, context-appropriate judgments under uncertainty and emphasizes appraisal and
choice quality, while excluding routine operational fluency and longitudinal adaptation.
Learning ability captures the rate and effectiveness of acquiring, updating, and transferring
HRC-relevant knowledge and skills, focusing on adaptation speed rather than one-off exe-
cution or moment-to-moment judgment. Robot functionality reflects the robot’s intrinsic
performance envelope—accuracy, reliability, and sensing/actuation—distinct from robot
operability, which concerns the ease, intuitiveness, and stability of human control, interface
clarity, mode switching, and feedback. Task complexity indexes cognitive and coordination
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demands arising from task interdependence, uncertainty, time pressure, and required
precision, independent of human capabilities or robotic specifications. Finally, HRC team
performance is confined to joint outcomes—productivity, safety, coordination quality, and
rework—rather than antecedent capacities or technological features. Consistent with these
boundaries, items exhibiting salient cross-loadings that blurred construct demarcations
were removed during the pilot, and the surviving indicators were renumbered accordingly.

Table 2. Preliminary measurement of constructs: operational definitions, item pool, and reliability.

Construct Operational
Definition Boundaries Label Item Cronbach’s

Alpha

Operational
skill (OS)

Operators’
procedural

proficiency in setting
up, operating, and

supervising
construction robots,

minimizing
procedural errors and

intervention time
during HRC.

Focuses on
technical

handling and
standardized
procedures;

excludes broader
decision

judgment (DA)
and learning

pace (LA).

OS1 I understand how to operate and interact with robots
in my work.

0.862

OS2 I have the technical knowledge required to
collaborate with robots.

OS3 I am capable of understanding the robot’s
instructions, signals, or outputs.

OS4 I make few or no mistakes when following standard
procedures in using robots.

OS5 I usually need detailed step-by-step instructions to
carry out robot operations.

OS6 I can complete tasks efficiently within the given time.

Decision-
making

ability (DA)

Capability to make
timely,

context-appropriate
judgments under
uncertainty (e.g.,
override, re-plan,

allocate work
between

human/robot).

Focuses on
judgment under

constraints;
excludes

procedural
operation (OS)
and learning

adaptivity (LA).

DA1 I can make quick decisions within limited time.

DA2 I consider multiple possibilities before making a
decision.

DA3 I can weigh pros and cons and make reasonable
choices when facing complex problems.

DA4 I can make sound decisions even when information
is incomplete.

DA5 I take responsibility for my decisions and adjust
them when necessary.

Learning
ability (LA)

Adaptivity and
learning pace in

acquiring new HRC
procedures and

features, and
updating mental
models through

experience.

Focuses on rate
and depth of

learning; distinct
from robot

ease-of-use (RO)
and one-off skill
snapshot (OS).

LA1 I improve my work practices based on my
experiences collaborating with robots.

LA2 I think using the robot requires little mental effort.

LA3
I can quickly learn how to operate new robotic or

automated systems introduced in construction
projects.

LA4 I quickly learn new robot operations by observing
coworkers’ demonstrations.

LA5
I actively seek to understand the latest technologies

and human–robot collaboration processes in
construction.

LA6 Even without formal training, I can teach myself to
use new robot features correctly.

Robot
functionality

(RF)

Robot’s technical
performance

envelope (autonomy,
reliability,

responsiveness,
accuracy, consistency)

to execute
construction tasks

and adapt sequences.

Focuses on what
the robot can do;

excludes
UI/interaction
usability (RO).

RF1
The robot can operate autonomously for complex
tasks and adjust its task sequence without human

intervention.
RF2 The robot’s actions are predictable and transparent.

RF3 The robot responds quickly to commands or
changes.

RF4 The robot maintains consistent performance across
different tasks and conditions.

RF5 The robot accurately responds to my inputs or
instructions in real-time.

Robot
Operability

(RO)

Human-centered
usability during

collaboration:
intuitive interface,

controllability,
smooth manual/auto
switching, low effort

to learn.

Focuses on how
easily humans
can direct the
robot; distinct

from capability
breadth (RF).

RO1 The construction robot is easy for me to operate,
even without specialized training.

RO2 The robot’s interface is user-friendly and intuitive for
construction tasks.

RO3 I can control and adjust the robot’s behavior
smoothly during collaboration.

RO4 It does not take much effort to learn how to work
with the construction robot effectively.

RO5 I can switch between manual and automatic modes
smoothly and confidently.
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Table 2. Cont.

Construct Operational
Definition Boundaries Label Item Cronbach’s

Alpha

Task
complexity

(TC)

TC captures the
task’s contextual

difficulty and
structure along

cognitive demand,
responsibility clarity,
and critical impact.

The higher TC means
more challenging,

less structured tasks
that place greater
demands on HRC.

Task difficulty;
not an attitude or

capability.

TC1 My tasks are complex and require high levels of
analysis and decision-making.

TC2
My tasks involve high technical complexity (e.g.,

specialized tools, calibration, parameter tuning) that
requires advanced expertise.

TC3 Task responsibilities are clearly allocated between
human and robot.

TC4
My tasks require intensive coordination with other
trades/teams and are highly interdependent across

steps.

TC5 The tasks have a major impact on construction
progress.

TC6
Site conditions (e.g., congestion, noise, dust,

weather) frequently increase task difficulty or
require on-the-fly adjustments.

HRC Team
Performance

(HTP)

Multidimensional
outcomes

attributable to HRC
on the task/project:
productivity, safety,
quality, flexibility,

creativity.

Performance
construct; not an

antecedent.

HTP1 Our team achieves high productivity with the robot.
HTP2 Robot use contributes to a safe work environment.

HTP3 The quality of our outcomes has improved with
the robot.

HTP4 The team is flexible when facing changes
during tasks.

HTP5 The HRC brings creativity climate in the
task completion.

Additionally, the pilot reliability analysis indicated satisfactory internal consistency.
In particular, operational skill achieved a Cronbach’s α of 0.862 (Table 2), which exceeds
conventional thresholds (0.70) [181] and evidences high internal consistency among its
retained indicators. This supports the construct’s measurement stability following the
removal of cross-loading items.

Following the pilot reliability checks, a cross-loading analysis was conducted to assess
item-level discriminant clarity (Table 3). Exploratory factor analysis with Varimax rotation
yielded a largely simple structure. Items were retained when their primary loading was
at least 0.60 and when the gap between the primary loading and the largest secondary
loading was 0.20 or more. Consistent with these rules, several indicators displayed salient
loadings on two or more factors and could not be cleanly assigned: OS5 within operational
skill, DA4 within decision-making ability, LA4 and LA6 within learning ability, RO5 within
robot operability, and TC2, TC4 and TC6 within task complexity. These cross-loading items
were removed to safeguard convergent and discriminant validity. After their deletion, the
remaining indicators showed clear primary loadings with materially reduced secondary
loadings, producing an improved simple structure. Labels for the retained indicators were
then renumbered for continuity (OS1–OS5; DA1–DA4; LA1–LA4; RO1–RO4; TC1–TC4),
while constructs without deletions kept their original numbering.

5.2. Questionnaire Sampling

This paper employed a questionnaire survey to collect data for testing the theoretical
model. The survey approach was chosen because it allows gathering perceptual and
attitudinal data from a large sample of industry practitioners, which is suitable for the
exploratory nature of this research and the use of PLS-SEM.

To ensure representativeness, a multi-stage sampling approach was adopted. At the
first stage, the sampling was organized at the project level, with each active construction site
treated as a separate unit. These projects were located in several provinces across China and
involved contractors and subcontractors of different sizes, ensuring that the sample was
not biased toward a single locality or firm. At the second stage, workers within each site
were stratified by trade (e.g., equipment operators, rebar workers, concrete workers, form
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workers, interior decorators, and general labor). The number of respondents from each
trade was kept in proportion to their actual presence on the site, so that the occupational
structure of the sample reflected the real composition of the workforce. This stratification
was specifically designed to reduce potential sampling bias by avoiding overrepresentation
of any single trade. Eligibility criteria required respondents to be at least 18 years old,
currently employed on-site, and to have had direct exposure to robots or robotic-assisted
work. The final survey was conducted over a period of five months.

Table 3. Rotating component matrix.

Construct Label
Component

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Operational skill (OS)

OS1 0.803
OS2 0.856
OS3 0.749
OS4 0.762
OS5 0.852
OS6 0.835

Decision-making ability (DA)

DA1 0.803
DA2 0.725
DA3 0.722
DA4 0.866
DA5 0.876

Learning ability (LA)

LA1 0.766
LA2 0.839
LA3 0.841
LA4 0.849
LA5 0.863
LA6 0.819

Robot functionality (RF)

RF1 0.900
RF2 0.773
RF3 0.861
RF4 0.870
RF5 0.795

Robot Operability (RO)

RO1 0.857
RO2 0.791
RO3 0.786
RO4 0.876
RO5 0.753

Task complexity (TC)

TC1 0.843
TC2 0.869
TC3 0.770
TC4 0.879
TC5 0.777
TC6 0.739

HRC Team Performance (HTP)

TP1 0.785
TP2 0.772
TP3 0.793
TP4 0.812
TP5 0.850

Several measures were taken to minimize sampling bias. First, respondents were
recruited from multiple sites operated by different contractors and located in different
regions, reducing the likelihood of site-specific bias. Second, the stratified sampling ensured
proportional representation of each trade relative to their actual distribution on site. Third,
the combination of online and on-site distribution channels increased accessibility and
reduced non-response bias. Finally, strict data cleaning procedures were applied: responses
with missing values, straight-lining patterns, or duplication were carefully screened out.

To verify the clarity and contextual suitability of the instrument, a pilot test involving
80 frontline workers from three projects was conducted [182], because it was essential to
ensure that construction workers could fully understand the questionnaire items and any
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issues arising during completion could provide useful input for refinement. Feedback from
site stewards and workers was then incorporated to adjust phrasing, remove ambiguity,
and align examples with site-specific terminology. To further reduce potential bias, the
questionnaire was distributed through both online and on-site channels, enabling wider
participation and minimizing non-response bias [183]. After data collection, rigorous
quality checks were carried out: responses with missing data, straight-lining patterns, or
duplication were carefully removed. The final survey was subsequently conducted over a
five-month period across multiple active construction sites. After screening for missing
responses, straight-lining, and duplication, a total of 548 valid questionnaires were retained
for analysis, forming the basis of the dataset used in this study. The demographic profile
of the respondents is presented in Table 4. The 548 valid respondents were exclusively
frontline construction personnel. They represented a wide range of site roles, including
equipment operators, concrete workers, rebar workers, form workers, interior decorators,
and other supporting trades, with work experience ranging from less than two years to more
than fifteen years. The demographic breakdown in Table 4 shows that the sample covers
different age groups and education levels, thereby capturing the heterogeneity of China’s
construction workforce [184]. This profile indicates that the survey reflects the perspectives
of the actual site workforce, rather than a narrow occupational or demographic segment.

Table 4. Demographic information of the respondents.

Variable Category Frequency Percentage

Gender
Male 472 86.13%

Female 76 13.87%

Age

18–24 24 4.38%
25–34 119 21.72%
35–44 145 26.46%
45–54 217 39.60%
≥55 43 7.85%

Education

Primary school or
below 42 7.66%

Middle school 209 38.14%
Technical secondary

school 73 13.32%

High school 126 22.99%
Junior college and

above 98 17.88%

Role

Equipment operator 45 8.21%
Concrete worker 108 19.71%

Rebar worker 139 25.36%
Form worker 73 13.32%

Interior decorator 87 15.88%
Other 96 17.52%

Years of experience on construction site

≤2 47 8.58%
2–5 153 27.92%
5–10 207 37.77%

10–15 82 14.96%
≥15 59 10.77%

Type of construction sites
Residential building 239 43.61%

Public building 173 31.56%
Office building 136 24.82%

East China 178 32.48%
Region Central China 203 37.04%

West China 167 30.47%
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5.3. Sample Demographics

Table 4 presents the demographic characteristics of the respondents. The sample is over-
whelmingly male (86.13%), which is consistent with the gendered nature of the construction
industry where men represent the dominant labor force. The sample’s demographics mirror
the construction industry’s workforce, which is heavily male dominated in China, women
constitute a low proportion of construction workers, typically at a level below 14% [185]. In
terms of age, the majority of respondents are concentrated in the 35–44 age group (26.46%),
followed by those aged 25–34 (21.72%), together comprising nearly half of the sample. This
indicates that young and middle-aged adults remain the backbone of the construction work-
force. Nevertheless, a considerable proportion of workers fall within the 45–54 age group
(39.60%), suggesting a heavy trend of aging within the labor force.

Regarding educational attainment, the largest group of respondents hold a middle
school education (38.14%), followed by high school (22.99%) and technical secondary
school qualifications (13.32%), reflecting the generally modest educational background of
construction workers and pointing to opportunities for improvement in workforce training
and development.

Occupationally, rebar workers constitute the largest category (25.36%), followed by
concrete workers (19.71%), form workers (13.32%), and interior decorators (15.88%). Equip-
ment operators account for 8.21%, while other trades make up 17.52%, indicating that the
survey encompasses a wide range of construction roles and thereby enhances the represen-
tativeness and generalizability of the findings. Moreover, the types of robots encountered
in practice are closely aligned with the occupational roles of the respondents. For exam-
ple, concrete and flooring workers typically engage with screeding, grinding, and coating
robots; interior decorators and masonry workers often collaborate with spraying, plastering,
and tile-laying robots; form and assembly workers mainly operate wall-panel installation
robots; while surveyors and quality inspectors are more likely to interact with measure-
ment robots, quality-inspection devices, and drones for safety and progress monitoring.
This correspondence between roles and robot types reflects actual deployment patterns on
Chinese construction sites and provides further contextual richness to the dataset.

In terms of years of experience, workers with 5–10 years of experience (37.77%) and those
with 2–5 years (27.92%) together account for more than 60% of the sample, highlighting the
relatively high mobility and turnover in the construction labor market. At the same time, the
presence of a substantial minority with more than 15 years of experience (10.77%) reflects a core
group of long-term skilled workers who contribute to the stability of the labor force.

For the type of construction sites, the largest share of respondents reported working
on residential building projects (43.61%), followed by public building projects (31.56%) and
office buildings (24.82%). This distribution mirrors the overall project landscape in China,
where residential developments dominate but are complemented by substantial investment
in public infrastructure and office construction. Regionally, the respondents were relatively
evenly distributed, with 32.48% from East China, 37.04% from Central China, and 30.47%
from West China, ensuring coverage of different parts of the country and further enhancing
the representativeness of the dataset.

5.4. Survey Instrument

The study used a structured questionnaire with multi-item scales for each latent
construct in the research model. All items were measured on five-point Likert scales
(1 = “strongly disagree,” 5 = “strongly agree”). Respondents indicated how much each
statement described their HRC team or project. The scales drew on prior literature where
possible and were supplemented with items tailored to HRC in construction. Table 1
summarizes the constructs and their items.
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The first construct set concerns human workers. Operational skill was measured by
five items that assess team members’ ability to operate and interact with construction robots.
These items capture technical knowledge and procedural proficiency; higher scores indicate
greater skill in handling the robotic system. Decision-making ability was measured by four
items that assess the capacity to make quick and sound choices under time pressure and
complexity, reflecting evidence from human-factors research on managing HRI. Learning
ability was measured by four items that capture how well workers acquire new skills, adapt
to robot use, and seek HRC-related knowledge through experience. It is worth noting that
LA2 (“I think using the robot requires little mental effort”) may appear conceptually close
to perceived ease of use [186]. However, in this study it was included under learning ability
because it reflects the cognitive resources required for workers to acquire and internalize
new robotic knowledge and skills. Whereas perceived ease of use captures the usability
of the system itself, LA2 addresses the extent to which workers can adapt with minimal
mental strain during the learning process. This distinction allows LA2 to complement LA1,
LA3, and LA4 by capturing the cognitive dimension of learning ability.

The second set of constructs is about robots. The construct of robot functionality mea-
sured the robot’s capabilities with five items. They address aspects such as the robot’s
autonomy, reliability, responsiveness, and accuracy in performing construction tasks. The
robot operability was measured by four items to reflect the ease of use and interface quality of
the robot. These items were derived from technology usability and tailored to collaborative
robots. To further clarify the distinction between robot functionality and operability, their
operationalization in this study was grounded in specific measurement items, supplemented
by examples from construction practice. Robot functionality (RF) was assessed through five
indicators (RF1–RF5) that capture the technical and performance-related capacities of robotic
systems. These include the ability of robots to perform complex tasks autonomously and
adapt task sequences without human intervention (RF1), the predictability and transparency
of their actions (RF2), responsiveness to operator commands or environmental changes (RF3),
consistent performance across diverse tasks and conditions (RF4), and the accuracy with
which they respond to real-time inputs (RF5). For example, a concrete screeding robot that
maintains uniform thickness across large floor areas while automatically adjusting to uneven
surfaces would be considered high in functionality, as would a wall-panel installation robot
that achieves precise alignment with minimal deviation under varying site conditions. Robot
operability (RO), by contrast, emphasizes the human-centered aspects of robot use and was
measured through four items (RO1–RO4). These items address whether robots can be op-
erated without extensive specialized training (RO1), the user-friendliness and intuitiveness
of their interfaces in construction tasks (RO2), the degree to which operators can smoothly
control and adjust robot behavior during collaboration (RO3), and the overall effort required
to learn and master robot operation (RO4). For instance, a spraying robot with a simple
touch-screen interface that allows operators to easily adjust spray intensity and pattern would
score highly on operability, even if its functional scope is limited. Conversely, a highly capable
inspection robot may be rated lower on operability if its interface requires complex steps and
extensive training before workers can effectively use it.

The third is task complexity. The task complexity used three items capturing the
difficulty and structure of the tasks that HRT undertakes. Given the multi-faceted nature of
construction tasks, this study measured complexity in terms of cognitive demand, clarity
of task responsibilities, and the critical impact of the task. Higher task complexity indicates
tasks are challenging and unstructured, which will intensify the need for strong HRC.

The last is HRC team performance. The construct of HRC team performance as the
dependent variable, was operationalized through five items representing key performance
dimensions in HRC identified from the literature [59]. The items covered productivity,
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safety, quality, flexibility, and team creativity. Respondents were asked to overall rate their
agreement that the introduction of HRC had improved these aspects of performance on
their task or project. All survey scale items are given in Table 5.

Table 5. Measurement scales and their evaluation.

Construct Label Item Loading Parameter

Operational
skill (OS)

OS1 I understand how to operate and interact with robots in
my work. 0.868 ***

Cronbach’s α = 0.901
CR = 0.927

AVE = 0.717

OS2 I have the technical knowledge required to collaborate
with robots. 0.850 ***

OS3 I am capable of understanding the robot’s instructions,
signals, or outputs. 0.821 ***

OS4 I make few or no mistakes when following standard
procedures in using robots. 0.870 ***

OS5 I can complete tasks efficiently within the given time. 0.823 ***

Decision-
making

ability (DA)

DA1 I can make quick decisions within limited time. 0.895 ***

Cronbach’s α = 0.888
CR = 0.922

AVE = 0.748

DA2 I consider multiple possibilities before making a decision. 0.862 ***

DA3 I can weigh pros and cons and make reasonable choices
when facing complex problems. 0.842 ***

DA4 I take responsibility for my decisions and adjust them
when necessary. 0.858 ***

Learning
ability (LA)

LA1 I improve my work practices based on my experiences
collaborating with robots. 0.873 ***

Cronbach’s α = 0.870
CR = 0.911

AVE = 0.720

LA2 I think using the robot requires little mental effort. 0.874 ***

LA3 I can quickly learn how to operate new robotic or
automated systems introduced in construction projects. 0.815 ***

LA4 I actively seek to understand the latest technologies and
human–robot collaboration processes in construction. 0.829 ***

Robot func-
tionality

(RF)

RF1 The robot can operate autonomously for complex tasks
and adjust its task sequence without human intervention. 0.874 ***

Cronbach’s α = 0.905
CR = 0.929

AVE = 0.725

RF2 The robot’s actions are predictable and transparent. 0.872 ***
RF3 The robot responds quickly to commands or changes. 0.841 ***

RF4 The robot maintains consistent performance across
different tasks and conditions. 0.844 ***

RF5 The robot accurately responds to my inputs or
instructions in real-time. 0.823 ***

Robot
Operability

(RO)

RO1 The construction robot is easy for me to operate, even
without specialized training. 0.886 ***

Cronbach’s α = 0.885
CR = 0.920

AVE = 0.743

RO2 The robot’s interface is user-friendly and intuitive for
construction tasks. 0.870 ***

RO3 I can control and adjust the robot’s behavior smoothly
during collaboration. 0.850 ***

RO4 It does not take much effort to learn how to work with the
construction robot effectively. 0.840 ***

Task
complexity

(TC)

TC1 My tasks are complex and require high levels of analysis
and decision-making. 0.874 ***

Cronbach’s α = 0.816
CR = 0.889

AVE = 0.728
TC2 Task responsibilities are clearly allocated between human

and robot. 0.872 ***

TC3 The tasks have a major impact on construction progress. 0.841 ***

HRC Team
Perfor-
mance
(HTP)

HTP1 Our team achieves high productivity with the robot. 0.844 ***
Cronbach’s α = 0.856

CR = 0.897
AVE = 0.634

HTP2 Robot use contributes to a safe work environment. 0.823 ***
HTP3 The quality of our outcomes has improved with the robot. 0.886 ***
HTP4 The team is flexible when facing changes during tasks. 0.870 ***
HTP5 The HRC brings creativity climate in the task completion. 0.850 ***

Note: *** p < 0.01; AVE = average variance extracted; and CR = composite reliability.

5.5. Data Analysis Techniques

The data analysis was conducted using PLS-SEM, which is particularly suitable for
exploratory analysis in construction management because it can simultaneously estimate
complex causal relationships among latent constructs while remaining robust with rela-
tively small sample sizes and non-normal data distributions. The analysis followed the
two-step approach of first assessing the measurement model and then evaluating the
structural model.
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For the measurement model, reliability was examined through factor loadings, Cron-
bach’s α, and composite reliability (CR), while validity was assessed by the average variance
extracted (AVE) and discriminant validity criteria. Indicator loadings above 0.70, Cron-
bach’s α greater than 0.70, CR values greater than 0.70, and AVE values above 0.50 were
considered satisfactory thresholds [101,181]. Discriminant validity was tested using the
Heterotrait–Monotrait ratio of correlations (HTMT).

For the structural model, bootstrapping with 5000 resamples was applied to test the
significance of the hypothesized paths. The model’s explanatory power was assessed using
R2 and adjusted R2, while multicollinearity was checked through variance inflation factors
(VIFs). Interaction and moderation effects were tested by creating product indicators of
human abilities and robot capacities, with task complexity specified as a moderator. The
overall procedure was implemented using SmartPLS 4, which enables robust estimation
and graphical visualization of path relationships.

This methodological approach ensured a rigorous evaluation of both the reliability
and validity of the constructs, as well as a robust test of the hypothesized relationships,
thereby providing a solid basis for interpreting the determinants of HRC team performance.
Figure 3 presents the research model used for the analysis. In this model, operational skill,
decision-making ability, and learning ability capture the human dimension of workers’
capabilities, whereas robot functionality and robot operability represent the technical
dimension of robotic systems. Task complexity is modeled as a factor that moderates the
interaction between human and robot factors. Together, these constructs are hypothesized
to influence HRC team performance, which is measured through five reflective indicators.
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Figure 3. The PLS-SEM Model of HRC Team Performance.



Buildings 2025, 15, 3685 25 of 51

6. Results
6.1. Reliability and Validity of Measures

Prior to testing the structural model, this paper assessed the reliability and validity of
all measurement scales. Table 5 presents the indicator loadings and internal consistency
metrics for each construct. All item loadings are well above the recommended 0.7 threshold
and are highly significant (p < 0.01), demonstrating strong indicator reliability [187]. The
CR values for all constructs range from 0.889 to 0.929 which are greater than 0.8, and
the Cronbach’s alpha is from 0.816 to 0.905, indicating the greater internal consistency
for the constructs [181]. The AVE for each construct is well above 0.50 (0.634–0.743),
confirming convergent validity [188]. Finally, to evaluate discriminant validity, the model
computed the HTMT ratios between constructs [189]. All HTMT values fell below 0.85
(Table 6), confirming that each construct is empirically distinct from the others [189,190].
This provides strong evidence of discriminant validity.

Table 6. Heterotrait–Monotrait criterion of discriminant validity evaluation.

Variable OS DA LA RF RO TS HTP

OS 1
DA 0.337 1
LA 0.344 0.348 1
RF 0.311 0.237 0.28 1
RO 0.234 0.28 0.219 0.396 1
TS 0.209 0.151 0.149 0.195 0.177 1

HTP 0.407 0.387 0.382 0.465 0.45 0.203 1

To address the potential for Common Method Bias (CMB) arising from the single-
source data collection method, Harman’s single-factor test was conducted [191,192]. All
measurement items in the survey were subjected to an unrotated principal component
analysis. The results showed that the first single factor accounted for 27.552% of the total
variance (Table 7). As this value is well below the common threshold of 50%, it suggests
that CMB is not a significant concern and is unlikely to have confounded the results of this
study [191].

To check for potential multicollinearity, this study inspected both outer-model and
inner-model VIFs [193]. Outer VIFs ranged from 1.000 to 2.794 across 47 observed indicators,
and inner VIFs ranged from 1.307 to 1.824 across 23 structural relations. These values are
well below conservative heuristics (VIF < 5.0, VIF < 3 as a stricter rule) [193], indicating
that redundancy among predictors is limited and that variance inflation is unlikely to bias
the estimates. Low inner VIFs suggest that the higher-order products do not introduce
problematic dependencies with their constituent main effects.

For explanatory power, the endogenous construct HRC Team Performance attained
R2 = 0.598 (adjusted 0.582), which is commonly interpreted as moderate to substantial
explanatory power for team-level performance in construction HRC settings. As Chin (1998)
suggested, R2 values of 0.67, 0.33, and 0.19 may be considered as substantial, moderate,
and weak benchmarks, respectively [194]. The small difference between R2 and Adjusted
R2 (∆ = 0.016) shows that the model remains stable, and the included predictors provide
substantial explanatory power rather than reflecting overfitting. The R2 implies that the
proposed model captures a sizeable share of real-world performance variability.

Together, these results indicate that the measurement model is both reliable and valid.
The constructs capture unique aspects of HRC team dynamics with minimal overlap,
justifying their use in subsequent structural analysis.
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Table 7. Total Variance Explained for Harman’s Single-Factor Test.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 8.265 27.552 27.552 8.265 27.552 27.552
2 2.967 9.891 37.443 2.967 9.891 37.443
3 2.428 8.095 45.537 2.428 8.095 45.537
4 2.171 7.235 52.773 2.171 7.235 52.773
5 2.025 6.752 59.524 2.025 6.752 59.524
6 1.948 6.493 66.018 1.948 6.493 66.018
7 1.740 5.798 71.816 1.740 5.798 71.816
8 0.570 1.899 73.715
9 0.529 1.762 75.477

10 0.518 1.728 77.205
11 0.481 1.603 78.808
12 0.474 1.579 80.387
13 0.446 1.485 81.872
14 0.414 1.381 83.253
15 0.403 1.344 84.598
16 0.398 1.325 85.923
17 0.386 1.288 87.211
18 0.364 1.212 88.423
19 0.350 1.168 89.591
20 0.346 1.152 90.743
21 0.331 1.104 91.847
22 0.322 1.073 92.921
23 0.301 1.002 93.922
24 0.297 0.991 94.913
25 0.282 0.942 95.855
26 0.269 0.897 96.752
27 0.264 0.879 97.631
28 0.247 0.824 98.455
29 0.235 0.785 99.240
30 0.228 0.760 100.000

6.2. Structural Model and Hypothesis Testing

Having established measurement validity, the next step is to examine the structural
model using PLS-SEM bootstrapping (5000 resamples). The model explains a substantial
portion of variance in HRC team performance. The R square is 0.598, meaning about
59.8% of the variability in HRC team performance is accounted for by the five factors and
their interactions. This indicates strong explanatory power for a behavioral model in a
complex field setting. The standardized path coefficients and hypothesis testing results are
summarized in Table 8.

The f2 statistics were further examined to assess the relative influence of each construct
on HRC team performance. According to Cohen’s benchmarks (0.02 = small, 0.15 = medium,
0.35 = large), most of the predictors in this study produced small-to-medium effect sizes,
with several reaching the medium range [195]. Among the human ability constructs,
operational skill (f2 = 0.161), decision-making ability (f2 = 0.165), and learning ability
(f2 = 0.175) all achieved medium-level effects. Regarding robot-related factors, both robot
functionality (f2 = 0.155) and robot operability (f2 = 0.181) also demonstrated medium
effects, with robot operability emerging as the strongest contributor. For the interaction
terms, the combinations of operational skill with robot functionality (f2 = 0.111), operational
skill with robot operability (f2 = 0.126), and decision-making ability with robot functionality
(f2 = 0.107) yielded small-to-medium effects, while the interaction of decision-making
ability with robot operability reached a medium effect (f2 = 0.186). Similarly, learning
ability interacting with robot functionality (f2 = 0.129) and robot operability (f2 = 0.148)
were situated near the medium threshold. Regarding task complexity as a moderator, three
interaction terms produced small-to-medium effect sizes: (OS × RF) × TC (f2 = 0.110),
(DA × RF) × TC (f2 = 0.114), and (LA × RF) × TC (f2 = 0.114). However, the interactions
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(OS × RO) × TC (f2 = 0.001), (DA × RO) × TC (f2 = 0.001), and (LA × RO) × TC (f2 = 0.008)
were negligible, suggesting no meaningful effect.

Table 8. Model hypothesis verification results and path coefficients.

Hypothesis Path (Effect) β (Beta) 95% CI
[LLCI, ULCI] S.E. f2 T-Value p-Value Support or Not

H1 OS → HTP 0.147 [0.096, 0.208] 0.041 0.161 4.824 0.000 Yes
H2 DA → HTP 0.152 [0.101, 0.218] 0.029 0.165 5.285 0.000 Yes
H3 LA → HTP 0.182 [0.121, 0.240] 0.031 0.175 5.895 0.000 Yes
H4 RF → HTP 0.158 [0.095, 0.225] 0.033 0.155 4.785 0.000 Yes
H5 RO → HTP 0.199 [0.138, 0.262] 0.032 0.181 6.195 0.000 Yes
H6 OS × RF → HTP 0.081 [0.022, 0.142] 0.034 0.111 2.412 0.016 Yes
H7 OS × RO → HTP 0.122 [0.064, 0.183] 0.032 0.126 3.869 0.000 Yes
H8 DA × RF → HTP 0.06 [0.011, 0.122] 0.028 0.107 2.139 0.032 Yes
H9 DA × RO → HTP 0.203 [0.143, 0.265] 0.031 0.186 6.58 0.000 Yes
H10 LA × RF → HTP 0.134 [0.075, 0.194] 0.033 0.129 4.08 0.000 Yes
H11 LA × RO → HTP 0.163 [0.101, 0.229] 0.033 0.148 4.966 0.000 Yes
H12 (OS × RF) × TC → HTP 0.089 [0.028, 0.153] 0.035 0.110 2.563 0.010 Yes
H13 (OS × RO) × TC → HTP 0.059 [−0.008, 0.128] 0.034 0.001 1.751 0.080 No
H14 (DA × RF) × TC → HTP 0.071 [0.012, 0.138] 0.027 0.114 2.36 0.018 Yes
H15 (DA × RO) × TC → HTP −0.010 [−0.070, 0.053] 0.033 0.001 0.304 0.761 No
H16 (LA × RF) × TC → HTP 0.094 [0.031, 0.158] 0.036 0.114 2.628 0.009 Yes
H17 (LA × RO) × TC → HTP −0.069 [−0.145, 0.010] 0.037 0.008 1.849 0.064 No

Note: Path coefficients (β), 95% confidence intervals (CI), p-values, and effect sizes (f2) are reported for all
hypothesized relationships. The 95% CI was derived from 5000 bootstrap resamples and is presented as the lower
limit (LLCI) and upper limit (ULCI). According to Cohen’s (1988) guidelines, f2 values of 0.02, 0.15, and 0.35
represent small, medium, and large effect sizes, respectively [195].

The 95% confidence intervals (CIs) for all hypothesized relationships are obtained
through a non-parametric bootstrapping procedure with 5000 resamples and are reported
in Table 8. Each interval is reported with its lower limit (LL) and upper limit (UL), offering
a range within which the true parameter value is expected to fall with 95% confidence.

6.2.1. Main Effects

All five critical factors have significant positive effects on HRC team performance,
supporting H1–H5. RO exhibits the strongest direct influence (β = 0.199, T = 6.195, p < 0.001),
underscoring that an easy-to-operate and user-friendly robot substantially elevates team
performance. LA is the next strongest predictor (β = 0.182, T = 5.895, p < 0.001); teams
with members who quickly learn and adapt to new robotic systems see markedly better
performance. RF (β = 0.158, p < 0.001), DA (β = 0.152, p < 0.001), and OS (β = 0.147, p < 0.001)
also all positively influence performance at the 0.1% significance level. These results confirm
that both human-related and robot-related capabilities contribute significantly and roughly
comparably to HRC team success.

6.2.2. Two-Way Interaction Effects

All six hypothesized two-way interactions between human and robot factors are
positive and statistically significant, providing strong support for H6–H11. This confirms
the presence of collaboration effects in HRC teams. The performance impact of any human
factor is magnified when paired with a high level of a complementary robot factor, and vice
versa. Table 8 shows that the interaction of DA and RO (H9) is particularly large (β = 0.203,
T = 6.580, p < 0.001), which is the highest of all interaction terms. This indicates that teams
with strong decision-making skills performed disproportionately better when robots were
highly operable, suggesting that intuitive design and ease of use magnify the value of
human cognitive capabilities. Similarly, the interaction between LA and RO (H11) was
also large and significant (β = 0.163, T = 4.966, p < 0.001), showing that adaptive learners
capitalized more effectively on user-friendly robotic systems. OS interacted positively with
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RO as well (H7: β = 0.122, T = 3.869, p < 0.001), confirming that skilled operators could
better leverage robots when interfaces were straightforward and transparent.

The interactions with RF were also significant, though slightly weaker in magnitude.
The interaction of OS and RF (H6), DA and RF (H8), and LA and RF (H10) yields a
positive and significant coefficient, respectively (H6: β = 0.081, T = 2.412, p = 0.016; H8:
β = 0.060, T = 2.139, p = 0.032; H10: β = 0.134, T = 4.080, p < 0.001). These findings
indicate that advanced robot functionalities amplify the benefits of human abilities, but
the moderating effect of robot operability appears stronger than that of robot functionality.
Taken together, the two-way interaction results demonstrate that the effectiveness of human
factors is conditional upon the quality of robot design. High levels of both human and
robot capabilities jointly produce superior performance outcomes, validating the principle
of socio-technical synergy in HRC.

6.2.3. Three-Way Interaction Effects

Task complexity (TC) was hypothesized to further moderate the two-way interac-
tions between human abilities and robot capacities (H12–H17). Results show that three
hypotheses were supported: H12, H14, and H16, all involving robot functionality.

For the interaction of OS and RF, the three-way interaction with TC (H12) was sig-
nificant (β = 0.089, T = 2.563, p = 0.010). This indicates that under complex tasks, the
joint influence of operator skill and robot functionality on performance became markedly
stronger. In simple tasks, either high skill or strong functionality alone might be sufficient,
but under high complexity, superior outcomes depended on both factors being simultane-
ously high. Similarly, DA and RF interacted positively with TC (H14: β = 0.071, T = 2.360,
p = 0.018), suggesting that in demanding environments, advanced robot functions amplified
the benefits of human cognitive skills, enabling teams to make more effective decisions
under uncertainty. LA and RF also showed significant moderation by TC (H16: β = 0.094,
T = 2.628, p = 0.009), confirming that adaptive learners working with advanced robots
achieved the greatest performance improvements in highly complex scenarios.

By contrast, the three-way interactions involving RO—H13 (OS × RO × TC), H15
(DA × RO × TC), and H17 (LA × RO × TC)—were not statistically significant. Although
RO consistently enhanced performance, its effects did not vary meaningfully across levels
of task complexity. This suggests that user-friendly design benefits HRC teams across both
simple and complex contexts, without being conditional upon the difficulty of the task.

Although the three-way interactions involving RO (H13, H15, and H17) were not
statistically significant, this result can be explained by both theoretical and practical consid-
erations. On the one hand, from the perspective of HRI theory, operability functions as a
universal enabler that consistently reduces cognitive load and facilitates ease of use [196].
Its positive effect is therefore relatively independent of task difficulty, offering performance
advantages under both simple and complex tasks [197]. Unlike robot functionality, which
provides additional technical support that becomes particularly valuable in highly de-
manding contexts, operability delivers a stable benefit that does not rely on the level of
complexity to manifest [198]. On the other hand, in practical construction scenarios, robot
interfaces are typically designed to comply with standardized usability principles, ensuring
that a baseline of user-friendliness is present across tasks of varying difficulty [159]. As a
result, workers perceive the advantages of operability as constant, rather than conditional
upon task complexity. Under high-complexity tasks, attention shifts to whether the robot
can provide advanced functions—such as precise sensing, autonomous adjustment, or
decision support—rather than whether it is easy to operate [117]. Consequently, robot
operability maintains its positive role across contexts but does not exhibit an amplified
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interaction effect under complex tasks, which explains why its three-way moderation was
not supported by the data.

The three-way interaction results therefore demonstrate that task complexity selec-
tively intensifies the performance benefits of HRC, particularly when advanced robot
functionalities are combined with strong human abilities. These findings highlight that the
challenge of the task determines the extent to which combined human and technological
strengths become indispensable.

6.2.4. Summary of Hypothesis Testing

All direct effects (H1–H5) and all two-way interaction effects (H6–H11)—11 hypotheses
in total—are supported at p < 0.05, confirming that both human and robot factors exert
significant influences on HRC team performance. Among the three-way interactions
(H12–H17), three hypotheses (H12, H14, H16) are significant, while three (H13, H15, H17)
are not supported. In total, 14 hypotheses are supported and 3 are rejected.

The structural model result demonstrates that both human and robot factors exert
significant and complementary influences on HRC team performance. All main effects were
strongly supported, confirming that operational skill, decision-making ability, learning
ability, robot functionality, and robot operability are indispensable performance drivers.
Moreover, the significant two-way interactions highlight the principle of socio-technical
synergy, whereby human abilities and robot capacities reinforce each other. The moderating
role of task complexity further reveals that advanced robot functionalities amplify human
strengths particularly under demanding conditions, whereas operability provides a stable
advantage across all contexts which is not statistically significant.

6.3. Interpretation of Interaction Effects

Based on the TPC and TTF, the reported interactions are not only statistical impli-
cations but expressions of the socio-technical coupling that governs HRC performance.
Human abilities (OS, DA, and LA) determine utilization capacity (can people harness the
technology), whereas robot capacities bifurcate into what the system can do (RF) and how
easily humans can do it (RO). Performance emerges when utilization capacity meets a suffi-
cient technical ceiling and when the task affords a good fit. The significance of all two-way
interactions and their selective strengthening by task complexity (TC) directly reflect the
logic of TPC and TTF. In both frameworks, higher capability on one side increases the
marginal value of capability on the other. Across models of main effects, operational skill
(OS), decision-making ability (DA), and learning ability (LA) display significant positive
associations with team performance, as do robot functionality (RF) and robot operabil-
ity (RO). Conceptually, human abilities determine utilization capacity—skilled execution,
sound judgment under uncertainty, and rapid learning. RF sets the technical ceiling for
what the system can sense, plan, and execute. RO governs translation efficiency at the
human–robot interface. The positive main effects therefore indicate that both capacity and
translation are binding elements of performance in HRC.

Given that task complexity (TC) operates as a contextual moderator throughout, the
interpretations below explicitly articulate both the two-way interaction mechanisms and
their TC-dependent amplification patterns.

(1) Interactions among OS, RF and TC
The positive interaction between OS and RF indicates technological complementar-

ity rather than simple additivity. OS reduces intervention time and stabilizes exception
handling. RF expands the feasible action set by providing reliable perception, adequate
planning, and autonomy. When both dimensions are strong, skilled adjustments and timely
overrides yield real performance gains because the robot can accurately execute the refine-
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ments detected by the operator. When functionality is limited or unstable, a substantial
portion of operational skill is diverted to recovery activities for robots, and the marginal
return to additional skill diminishes.

TC primarily amplifies the interaction through RF. As interdependence, uncertainty,
and tolerance sensitivity increase, a larger share of the performance frontier is gated by
what the robot can reliably perceive and execute. High OS then unlocks this frontier by
selecting and timing functional features, for example, adaptive elevation control in floor
screeding, and micro-pose correction during façade alignment.

From a managerial standpoint, high-skill workers should be matched with platforms
that offer dependable autonomy and precise actuation to realize additive benefits. Training
should expose skilled operators to advanced functional modules, such as position control in
installation. Monitoring should include indicators such as override accuracy and stability
under disturbance, which together reveal whether operational skill is being translated into
realized output rather than dissipated by functional limitations.

(2) Interactions among DA, RF and TC
DA increases the value of RF by converting richer state information and autonomy

affordances into superior action sequences. When sensing and autonomy are reliable,
DA-strong operators can reprioritize tasks, re-sequence workflows, and time human–robot
handovers to reduce blocking and rework. In such settings, DA does not merely select
among fixed options; it leverages a broader and more informative state space to coordinate
exception handling and align RF with upstream and downstream interdependencies.

The marginal return to DA is limited when RF is weak or unstable. Perception
latency, false positives, and restricted planning depth constrain feasible branches so that
even correct judgments have limited leverage. TC operates as a moderator. In high-TC
environments with variable tolerances, frequent exceptions, and interdependent trades,
stronger RF creates an expanded and more informative state space in which DA can
operate, making the complementary salient. In low-TC routines with narrow variability,
the incremental value of DA beyond standardized procedures diminishes once RF satisfies
basic requirements.

(3) Interactions among LA, RF and TC
LA and RF interact through the progressive development of dynamic capability. As

HRC teams internalize calibration routines, advanced modes, and failure signatures, they
gain access to deeper portions of the capability envelope. For example, during floor
screeding and surface finishing, the controller adapts force, speed, and tool height to local
variations in concrete levelness and stiffness. High RF provides learnable affordances that
justify cognitive investment, and the richer and more stable these affordances, the steeper
the learning curve.

When RF is low, LA is underutilized. TC strengthens this interaction because complex
tasks present more distinct situations from which to generalize, allowing workers with
strong LA to extract reusable patterns from RF and to shorten the progression from basic
proficiency to advanced exploitation. In highly standardized low-TC tasks, the returns to
LA decline once essential routines have been mastered, regardless of RF depth.

For implementation, training should be sequenced to mirror the capability gradient.
Stable core functions should be mastered first, followed by staged exposure to advanced RF
modules with explicit maps from practice to feature and from feature to measurable benefit.
Leading indicators include time to proficiency and the share of advanced-mode usage.
Workers with strong LA should be redeployed to stations where RF depth is underexploited.

(4) Interactions among OS, RO and TC
OS converts RO into throughput and conformance by reducing losses in the translation

from human intent to robot action. High RO, characterized by predictable state transitions
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and informative feedback, can compress cognitive overhead and lower error incidence.
OS-strong operators consequently execute more cycles with fewer deviations.

The interaction exhibits recognizable boundaries. When RO is already very high,
the additional benefit of incremental OS on routine tasks is smaller because the interface
standardizes execution and limits variance. When RO is poor, OS must be diverted to state
interpretation and recovery, which dilutes productive expression. The amplifying role of
TC is generally weaker than in the interactions between human abilities and RF. Once RO
crosses a basic usability threshold, the gains from reducing friction tend to be robust across
TC levels.

In practice, the interface and workflow should make it easy for operators to express
OS when time is tight. For example, RO ought to signal the current mode in a way that
is immediately legible at a glance and at a distance, and the transition into a new mode
should show a short preview of the expected tool motion so that the operator can cancel
before actuation if it is not what was intended. Control mappings should remain stable
across software updates so that the same hand motion or button sequence always produces
the same robot response during screeding and façade alignment; if a change is unavoidable,
the system should provide an on-screen reminder and a brief guided rehearsal before the
shift starts.

(5) Interactions among DA, RO and TC
DA translates into action only if RO enables decisions to be enacted quickly and cor-

rectly. High RO provides clear feedback, responsive controls, and intuitive interruptibility,
allowing operators to implement contingency plans in real time. When RO is poor, however,
even accurate decisions may be delayed or executed incorrectly, leading to cumulative
errors in high-TC environments. The moderating role of TC is threshold-like. In complex
settings, the penalty for inadequate RO rises sharply, but once a basic level of usability
is achieved, further refinements in RO add less value than comparable improvements in
RF or human abilities. This aligns with empirical evidence that TC amplifies interactions
between human and RF more strongly than human and RO.

From an implementation standpoint, the focus should be on decision throughput.
Three intervals matter: the time from a system signal to comprehension by the operator,
the time from a decision to the issuing of a command, and the time from command to
confirmation of execution. If these intervals become consistently long under high-TC
conditions, the priority should be redesigning the interface before adding more complex
decision-support functions.

(6) Interactions among LA, RO and TC
LA benefits from RO because usable systems reduce the cognitive cost of learning and

stabilize the mapping between action and feedback. When RO is consistent, operators can
more easily form mental models, transfer knowledge within teams, and institutionalize
best practices. In this sense, RO acts as a catalyst: it accelerates learning and knowledge
diffusion rather than directly increasing capability.

The interaction is strongest when RO remains stable across software versions and
hardware models, so that learned procedures can be generalized. If RO changes frequently
or inconsistently, LA is forced to be reinvested in re-learning interfaces, which slows overall
mastery and reduces the spread of expertise. The influence of TC is indirect. Higher
complexity provides more contexts in which learned routines can be applied, but without
stable RO these benefits are fragile.

Managerially, standardizing RO patterns is a priority. Consistency across systems
allows LA to scale, while in-interface support such as guided modes and contextual tips
accelerates individual learning. Peer-to-peer knowledge sharing can then consolidate
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lessons into team routines. Success can be assessed through reduced recovery times
without supervision, and faster convergence of teams on revised procedures.

The interpretation analysis shows that all hypothesized interactions between human
abilities (OS, DA, LA) and robot capacities (RF, RO) are significant, and their strength is
contingent on TC. OS, DA, and LA consistently improve performance, but their returns
depend on whether RF provides a sufficient technical ceiling and whether RO offers a
reliable execution channel. Interactions with RF are strongly amplified under high TC,
because complex tasks increase the need for sensing, planning, and precise actuation;
interactions with RO exhibit a threshold pattern, where benefits rise sharply once a usability
baseline is reached but diminish thereafter.

In practice, this means that high-OS, DA, and LA workers deliver the greatest gains
when paired with robots that have strong RF, especially in high-TC contexts such as precise
screeding, façade alignment, and exception handling. RO plays a critical role in ensuring
that human potential is not lost in translation, but its value is realized mainly through
crossing a usability threshold that enables consistent, rapid, and error-free interaction.
Together, these findings confirm the TPC and TTF perspective that performance emerges
not from isolated human or robot capacities, but from their complementarity under contex-
tual constraints.

7. Discussion
This study sets out to clarify the interaction of human abilities, robot characteristics,

and task context in shaping HRC team performance. This discussion first situates the
findings within existing research on HRC and socio-technical systems to identify where
they confirm, extend, or challenge prior studies; it then elaborates on their theoretical
implications for understanding HRC team performance, and finally addresses their practical
significance for managers and project teams in construction.

7.1. Positioning the Findings Within HRC and Socio-Technical Literature

The present results can be situated within and across prior research on HRC and socio-
technical systems. First, the simultaneous positive effects of human abilities (operational
skill, decision-making, learning) and robot capacities (functionality, operability) corroborate
the socio-technical premise that performance emerges from the joint optimization of hu-
mans and technology rather than from either in isolation [199]. This pattern also aligns with
TPC and TTF logics, which posit that realized performance depends on both effective uti-
lization by users and sufficient technological capability to meet task demands [118,120]. The
coefficients observed for the five main effects thus empirically reinforce arguments in HRC
and construction management that call for balanced investment in skills and technology.

Second, the study extends HRC team performance in construction by quantifying
human and robot complementarities (H6–H11). Prior work has conceptually asserted
that usability and interface quality enable human expertise to manifest, or that advanced
robot capabilities strengthen human abilities [12,200,201]. The results generalize these
notions with collected data that operability consistently amplifies the effects of decision-
making, learning, and operational skill (with the decision-making and operability being
the largest interaction), while functionality likewise strengthens all three human abilities.
This provides multi-construct and team-level support for the proposition that the whole is
greater than the sum of its parts in HRC.

Third, moderation by task complexity offers a differentiated picture that both confirms
and refines prior theory on complexity, cognitive load, and automation support. Consistent
with complexity and workload research [24,92,171], the three significant three-way interac-
tions (H12, H14, H16) show that complex tasks selectively intensify the need for advanced



Buildings 2025, 15, 3685 33 of 51

robot functionality to complement strong human abilities. This extends existing HRC
literature in construction, where complexity is often acknowledged but rarely modeled as a
conditional amplifier of human–robot synergies [60]. At the same time, the non-significant
three-way terms involving operability (H13, H15, H17) nuance common HRI expectations
that usability matters more as cognitive demands rise [196,197]. The results suggest that
operability functions as a universal enabler whose benefits are relatively stable across com-
plexity levels, whereas functionality operates as a selective amplifier whose marginal value
increases with complexity. This apparent contradiction with some laboratory findings may
reflect domain and setting differences: (i) baseline compliance with usability guidelines in
construction robots can make operability effects saturate across contexts, meaning that once
a robot meets basic usability standards, further improvements in operability may not lead
to substantial increases in performance [130,131,133]; and (ii) in complex field tasks, teams
prioritize whether the robot can do more (like autonomy) over how easy it is to operate,
shifting the binding constraint from usability to capability [128,129].

Collectively, these confirmations, extensions, and qualified contradictions advance the
socio-technical account of HRC in construction. The field evidence specifies when robot
functionality becomes decisive under high complexity, how robot operability universally
enables human strengths, and why balanced investment in humans and technology is
necessary to unlock performance.

7.2. Theoretical Implications

Taken together, the findings advance theory by highlighting three major implications
regarding how human abilities, robot characteristics, and task complexity jointly shape
HRC team performance.

First, the results empirically demonstrate that multi-dimensional human and robot
factors simultaneously drive HRC team performance. Previous research on construction
robotics often focused on either human factors (e.g., trust or workload) or technological
features in isolation [100,110,114,202]. By integrating three core human abilities with two
key robot attributes in one model, this study provides a holistic framework that explains
about 60% of performance variance. The coefficients of direct effects of human abilities
and robot capacities are from 0.15 to 0.2, suggesting that human factors and robot factors
are of roughly equal importance in HRC. This provides empirical weight to conceptual
arguments that successful HRT require both advanced technology and skilled workers.

Second, the strong support for all hypothesized two-way interactions contributes
evidence of synergy in HRC. The quantitative validation that human and robot capabilities
can jointly optimize the whole performance has been scarce in construction contexts [7,122].
The combined effect exceeds the sum of parts: a capable robot yields limited benefit without
skilled operators, and skilled operators cannot fully offset a deficient robot. This extends the
TPC logic to HRC teams: technology delivers maximum performance only when users can
and will use it, and when its capabilities fit the task [118]. In the results, robot operability
emerged as an especially effective moderator–a finding that aligns with human–computer
interaction theory, which stresses that usability and interface design critically shape team
performance [101,203,204]. In practice, easy-to-learn and controllable robots allow human
expertise to surface; poor interfaces can bottleneck performance regardless of talent.

Third, the study examines three-way interactions with task complexity, a project
attribute often overlooked in robotics research. Task complexity acts as a conditional
amplifier for certain human–robot synergies. Under complex and unpredictable tasks
(high TC), performance depends more on the joint presence of strong human abilities
and high robot functionality. In other words, the payoff of any single factor is highest
when complemented by strength in the other. This aligns with research on cognitive



Buildings 2025, 15, 3685 34 of 51

load and adaptive performance: in complex work, humans benefit more from decision
support, automation, and advanced robot functions than in simpler tasks [196,205]. In
high-complexity tasks, when robots provide advanced functionalities, they help reduce
this cognitive load, allowing humans to focus on higher-level aspects of the task and
robots can enhance the team’s overall performance through adaptive strategies. In contrast,
task complexity did not similarly amplify interactions involving robot operability, possibly
because a baseline of good operability is required regardless of task complexity, and its effect
tends to saturate. This suggests that, beyond a certain complexity threshold, functional
capabilities (what the robot can do) are more important than operability (how easy the
robot is to use), as even intuitive robots possess sufficient capabilities to handle the task’s
inherent difficulty.

7.3. Practical Implications for Construction Management and Robotics Implementation

The findings from this study provide several important insights for both construction
management and the implementation of robotics in the industry.

7.3.1. Implications of Significant Interactions for Managers and Project Teams

The results provide several important implications for managers and project teams in
construction.

First, the positive effects of operational skill, decision-making ability, learning ability,
robot functionality, and robot operability confirm that both human competence and robot
design independently enhance collaboration outcomes. For managers, this highlights the
dual responsibility of investing in both workers and robotic technology. Training that
enhances workers’ technical, cognitive, and adaptive skills directly improves collaboration
outcomes, while selecting robots with reliable functions and intuitive operability creates
conditions for these abilities to translate into higher productivity and safety. For project
teams, this means that continuous upskilling and familiarization with robotic systems is
not optional but essential, as both human competence and robot design independently
drive performance.

Second, the analysis shows that human abilities and robot capacities interact with
each other when combined, underscoring the importance of aligning workforce skills with
appropriate robotic features. For managers, this finding emphasizes that the benefits of
workforce training are magnified only when paired with well-designed robots, and vice
versa. Specifically:

Operational skill × robot functionality (H6): Skilled operators achieve dispropor-
tionate performance gains when robots are equipped with advanced technical functions.
Managers should allocate their most experienced workers to tasks that involve technically
demanding robots, while teams should recognize that skill–technology alignment is key to
extracting value from high-end machines.

Operational skill × robot operability (H7): Even skilled operators perform better when
interfaces are intuitive. This underscores the importance of user-friendly controls as a
prerequisite for realizing human expertise.

Decision-making ability × robot functionality (H8): Strong decision-makers make
more effective use of advanced robot functions, particularly when real-time adjustments
are needed. Managers should therefore deploy cognitively strong workers alongside
high-functionality robots in dynamic tasks.

Decision-making ability × robot operability (H9): The largest interaction effect ob-
served indicates that intuitive interfaces substantially amplify the value of human judgment.
Managers should prioritize operability in procurement, as poor usability can waste even
the best human cognitive resources.
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Learning ability × robot functionality (H10): Workers with high adaptive learning
ability are better positioned to unlock the advanced functions of robots, suggesting that
pairing adaptive learners with functional robots accelerates technology assimilation.

Learning ability × robot operability (H11): Adaptive learners benefit disproportion-
ately from user-friendly robots, allowing teams to shorten learning curves and diffuse
knowledge quickly across members.

Third, the moderating role of task complexity reveals that complex and uncertain
tasks amplify the importance of combining strong human abilities with advanced robot
functionality. Specifically:

Operational skill × functionality × task complexity (H12): Under complex tasks,
superior outcomes occur only when skilled operators work with highly functional robots.
Managers should reserve such pairings for high-risk or technically challenging activities,
while project teams should align skill allocation with task criticality.

Decision-making ability × functionality × task complexity (H14): Decision-making
capacity becomes more valuable when robots offer advanced functions in complex contexts.
Managers can improve project outcomes by matching cognitively strong workers with
advanced robots in uncertain or rapidly changing tasks.

Learning ability × functionality × task complexity (H16): Adaptive learners achieve the
highest gains from advanced robots in complex tasks, highlighting that continuous training
and exposure to functional systems prepare teams for demanding project environments.

By contrast, interactions involving robot operability (H13, H15, H17) were not moder-
ated by task complexity, meaning that usability provides consistent benefits across both
simple and complex tasks. For managers, this suggests that ensuring baseline operability is
a universal requirement, independent of task difficulty. For project teams, it implies that
ease of use reduces cognitive load and facilitates adoption in all contexts, but its value does
not grow further in more complex situations.

Taken together, these results demonstrate that managers should view human abilities
and robot capacities as interdependent levers. Project teams can use the interaction patterns
as a roadmap for task allocation: pairs of high skill and high functionality for complex and
critical work, adaptive learners with user-friendly robots for rapid diffusion, and consistent
emphasis on operability as a universal enabler.

7.3.2. Investment in Both Human Abilities and Robot Capabilities

Maximizing HRC performance requires investment in both human capital and robotic
technology. Training that builds operational skill, decision-making, and learning capacity
has a direct positive effect on team outcomes. Paired with advanced robots, these human
improvements produce multiplicative gains. Robotics adoption should not be treated as
an equipment purchase. It must be accompanied by workforce development to ensure
effective integration and use. Investments in highly functional robots—autonomy, sensing,
and other advanced capabilities—are justified only when users are trained to operate them
well, often requiring higher skill levels. The study finds that introducing a highly operable
robot raises performance by about 0.4 units for high-skill teams but only 0.1 units for
low-skill teams, a threefold difference. This indicates that returns on robotic technology
depend on the readiness and competence of human workers. Consequently, firms should
assess team skill levels before and during robot integration and align technology choices
with worker capabilities.

In practice, construction companies can implement these training programs through
the following steps:

(1) Develop Customized Training Programs
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Design customized training courses based on specific tasks and the robots being used.
For example, on construction sites, different levels of training should be designed according
to the type of tasks the operators are collaborating with robots on. Basic training should focus
on improving operational skills to ensure workers can efficiently operate robots for tasks like
material handling or repetitive tasks. More advanced training should emphasize improving
decision-making abilities and problem-solving, especially in complex environments where
operators need to make rapid decisions to adjust the robots’ working modes.

(2) Combine Simulation Training with On-Site Practice
Enhance workers’ abilities to handle actual tasks by combining simulation environ-

ments and on-site operations. Simulation training can be performed using Virtual Reality
(VR) or Augmented Reality (AR) technologies, where workers can practice complex con-
struction tasks and interact with robots in a virtual environment to familiarize themselves
with the operations and task allocation. These skills can then be transferred to on-site
practical training, ensuring workers can effectively use robots in real-world conditions.

(3) Regular Assessment and Continuous Learning
Training should not be a one-time investment. With the rapid advancement of robot

technologies, construction companies should establish an ongoing assessment and feedback
mechanism. For example, the operators’ abilities can be periodically tested to assess their
performance in collaboration with robots, and training content should be adjusted based
on these assessments. This approach ensures that workers are always prepared to handle
the evolving technological landscape and can improve their work efficiency and decision-
making capabilities.

By implementing these steps, companies can not only improve workers’ operational
efficiency when working with robots but also ensure that highly skilled workers can fully
exploit the advanced functionalities of robots, thereby maximizing the return on investment
in robotic technology.

7.3.3. Prioritization of Robot Operability

Among the robot-related factors, operability has proven to be the most critical. The
study’s findings emphasize that while robots with high functionality are essential, their
ability to enhance team performance is greatly dependent on how easily human operators
can control and interact with them. Robots that are highly functional but difficult to operate
often fail to deliver the expected results. This is because the complexity of using such
robots increases the cognitive load on operators, making collaboration less efficient and
more errors. In contrast, robots that are user-friendly, even if their functionalities are
somewhat limited, tend to produce better outcomes because they reduce the burden on
human operators and facilitate smoother interaction.

The importance of operability goes beyond simple ease of use. It is a key factor in
enabling high levels of collaboration between human workers and robots. The design of
robots should prioritize intuitive interfaces, clear communication, and easily adjustable
controls, all of which contribute to reducing the learning curve and fostering trust between
humans and robots. In practice, companies should focus on selecting robots that are easy
to operate, particularly during the initial stages of deployment. This approach ensures that
workers can quickly adapt to the technology and incorporate it into their daily tasks. Over
time, as operators become more familiar with the system and build greater confidence, the
robot’s functionality can be gradually expanded.

Another important implication of the findings is that the positive impact of robot oper-
ability remains stable regardless of task complexity. Unlike robot functionality, which becomes
particularly valuable under highly complex tasks, operability functions as a universal enabler
that consistently reduces cognitive load in both simple and demanding scenarios. This means
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that investments in operability—such as standardized, user-friendly interfaces and predictable
control responses—are never wasted, because they deliver performance benefits across the
full range of construction tasks. From a design perspective, this suggests that operability
should be treated as a baseline requirement for any collaborative robot, while functionality
enhancements can be tailored to specific high-complexity contexts.

For training and workforce development, the results imply that programs should
place strong emphasis on helping operators quickly master robot interfaces and interaction
routines rather than differentiating training intensity by task difficulty. Short, scenario-
based training modules that focus on interface fluency and error recovery can accelerate
adaptation and build operator confidence. Once a high level of comfort with robot operabil-
ity is achieved, further training can then concentrate on exploiting advanced functionalities
in complex projects.

This strategy is critical because focusing solely on advanced robot features, without
considering ease of use, risks undermining the overall success of robot integration. High
operability makes it easier for workers to adapt to and collaborate with robots, ultimately
leading to more effective team performance. Therefore, it is essential for designers to priori-
tize user-friendly interfaces and simple controls in the early stages, with the understanding
that robot functionality can be progressively enhanced as both operators’ skills and their
trust in the system grow.

7.3.4. Context-Specific Guidance for HRC Deployment

When planning HRC for specific tasks, the study treats task complexity as critical. For
simple, routine work (low TC), moderate human skill or robot capability is often sufficient,
and top-tier pairings face diminishing returns. For complex tasks (high TC), managers
should pair the most skilled operators with the most advanced robots. Significant HRC
means that, under complex conditions, weakness on either side sharply reduces perfor-
mance. This has direct implications for resource allocation. For example, complex tasks
such as robotic installation of curtain wall panels at height, which involve large component
lifting and high-altitude operations with significant safety risks and uncertainties, should
be assigned to a high-performing operator–robot pair. Pairing a highly skilled operator
with a suboptimal robot (or the reverse) can depress outcomes and raise risk. Therefore,
task assignments should focus on achieving a high human–robot fit, especially for critical
and complex tasks.

The interaction between human and robot capabilities is significantly amplified in
complex environments. When task complexity is high, any gap in either human ability
or robot functionality can result in a sharp decline in performance. This is because com-
plex tasks often require greater adaptability, problem-solving, and decision-making from
both humans and robots. In these situations, workers need to have the skills to handle
unexpected challenges, while robots must be capable of performing tasks autonomously
or adjusting to changing conditions without constant human intervention. If either the
human operator or the robot is not sufficiently skilled or capable, the performance of the
entire team will be compromised.

For high-complexity tasks, it is essential to allocate the most skilled human operators to
work with the most advanced robots. Such tasks, which often involve high risks or critical
operations, require a strong synergy between human expertise and robot functionality. A
mismatch between the complexity of the task and the capabilities of the human or robot
components can lead to inefficiencies, delays, and increased safety risks. As a result, it is
vital for managers to carefully assess the complexity of each task and assign the appropriate
team composition. For complex tasks that require significant problem-solving, innovation,
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or adaptation, pairing skilled operators with advanced robots ensures that both human
and robot strengths complement each other, maximizing overall team performance.

In practice, this means that project managers must be strategic about human–robot
team composition. Assigning advanced robots to high-skill teams for complex tasks,
while reserving simpler robots for less complex tasks or teams with lower skill levels, will
optimize the overall performance of HRC teams. This approach helps to ensure that the
right balance is struck between human capabilities and robotic functionalities, leading to
greater productivity, efficiency, and safety in construction projects.

7.3.5. Cost–Benefit Considerations for HRC Deployment

Beyond technical and managerial issues, the study emphasizes the costs and ben-
efits of adopting HRC. The economic implications are best read through the validated
team-performance model. Empirically, (i) robot operability delivers consistent gains across
contexts, (ii) robot functionality is especially valuable under high task complexity, and (iii)
human capabilities are essential complements. Translating these insights into practice im-
plies that the economic payoffs of HRC are conditional on the alignment between capability
type and task context. It means that the benefits of HRC are maximized when high human
abilities are paired with advanced robotic functions, and when robot operability is consis-
tently prioritized. However, such deployments often entail higher upfront costs, including
investment in advanced robotic systems, operator training, and integration infrastructure.
Therefore, a framework is necessary for context-sensitive economic evaluation grounded in
the study’s capability–interaction model.

First, for routine or low-complexity tasks, investment in high-functionality robots may
not be cost-effective. Since operability is the universal enabler, managers should prioritize
robots that minimize training time and integration costs (high RO), while maintaining
moderate functionality. The expected economic benefit arises from reduced supervision,
faster learning curves, and lower maintenance overhead. Thus, ROI calculations in such
contexts should emphasize savings in training and error correction rather than advanced
automation features.

Second, for high-complexity or precision-critical tasks, the study shows that human–
robot complementarities are strongest when highly skilled workers (high OS, DA and LA)
are paired with high-functionality robots (high RF). In these cases, although the initial
capital expenditure is higher, the economic return is realized through reduced rework,
higher productivity, and avoidance of costly schedule delays. For example, the model’s
finding that task complexity amplifies the OS and RF interaction indicating that the relative
economic gains of high RF increase disproportionately when tasks are complex and cogni-
tively demanding. In practice, this means that cost–benefit assessments in such contexts can
justify longer payback periods since the reduction in rework and delay penalties translates
into substantial financial value, even if the benefits are less visible in simpler tasks.

Third, the study’s findings justify a phased investment strategy. While the structural
model itself examined performance effects, these insights can be translated into economic
appraisal using tools such as ROI, payback, or NPV, allowing managers to align investment
decisions with the capability–context interactions identified in the data.

The following four-step procedure provides a repeatable appraisal:
The first step is to diagnose task complexity and establish the baseline. Using the

task-complexity (TC) instrument introduced in Section 5.4, project teams classify the target
activity into low, medium, or high complexity on the basis of observable attributes. This
classification anchors all subsequent economic assumptions. In parallel, a pre-deployment
baseline is recorded for core operational metrics—crew composition and hours, takt time
or output per day, rework incidence and unit rework costs, safety incident frequency and
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loss severity, and schedule-related penalties or time-value of early completion—over a
sufficiently long window to average out short-term fluctuations. Where feasible, a matched
“control” area is identified to support difference-in-differences comparisons in later stages,
thereby improving internal validity when external factors (e.g., batch variability, weather)
might confound before–after contrasts.

The second step is to match robot capabilities to task contexts. RO operates as a
context-general factor that reduces procedure and learning errors. RF yields dispropor-
tionate value where TC is high. And the complementarities between human and robot
capabilities are strongest when skilled operators (high OS, DA, and LA) are paired with
advanced RF. Therefore, in low or medium TC, the configuration of high RO and RF fit for
purpose is typically justified, because the dominant gains arise from faster learning, fewer
interventions, and reduced supervisory burden. In contrast, in high TC, the configuration
should deliberately combine skilled operators (high OS, DA, and LA) with higher RF,
accepting higher capital intensity in exchange for stability under variability, tighter quality
control, and mitigation of schedule risk. The phase can be split into two parts. In the first
phase, deploy HRC in routine tasks with a focus on RO to develop learning and process
templates. In later phases, add advanced RF to high-TC tasks once OS, DA, and LA can
support it, and then scale by standardizing training and maintenance to increase utilization.

The third step is to quantify costs and benefits and establish a link between costs,
benefits, and the model’s mechanisms. Costs are divided into two categories. Capital
expenditures (CapEx) cover equipment, integration, and initial training. Operating ex-
penditures (OpEx) include maintenance, consumables, and software upgrades. Benefits
are annualized and derived from baseline data. Four main dimensions are considered,
including labor, quality, safety and schedule. The ANB can be used to evaluate the benefit
and operationalized in two steps. First, improvements in each benefit channel are measured
in their natural units: labor savings in crew-hours, quality gains in the number of defects
avoided, safety gains in reduced incident frequency or severity, and schedule gains in days
of acceleration. Second, these physical quantities are translated into comparable values
by multiplying them with appropriate unit prices—such as the fully loaded wage rate per
hour, the average rework cost per defect, the expected loss per incident, or the time-value
per day of project delay or early delivery.

Let the improvement vector collect the four channels in their natural units:

∆ =
[
∆Labor(hours), ∆Quality(units), ∆Safety(incidents), ∆Schedule(days)

]⊤
Define a unit-price vector (p) that maps each channel into currency:

p =
[

pL (per hour), pQ (per defect), pS (per incident), pT (per day)
]⊤

Then, the annual net benefit in monetary terms is a simple inner product minus any
OpEx change:

ANB = p⊤∆ − ∆OpEx

where each component is computed as:
∆Labor = hours saved per year; pL = hourly wage.
∆Quality = (baseline defect rate − post rate)× applicable volume; pQ = unit re-

work cost.
∆Safety = reduction in incidents; pS = expected loss per incident.
∆Schedule = days of schedule gain or penalties avoided; pT = time value per day.
The final stage uses ANB as the central decision criterion. A simple rule is that ANB

should be positive: if the aggregated benefits outweigh the added operating costs, the
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deployment passes the minimum viability threshold. Beyond this baseline, the required
level of ANB depends on task complexity. For low or medium complex tasks, managers
should expect relatively high ANB values before committing to wider adoption since
gains are mainly derived from ease of use and faster learning. In these contexts, only
deployments showing clear and rapid benefits should proceed. For high complex tasks,
complementarities between human skills and robot functionality are stronger. Because
these projects involve higher risks, even a moderate ANB may be acceptable if accompanied
by evidence of reduced rework, fewer delays, or improved safety. In other words, the
threshold is more flexible, as long as the benefits address high-impact risks.

The decisions should follow a phased path. The first is the pilot gate. This stage
requires ANB > 0, based mainly on reduced errors and shorter onboarding. The second
is the expansion gate. In more complex tasks, evidence is required that ANB reflects
improvements in quality and schedule stability. The final is the scale-up gate. It requires
ANB to remain consistently positive across multiple teams or projects.

Taken together, this procedure maintains theoretical continuity with the study’s find-
ings while providing practicable economic guidance. It enables project managers to evalu-
ate adoption choices with financial discipline.

7.4. Limitations and Future Research Directions

While this study provides valuable insights into the interaction of human abilities,
robot capacities, and task complexity in shaping HRC team performance, it is not without
its limitations.

First, methodological constraints are worth noting. The study employs a cross-
sectional design, which limits the ability to draw conclusions about causality over time.
Future studies should use longitudinal data to track HRC performance over time. This
would clarify how collaboration changes and how robots affect construction teams in the
long term. Furthermore, the reliance on self-reported perceptions introduces the possibility
of response bias, as participants may overstate or understate their experiences with robots.
Future studies could address this limitation by incorporating devices to measure human
and robot attributes in real-time. For instance, wearable sensors or brainwave monitoring
devices could be used to capture cognitive and behavioral responses objectively, provid-
ing more precise data on human performance during HRC [114,206]. Additionally, robot
status could be monitored in real-time using sensors or diagnostics tools to track robot
functionality, operability, and performance metrics during task execution [207]. This would
help reduce reliance on self-reports and provide a more accurate measurement of human
performance in the context of HRC.

Second, a primary limitation of this study is its reliance on single-source, self-reported
data collected at a single point in time, which introduces the potential for CMB. The ob-
served relationships between human abilities, robot capacities, and performance may be
partly inflated because some shared variance reflects the measurement method rather than
the true constructs. The study applied statistical tests, such as full collinearity assessment
and Harman’s single-factor test, which suggested that common method bias was not a seri-
ous concern. Nevertheless, some potential for bias may still remain. Future research should
therefore aim to validate these findings using a multi-source data collection strategy. For
instance, team performance could be assessed through objective project metrics, providing
a more robust test of the model’s predictive validity.

In addition to the cross-sectional design, the study could benefit from experimental
studies to observe HRC in a controlled laboratory environment. For example, wearable
devices such as smart gloves, eye-tracking systems, and biosensors could be used to
measure the real-time performance of human operators during specific tasks in HRC. These
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devices could monitor cognitive load, attention levels, and operational skill in a variety of
task contexts, providing real-time data on human performance and enabling the isolation
of specific human attributes [208]. Similarly, robot sensors can track accuracy, execution
time, and error rates, yielding objective measures of functionality and operability across
scenarios [121]. This setup would allow researchers to test specific hypotheses about HRI
in a controlled environment, free from external confounding factors.

Furthermore, future studies could integrate longitudinal research designs, tracking teams
over time to observe the evolution of HRC in real-world construction settings [209]. This could
involve collecting data from wearable sensors or robot diagnostic systems over an extended
period to analyze how human and robot performance change as workers gain experience and
robots undergo updates [210]. Longitudinal studies would help uncover temporal patterns,
such as how human skills develop and how robot performance improves over time, leading
to a more comprehensive understanding of HRC team performance dynamics.

Another limitation concerns the demographic composition of the sample. Most respon-
dents were male (86%), which reflects the reality of the construction industry workforce in
China. Nevertheless, this gender imbalance may limit the generalizability of our findings
to more gender-diverse contexts. Future studies should therefore aim to include a more
balanced sample to test the robustness of the results.

Finally, the findings of this study are generalizable only to the construction industry, and
several constraints should be noted when considering external validity. First, all respondents
were drawn from construction projects in China. Although the dataset covers residential,
public, and office projects across East, Central, and West China, it may not reflect conditions
in other countries. Construction technologies, regulatory environments, and workforce
demographics can differ, limiting external validity. Second, the types of robots reported by
respondents reflect those most deployed in China, such as concrete screeding, plastering,
tile-laying, panel installation, measurement, and inspection robots. Other regions may use
different robotic solutions or integration practices. Third, the sample is overwhelmingly male
(86%), which mirrors the demographic reality of the Chinese construction industry but may
limit the applicability of the results to more gender-diverse contexts.

Beyond these geographical and demographic limitations, the generalizability of the
findings is further constrained by the exclusive focus on the construction industry, where
task complexity and HRI dynamics may differ substantially from other sectors. While
the focus on construction is crucial given the industry’s complexities, future research
could enhance external validity by applying the framework to other industries. For in-
stance, manufacturing and logistics may have different levels of task complexity, robot
capabilities, and team dynamics, providing a broader context for understanding HRC
performance [211,212]. Extending this framework to manufacturing environments could
help investigate the impact of robotics in assembly lines, where robots and humans work in
a highly structured environment, contrasting with the more flexible and dynamic nature of
construction. Similarly, logistics environments with robots working in warehouse settings
may have differing HRC dynamics, especially concerning tasks such as material handling
and inventory management.

8. Conclusions
The study set out to explain how performance emerges in HRC teams in construction. It

proposed and tested a multidimensional model centered on human and robot capabilities,
with task complexity as a contextual moderator. Using PLS-SEM on frontline practitioner
data, the analysis shows that three categories of human capability and two categories of robot
capability each exert significant positive effects on team performance; all hypothesized human–
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robot interaction effects are supported. Task complexity amplifies the interaction between
human capabilities and robot functionality, but not the interaction with robot operability.

To integrate these findings with the study’s guiding questions, the answers to the
four research questions are consolidated as follows. First, for RQ1, the study validates six
latent constructs—three human capabilities (operational skill, decision-making, learning),
two robot capabilities (functionality, operability), and task complexity—as the foundation
of HRC team performance. Second, for RQ2, these constructs are operationalized with
actionable scales: functionality spans autonomy, reliability, responsiveness, precision, and
consistency, while operability captures ease of use, interface intuitiveness, controllability,
and learning burden; reliability and validity analyses support convergent and discriminant
validity. Third, for RQ3, the structural results reveal five positive and significant main
effects and significant human × robot interactions, evidencing complementary strengths;
task complexity selectively strengthens the functionality pathway but not the operability
pathway. Finally, for RQ4, joint assessment of the measurement and structural models yields
a validated predictive framework with concrete managerial levers—prioritize operability
to stabilize outputs, invest in training to enhance operational and decision skills, and,
for high-complexity tasks, pair highly skilled workers with high-functionality robots to
maximize performance gains.

For the theoretical and practical contributions, the research integrates the human–
robot–task coupling into a testable team-performance model, addressing gaps regarding
robot-side attributes and interaction mechanisms. The constructs and scales are reusable,
giving project managers concrete tools for team diagnosis, resource allocation, capability
building, and robot selection.

There are limitations of this study. The sample is drawn from Chinese construction
projects, robot types skew toward local applications, and gender balance is uneven. External
validity should therefore be tested across industries and regions. Future studies can
combine experiments with longitudinal designs and leverage wearable and robot sensors to
capture process-level indicators and track the co-evolution of human and robot capabilities.

In sum, the findings indicate that successful HRC in construction depends not only on
the advancement of robotic technologies but also on the cultivation of human capabilities
and the careful consideration of task characteristics. By clarifying the interaction among
these factors, this study provides a predictive framework that can be used in enhancing
productivity, safety, and quality in the evolving landscape of construction robotics.

Author Contributions: Conceptualization, G.Z., X.L. and Q.L.; methodology, G.Z., X.L. and Q.L.;
validation, G.Z., X.L. and Q.L.; investigation, G.Z., W.L. and L.Z.; resources, G.Z., X.L. and Q.L.; data
curation, G.Z., W.L. and L.Z.; writing—original draft preparation, G.Z., X.L., W.L., L.Z. and Q.L.;
writing—review and editing, G.Z., X.L. and Q.L.; supervision, X.L. and Q.L.; project administration,
G.Z.; funding acquisition, G.Z. and L.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (Grant No. 2022YFC3802201), National Natural Science Foundation of China (Grant No.
72301131) and Postgraduate Research & Practice Innovation Program of Jiangsu Province, China
(Grant No. KYCX22_0218).

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Acknowledgments: We sincerely appreciate all the experts who participated in this research interview.

Conflicts of Interest: The authors declare no conflicts of interest.



Buildings 2025, 15, 3685 43 of 51

Abbreviations
The following abbreviations are used in this manuscript:

HRC Human–Robot Collaboration
STCR Single-Task Construction Robot
HRT Human–Robot Team
TTF Task–Technology Fit
TAM Technology Acceptance Model
TPC Technology-to-Performance Chain
HRI Human–Robot Interaction
PLS-SEM Partial Least Squares Structural Equation Modeling
OS Operational skill
DA Decision-making ability
LA Learning ability
RF Robot functionality
RO Robot Operability
TC Task complexity
HTP HRC Team Performance
CR Composite Reliability
AVE Average Variance Extracted
HTMT Heterotrait–Monotrait
R2 Coefficient of Determination
β Standardized Path Coefficient
∆ Difference

References
1. Odeh, I.; Tsai, O. Is Construction Future-ready? 3 Key Insights on the Sector’s Digital Transformation. Available online:

https://www.weforum.org/stories/2025/07/construction-sector-digital-transformation/ (accessed on 6 July 2025).
2. Lingard, H. Occupational health and safety in the construction industry. Constr. Manag. Econ. 2013, 31, 505–514. [CrossRef]
3. Wanberg, J.; Harper, C.; Hallowell Matthew, R.; Rajendran, S. Relationship between Construction Safety and Quality Performance.

J. Constr. Eng. Manag. 2013, 139, 04013003. [CrossRef]
4. Hasan, A.; Baroudi, B.; Elmualim, A.; Rameezdeen, R. Factors affecting construction productivity: A 30 year systematic review.

Eng. Constr. Archit. Manag. 2018, 25, 916–937. [CrossRef]
5. Xiao, B.; Chen, C.; Yin, X. Recent advancements of robotics in construction. Autom. Constr. 2022, 144, 104591. [CrossRef]
6. Kumar, S.; Savur, C.; Sahin, F. Survey of human–robot collaboration in industrial settings: Awareness, intelligence, and compliance.

IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 280–297. [CrossRef]
7. Liang, X.; Rasheed, U.; Cai, J.; Wibranek, B.; Awolusi, I. Impacts of Collaborative Robots on Construction Work Performance

and Worker Perception: Experimental Analysis of Human–Robot Collaborative Wood Assembly. J. Constr. Eng. Manag. 2024,
150, 04024087. [CrossRef]

8. Xu, J.; Sun, Q.; Han, Q.-L.; Tang, Y. When embodied AI meets Industry 5.0: Human-centered smart manufacturing. IEEE/CAA J.
Autom. Sin. 2025, 12, 485–501. [CrossRef]

9. Asadi, K.; Suresh, A.K.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An integrated
UGV-UAV system for construction site data collection. Autom. Constr. 2020, 112, 103068. [CrossRef]

10. Robotics, A.C. Rebar Tools: TyBot and IronBot. Available online: https://www.constructionrobots.com (accessed on 6 July 2025).
11. Robotics, C. SAM: Semi-Automated Mason. Available online: https://www.construction-robotics.com (accessed on 6 July 2025).
12. Delgado, J.M.D.; Oyedele, L.; Ajayi, A.; Akanbi, L.; Akinade, O.; Bilal, M.; Owolabi, H. Robotics and automated systems in

construction: Understanding industry-specific challenges for adoption. J. Build. Eng. 2019, 26, 100868. [CrossRef]
13. Hopko, S.; Wang, J.; Mehta, R. Human factors considerations and metrics in shared space human-robot collaboration: A systematic

review. Front. Robot. AI 2022, 9, 799522. [CrossRef]
14. Yan, Y.; Jia, Y. A review on human comfort factors, measurements, and improvements in human–robot collaboration. Sensors

2022, 22, 7431. [CrossRef]
15. Charalambous, G.; Fletcher, S.; Webb, P. Identifying the key organisational human factors for introducing human-robot collabora-

tion in industry: An exploratory study. Int. J. Adv. Manuf. Technol. 2015, 81, 2143–2155. [CrossRef]

https://www.weforum.org/stories/2025/07/construction-sector-digital-transformation/
https://doi.org/10.1080/01446193.2013.816435
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000732
https://doi.org/10.1108/ECAM-02-2017-0035
https://doi.org/10.1016/j.autcon.2022.104591
https://doi.org/10.1109/TSMC.2020.3041231
https://doi.org/10.1061/JCEMD4.COENG-14390
https://doi.org/10.1109/JAS.2025.125327
https://doi.org/10.1016/j.autcon.2019.103068
https://www.constructionrobots.com
https://www.construction-robotics.com
https://doi.org/10.1016/j.jobe.2019.100868
https://doi.org/10.3389/frobt.2022.799522
https://doi.org/10.3390/s22197431
https://doi.org/10.1007/s00170-015-7335-4


Buildings 2025, 15, 3685 44 of 51

16. Liu, Y.; Caldwell, G.; Rittenbruch, M.; Belek Fialho Teixeira, M.; Burden, A.; Guertler, M. What Affects Human Decision Making
in Human–Robot Collaboration?: A Scoping Review. Robotics 2024, 13, 30. [CrossRef]

17. Ramirez-Amaro, K.; Torre, I.; Diehl, M.; Dean, E. The Importance of Human Factors for Trusted Human-Robot Collaborations.
In Proceedings of the 11th International Conference on Human-Agent Interaction, Gothenburg, Sweden, 4–7 December 2023;
pp. 502–503.

18. Ekyalimpa, R.; Okello, E.; Siraj, N.B.; Lei, Z.; Liu, H. Towards human–robot collaboration in construction: Understanding
brickwork production rate factors. Buildings 2023, 13, 3087. [CrossRef]

19. Di Pasquale, V.; De Simone, V.; Giubileo, V.; Miranda, S. A taxonomy of factors influencing worker’s performance in human–robot
collaboration. IET Collab. Intell. Manuf. 2023, 5, e12069. [CrossRef]

20. Pietrantoni, L.; Favilla, M.; Fraboni, F.; Mazzoni, E.; Morandini, S.; Benvenuti, M.; De Angelis, M. Integrating collaborative robots
in manufacturing, logistics, and agriculture: Expert perspectives on technical, safety, and human factors. Front. Robot. AI 2024,
11, 1342130. [CrossRef]

21. Liang, C.-J.; Wang, X.; Kamat Vineet, R.; Menassa Carol, C. Human–Robot Collaboration in Construction: Classification and
Research Trends. J. Constr. Eng. Manag. 2021, 147, 03121006. [CrossRef]

22. Li, S.; Zheng, P.; Liu, S.; Wang, Z.; Wang, X.V.; Zheng, L.; Wang, L. Proactive human–robot collaboration: Mutual-cognitive,
predictable, and self-organising perspectives. Robot. Comput.-Integr. Manuf. 2023, 81, 102510. [CrossRef]

23. Xia, P.; Xu, F.; Zhou, T.; Du, J. Benchmarking Human versus Robot Performance in Emergency Structural Inspection. J. Constr.
Eng. Manag. 2022, 148, 04022070. [CrossRef]

24. Malik, A.A.; Bilberg, A. Complexity-based task allocation in human-robot collaborative assembly. Ind. Robot. Int. J. Robot. Res.
Appl. 2019, 46, 471–480. [CrossRef]

25. Zeng, N.; Liu, Y.; Gong, P.; Hertogh, M.; König, M. Do right PLS and do PLS right: A critical review of the application of PLS-SEM
in construction management research. Front. Eng. Manag. 2021, 8, 356–369. [CrossRef]

26. Liu, J.; Luo, H.; Wu, D. Human–Robot collaboration in construction: Robot design, perception and Interaction, and task allocation
and execution. Adv. Eng. Inform. 2025, 65, 103109. [CrossRef]

27. Wu, Z.; Liao, Q.; Chen, K.; Antwi-Afari, M.F.; Chen, Y.; Bao, Z. A systematic review of digital auxiliary technologies enabling
human–robot collaboration in construction. Eng. Constr. Archit. Manag. 2025. [CrossRef]

28. Bock, T.; Linner, T. Construction Robots: Elementary Technologies and Single-Task Construction Robots; Cambridge University Press:
Cambridge, UK, 2016.

29. Salmi, T.; Ahola, J.M.; Heikkilä, T.; Kilpeläinen, P.; Malm, T. Human-Robot Collaboration and Sensor-Based Robots in Industrial
Applications and Construction. In Robotic Building; Bier, H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp.
25–52.

30. Liu, Y.; A.H., A.; Haron, N.A.; N.A., B.; Wang, H. Robotics in the Construction Sector: Trends, Advances, and Challenges. J. Intell.
Robot. Syst. 2024, 110, 72. [CrossRef]

31. Zeng, L.; Guo, S.; Wu, J.; Markert, B. Autonomous mobile construction robots in built environment: A comprehensive review.
Dev. Built Environ. 2024, 19, 100484. [CrossRef]

32. Ghodsian, N.; Benfriha, K.; Olabi, A.; Gopinath, V.; Talhi, E.; Hof, L.A.; Arnou, A. A framework to integrate mobile manipulators
as cyber–physical systems into existing production systems in the context of industry 4.0. Robot. Auton. Syst. 2023, 169, 104526.
[CrossRef]

33. Halder, S.; Afsari, K.; Chiou, E.; Patrick, R.; Hamed, K.A. Construction inspection & monitoring with quadruped robots in future
human-robot teaming: A preliminary study. J. Build. Eng. 2023, 65, 105814. [CrossRef]

34. Halder, S.; Afsari, K.; Serdakowski, J.; DeVito, S.; Ensafi, M.; Thabet, W. Real-Time and Remote Construction Progress Monitoring
with a Quadruped Robot Using Augmented Reality. Buildings 2022, 12, 2027. [CrossRef]

35. Jin, J.; Zhang, W.; Li, F.; Li, M.; Shi, Y.; Guo, Z.; Huang, Q. Robotic binding of rebar based on active perception and planning.
Autom. Constr. 2021, 132, 103939. [CrossRef]

36. Momeni, M.; Relefors, J.; Khatry, A.; Pettersson, L.; Papadopoulos, A.V.; Nolte, T. Automated fabrication of reinforcement cages
using a robotized production cell. Autom. Constr. 2022, 133, 103990. [CrossRef]

37. Tan, X.; Xiong, L.; Zhang, W.; Zuo, Z.; He, X.; Xu, Y.; Li, F. Rebar-tying Robot based on machine vision and coverage path planning.
Robot. Auton. Syst. 2024, 182, 104826. [CrossRef]

38. Zhou, Y.; Huang, B.; Dong, B.; Wen, Y.; Duan, M. Dynamic robotic bricklaying force-position control considering mortar dynamics
for enhanced consistency. Autom. Constr. 2025, 174, 106090. [CrossRef]

39. Ercan Jenny, S.; Pietrasik, L.L.; Sounigo, E.; Tsai, P.-H.; Gramazio, F.; Kohler, M.; Lloret-Fritschi, E.; Hutter, M. Continuous Mobile
Thin-Layer On-Site Printing. Autom. Constr. 2023, 146, 104634. [CrossRef]

40. Wang, Y.; Xie, L.; Wang, H.; Zeng, W.; Ding, Y.; Hu, T.; Zheng, T.; Liao, H.; Hu, J. Intelligent spraying robot for building walls with
mobility and perception. Autom. Constr. 2022, 139, 104270. [CrossRef]

https://doi.org/10.3390/robotics13020030
https://doi.org/10.3390/buildings13123087
https://doi.org/10.1049/cim2.12069
https://doi.org/10.3389/frobt.2024.1342130
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002154
https://doi.org/10.1016/j.rcim.2022.102510
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002322
https://doi.org/10.1108/IR-11-2018-0231
https://doi.org/10.1007/s42524-021-0153-5
https://doi.org/10.1016/j.aei.2025.103109
https://doi.org/10.1108/ECAM-09-2024-1296
https://doi.org/10.1007/s10846-024-02104-4
https://doi.org/10.1016/j.dibe.2024.100484
https://doi.org/10.1016/j.robot.2023.104526
https://doi.org/10.1016/j.jobe.2022.105814
https://doi.org/10.3390/buildings12112027
https://doi.org/10.1016/j.autcon.2021.103939
https://doi.org/10.1016/j.autcon.2021.103990
https://doi.org/10.1016/j.robot.2024.104826
https://doi.org/10.1016/j.autcon.2025.106090
https://doi.org/10.1016/j.autcon.2022.104634
https://doi.org/10.1016/j.autcon.2022.104270


Buildings 2025, 15, 3685 45 of 51

41. Fascetti, A.; Latteur, P.; Lim, S.H. Ground-based automated construction of droxel structures: An experimental approach. Autom.
Constr. 2021, 131, 103899. [CrossRef]

42. Jud, D.; Kerscher, S.; Wermelinger, M.; Jelavic, E.; Egli, P.; Leemann, P.; Hottiger, G.; Hutter, M. HEAP–The autonomous walking
excavator. Autom. Constr. 2021, 129, 103783. [CrossRef]

43. Shen, Y.; Wang, J.; Feng, C.; Wang, Q. Hybrid-driven autonomous excavator trajectory generation combining empirical driver
skills and optimization. Autom. Constr. 2024, 165, 105523. [CrossRef]

44. Okada, T.; Yamamoto, T.; Doi, T.; Koiwai, K.; Yamashita, K. Database-driven model predictive control system for online adaptation
of an autonomous excavator to environmental conditions. Control. Eng. Pract. 2024, 145, 105843. [CrossRef]

45. Okpala, I.; Nnaji, C.; Gambatese, J. Assessment Tool for Human–Robot Interaction Safety Risks during Construction Operations.
J. Constr. Eng. Manag. 2023, 149, 04022145. [CrossRef]

46. Menendez, E.; Victores, J.G.; Montero, R.; Martínez, S.; Balaguer, C. Tunnel structural inspection and assessment using an
autonomous robotic system. Autom. Constr. 2018, 87, 117–126. [CrossRef]

47. Lattanzi, D.; Miller, G. Review of Robotic Infrastructure Inspection Systems. J. Infrastruct. Syst. 2017, 23, 04017004. [CrossRef]
48. Ge, L.; Sadhu, A. Deep learning-enhanced smart ground robotic system for automated structural damage inspection and mapping.

Autom. Constr. 2025, 170, 105951. [CrossRef]
49. Mirzaei, K.; Arashpour, M.; Asadi, E.; Feng, H.; Mohandes, S.R.; Bazli, M. Automatic compliance inspection and monitoring of

building structural members using multi-temporal point clouds. J. Build. Eng. 2023, 72, 106570. [CrossRef]
50. Zhao, Y.; Lu, B.; Alipour, M. Optimized structural inspection path planning for automated unmanned aerial systems. Autom.

Constr. 2024, 168, 105764. [CrossRef]
51. Zhang, M.; Yang, Y.; Han, S.; Li, H.; Han, D.; Yang, X.; Guo, N. LiDAR-Based Framework for Accurate Positioning and Robust

Tracking of Multiple Construction Workers. J. Comput. Civ. Eng. 2025, 39, 04025027. [CrossRef]
52. Guo, J.; Wang, Q.; Park, J.-H. Geometric quality inspection of prefabricated MEP modules with 3D laser scanning. Autom. Constr.

2020, 111, 103053. [CrossRef]
53. Wang, Q.; Li, J.; Tang, X.; Zhang, X. How data quality affects model quality in scan-to-BIM: A case study of MEP scenes. Autom.

Constr. 2022, 144, 104598. [CrossRef]
54. Yue, H.; Wang, Q.; Zhao, Z.; Lai, S.; Huang, G. Interactions between BIM and robotics: Towards intelligent construction

engineering and management. Comput. Ind. 2025, 169, 104299. [CrossRef]
55. Ren, Z.; Kim, J.I. The Role of AI in On-Site Construction Robotics: A State-of-the-Art Review Using the Sense–Think–Act

Framework. Buildings 2025, 15, 2374. [CrossRef]
56. Park, S.; Yoon, S.; Ju, S.; Heo, J. BIM-based scan planning for scanning with a quadruped walking robot. Autom. Constr. 2023,

152, 104911. [CrossRef]
57. Halder, S.; Afsari, K.; Serdakowski, J.; DeVito, S.; King, R. Accuracy Estimation for Autonomous Navigation of a Quadruped

Robot in Construction Progress Monitoring. In Computing in Civil Engineering 2021; Proceedings; American Society of Civil
Engineers: Reston, VA, USA, 2022; pp. 1092–1100.

58. Asadi, K.; Haritsa Varun, R.; Han, K.; Ore, J.-P. Automated Object Manipulation Using Vision-Based Mobile Robotic System for
Construction Applications. J. Comput. Civ. Eng. 2021, 35, 04020058. [CrossRef]

59. Zhang, G.; Luo, X.; Zhang, L.; Li, W.; Wang, W.; Li, Q. A Framework of Indicators for Assessing Team Performance of Human–
Robot Collaboration in Construction Projects. Buildings 2025, 15, 2734. [CrossRef]

60. Wu, M.; Lin, J.-R.; Zhang, X.-H. How human-robot collaboration impacts construction productivity: An agent-based multi-fidelity
modeling approach. Adv. Eng. Inform. 2022, 52, 101589. [CrossRef]

61. Chen, C.; Li, X.; Yao, W.; Wang, Z.; Zhu, H. Analysis of the impact of construction robots on workers’ health. Build. Environ. 2022,
225, 109595. [CrossRef]

62. You, S.; Kim, J.-H.; Lee, S.; Kamat, V.; Robert, L.P. Enhancing perceived safety in human–robot collaborative construction using
immersive virtual environments. Autom. Constr. 2018, 96, 161–170. [CrossRef]

63. Matheson, E.; Minto, R.; Zampieri, E.G.; Faccio, M.; Rosati, G. Human–robot collaboration in manufacturing applications: A
review. Robotics 2019, 8, 100. [CrossRef]

64. Baltrusch, S.J.; Krause, F.; de Vries, A.W.; van Dijk, W.; de Looze, M.P. What about the human in human robot collaboration?
Ergonomics 2022, 65, 719–740. [CrossRef] [PubMed]

65. Hinds, P.J.; Roberts, T.L.; Jones, H. Whose job is it anyway? A study of human-robot interaction in a collaborative task.
Hum.–Comput. Interact. 2004, 19, 151–181. [CrossRef]

66. Kopp, T.; Baumgartner, M.; Kinkel, S. Success factors for introducing industrial human-robot interaction in practice: An
empirically driven framework. Int. J. Adv. Manuf. Technol. 2021, 112, 685–704. [CrossRef]

67. Molitor, M.; Renkema, M. Human-Robot Collaboration in a Smart Industry Context: Does HRM Matter? Smart Ind.—Better
Manag. 2022, 28, 105–123. [CrossRef]

https://doi.org/10.1016/j.autcon.2021.103899
https://doi.org/10.1016/j.autcon.2021.103783
https://doi.org/10.1016/j.autcon.2024.105523
https://doi.org/10.1016/j.conengprac.2024.105843
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002432
https://doi.org/10.1016/j.autcon.2017.12.001
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000353
https://doi.org/10.1016/j.autcon.2024.105951
https://doi.org/10.1016/j.jobe.2023.106570
https://doi.org/10.1016/j.autcon.2024.105764
https://doi.org/10.1061/JCCEE5.CPENG-6138
https://doi.org/10.1016/j.autcon.2019.103053
https://doi.org/10.1016/j.autcon.2022.104598
https://doi.org/10.1016/j.compind.2025.104299
https://doi.org/10.3390/buildings15132374
https://doi.org/10.1016/j.autcon.2023.104911
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000946
https://doi.org/10.3390/buildings15152734
https://doi.org/10.1016/j.aei.2022.101589
https://doi.org/10.1016/j.buildenv.2022.109595
https://doi.org/10.1016/j.autcon.2018.09.008
https://doi.org/10.3390/robotics8040100
https://doi.org/10.1080/00140139.2021.1984585
https://www.ncbi.nlm.nih.gov/pubmed/34546152
https://doi.org/10.1080/07370024.2004.9667343
https://doi.org/10.1007/s00170-020-06398-0
https://doi.org/10.1108/S1877-636120220000028008


Buildings 2025, 15, 3685 46 of 51

68. Zamboni, M.; Valente, A. Collaborative robots: Overview and future trends. In Industrial Robots: Design, Applications and
Technology; Nova Science Publishers: Hauppauge, NY, USA, 2020; pp. 171–199.

69. Robla-Gómez, S.; Becerra, V.M.; Llata, J.R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J. Working together: A review on
safe human-robot collaboration in industrial environments. IEEE Access 2017, 5, 26754–26773. [CrossRef]

70. Menekse, M.; Higashi, R.; Schunn, C.D.; Baehr, E. The Role of Robotics Teams’ Collaboration Quality on Team Performance in a
Robotics Tournament. J. Eng. Educ. 2017, 106, 564–584. [CrossRef]

71. Taheri, A.; Khatiri, S.; Seyyedzadeh, A.; Ghorbandaei Pour, A.; Siamy, A.; Meghdari, A.F. Investigating the Impact of Human-
Robot Collaboration on Creativity and Team Efficiency: A Case Study on Brainstorming in Presence of Robots. In Proceedings of
the International Conference on Social Robotics, Doha, Qatar, 3–7 December 2023; pp. 94–103.

72. Lin, C.J.; Lukodono, R.P. Learning performance and physiological feedback-based evaluation for human–robot collaboration.
Appl. Ergon. 2025, 124, 104425. [CrossRef]

73. Noormohammadi-Asl, A.; Fan, K.; Smith, S.L.; Dautenhahn, K. Human leading or following preferences: Effects on human
perception of the robot and the human–robot collaboration. Robot. Auton. Syst. 2025, 183, 104821. [CrossRef]

74. Simone, V.D.; Pasquale, V.D.; Giubileo, V.; Miranda, S. Human-Robot Collaboration: An analysis of worker’s performance.
Procedia Comput. Sci. 2022, 200, 1540–1549. [CrossRef]

75. Giallanza, A.; La Scalia, G.; Micale, R.; La Fata, C.M. Occupational health and safety issues in human-robot collaboration: State of
the art and open challenges. Saf. Sci. 2024, 169, 106313. [CrossRef]

76. Maurtua, I.; Ibarguren, A.; Kildal, J.; Susperregi, L.; Sierra, B. Human-robot collaboration in industrial applications: Safety,
interaction and trust. Int. J. Adv. Robot. Syst. 2017, 7, 1–10. [CrossRef]

77. Cheng, Z.; Niu, Z.; Wei, P. Operational skill training needs analysis for manufacturing industry. In Proceedings of the 2011
International Conference of Information Technology, Computer Engineering and Management Sciences, ICM 2011, Nanjing,
China, 24–25 September 2011; pp. 394–397.

78. Jang, Y.; Jeong, I.; Chauhan, H.; Pakbaz, A. Workers? Physiological/Psychological Responses during Human-Robot Collaboration
in an Immersive Virtual Reality Environment. In Computing in Civil Engineering 2023; Proceedings; American Society of Civil
Engineers: Reston, VA, USA, 2024; pp. 461–469.
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163. Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015,

14, 81–95. [CrossRef]
164. Sheridan, T.B. Human–Robot Interaction: Status and Challenges. Hum. Factors 2016, 58, 525–532. [CrossRef]
165. Dishaw, M.T.; Strong, D.M. Supporting software maintenance with software engineering tools: A Computed task–technology fit

analysis. J. Syst. Softw. 1998, 44, 107–120. [CrossRef]
166. Hopko, S.K.; Mehta, R.K.; Pagilla, P.R. Physiological and perceptual consequences of trust in collaborative robots: An empirical

investigation of human and robot factors. Appl. Ergon. 2023, 106, 103863. [CrossRef]
167. Ranz, F.; Hummel, V.; Sihn, W. Capability-based Task Allocation in Human-robot Collaboration. Procedia Manuf. 2017, 9, 182–189.

[CrossRef]
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