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Abstract

Climate change mitigation for the built environment has become a subject of greatest
urgency, as buildings account for nearly 40% of total energy consumption and nearly
one-third of total CO2 emissions. While environmental, social, and governance (ESG)
indicators are increasingly used to monitor sustainability performance, their collective
role in impacting building-related emissions is yet largely under-investigated. The current
research closes that gap through an examination of the ESG dimension–CO2 emissions
intersection of 180 nations from 2000 to 2022, in the hope of illuminating how environmental,
social, and governance elements interact to facilitate decarbonization. The research is
guided by a multi-method design, including econometric examination, cluster modeling,
and machine learning techniques, which provide causal evidence and predictive analysis,
respectively. The findings reveal that the deployment of renewable energy significantly
reduces emissions, while per capita energy use and PM2.5 air pollution exacerbate this effect.
The social indicators show mixed results: learning, women’s parliamentary representation,
and women’s workforce representation reduce emissions, while food production and
growth among the lowest-income individuals demonstrate higher emissions. Governance
demonstrates mixed results as well, with good regulation reducing emissions under specific
conditions yet primarily supporting high-income countries with superior infrastructure.
The examination of clusters reveals that ESG-balanced performance is retained by countries
in the low-emission clusters, whereas decentralized ESG pillars are associated with higher
emissions. Machine learning confirms the existence of non-linear effects and identifies PM2.5

exposure and renewable energy deployment as the strongest predictors of the relationship.
In summary, the findings suggest that successful policies for decarbonizing the built
environment are constructed upon the consistency of environmental, social, and governance
plans, rather than single steps.

Keywords: carbon emissions; ESG indicators; building sector; machine learning;
governance effectiveness

1. Introduction
Climate change is a defining issue of the 21st century. The building sector produces

nearly 40% of global energy demand and a third of CO2 emissions [1]. ESG indicators
are now recognized as standards of sustainability, yet their macro-scale policy applica-
tion is limited [2]. Except for investment screens, ESG proxies institutional strength,
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innovation, and environmental performance. Healthcare and regulation reduce carbon
intensity in industrialized sectors [3]. This study examines the connections between gov-
ernance, education, healthcare, scientific productivity, and construction-sector emissions,
utilizing IPCC data, econometrics, and machine learning [4]. Clustering and variable-
importance mapping reveal cross-country differences and non-linear institution-emissions
relationships. Research gaps are apparent: institutional and socio-ecological determinants
are under-investigated, while technology diffusion and urban energy receive the most
attention [5]. Findings indicate that effective governance attracts investors and that scien-
tific productivity reduces emissions through innovation and policy. Paradoxically, greater
R&D and governance accompany increased emissions, revealing a relationship between
infrastructure growth and emissions [6]. Overall, ESG evidence reveals complex environ-
mental performance determinants and policies that balance development and sustainability.

The article continues as follows: Section 2 reviews the current literature on how ESG
features map onto emissions in buildings, identifying gaps in integrated studies. Section 3
presents a multi-method approach that combines econometrics, clustering, and machine
learning across a global sample from 2000 to 2022. Sections 4–6 study environmental, social,
and governance features in turn. They find unique but correlated effects on emissions.
Section 7 synthesizes findings while highlighting ESG coherence. Sections 8 and 9 present
limitations and conclude on the relevance of ESG to future emission mitigation policy.

The article also contains several appendices dedicated to exploring metric dimen-
sions and analyzing data characteristics: Appendix A provides a comprehensive descrip-
tion of the variables used in the ESG analysis, along with data sources and definitions.
Appendix B presents the summary statistics for the ESG model’s Environmental (E) com-
ponent. Appendix C releases the summary statistics, as well as the robustness checks,
pertaining to the Social (S) dimension. Appendix D provides a summary of the results for
the Governance (G) indicators, as well as their relationship with building-sector emissions.
Appendix E presents diagnostic tests for autocorrelation and heteroscedasticity, ensuring
the robustness of the econometric estimations. Appendix F describes the K-Nearest Neigh-
bors (KNN) regression algorithm used, under the part dedicated to machine learning, the
hyperparameter optimization process.

2. Literature Review
E-Environmental. Several works criticize the application of environmental certification

tools at a symbolic level and a low level of linkage to actual environmental performance.
Ref. [7], for instance, found that ESG tools applied within Florence’s residential policy
did not cause noticeable decreases in gas or energy consumption. Ref. [1] are similarly
critical of the BREEAM system’s application within the UK, as it places too much emphasis
on environmental parameters while losing sight of equity and governance themes. In
India, green certification is shown by [8] to generate higher rent levels, which are thus
socioeconomically exclusionary. The separation between environmental performance and
communication is further exacerbated by the minimal attention to facility-level practices
in the post-construction phase. Whilst some works note positive practices, such as the
use of prefabricated infrastructure for energy use and waste reduction [9], these benefits
remain largely negated mainly due to mixed facility-level practices and maintenance [10,11].
Whilst ref. [10] successfully demonstrates that ESG-certified Class A office stock within
the urban area of Madrid is a reality and firm energy savings occur, these are dependent
upon repeated operating disciplines, such as metering and tenant engagement. This is
reiterated in [12], who emphasize that successful facility practice is a necessity if sustain-
ability practices are to be more than a symbolic application, especially within restrictive
bureaucratic regimes. It has been posited that digital innovation has a solution. Ref. [13]
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speculates about a digital monitoring ESG system that applies to commercial stock in real
estate, but its hypothetical nature, coupled with actual non-verification, limits its current
application. Ref. [14] promote the applications of technology but without any linkages
between technology applications and their resultant sustainability impacts. Ref. [15] concur
with this disconnect and note that Malaysian ESG reporting still tends to be at a rather
transformational level, rather than a reputation level, in its operational application. Other
environmental concerns highlight researchers who study wider energy and pollution infras-
tructures. Ref. [16] cooperate on materials and lifecycle emission traceability but highlight
the basis of materials sustainability in successful use and procurement systems. Likewise,
ref. [17] outline ESG as a “change engine” of construction but highlight common operating
processes between procurement and waste treatment. At the same time, these works sug-
gest that environmental performance within ESG thinking depends not only on innovation
or design but also on process practices designed in and repeated, energy source quality,
and ongoing administrative resolve.

S-Social. The social ESG of the built environment is conceptually applied but lacks
theoretical depth at operational levels. The social ESG literature focuses primarily on
design intention, occupant wellness, and occupant health but underscores the long-term
socially desirable aspects that buildings do. Ref. [18] cite air and light performance research
and studies on occupant satisfaction but remain constrained within first-order design,
missing tenant use and after-occupancy engagement—the sustainability drivers where they
have the most impact in the long term. Equity concerns apply equally to criticism claims.
Ref. [8] conclude that India’s green-awarded buildings rent at higher grade levels and
are consequently exclusionary to poorer rent grades, thus exacerbating urban poverty. By
analogy, ref. [19] cites a dilemma where ESG uptake still largely accrues within cash-based
revenues, but environmental resilience is seldom accompanied by investment in the social
or governance quadrants. Ref. [20] cite environmental and societal forces within real assets
but provide no further explanation at the operational level beyond facilities. Retrofit and
inclusion sustainability reports within comparisons beyond their own region. Ref. [21]
suggest that ESG retrofit within South African facilities might be initiated more often due
to energy blackouts (e.g., load shedding) rather than sustainability targets and will conse-
quently not be maintained in the long term. Ref. [22] further suggest that larger practicum
and service-provider architecture and engineering departments largely direct provision
primarily within the SDGs during preparation intervals but overlook the use of ESG find-
ings some years later. Ref. [23] sketch further ESG research mapping within commercial
real property but concede that facility-level completion is poorly expounded. Social ESG
implementation deterrent concerns often provide structural barriers. Ref. [24] concludes
that tomorrow’s knowledge, ignorance, and operational incompetence remain the main
deterrents to green uptake within Kenya and calls for firm management reinforcement
and institutional reinforcement. These deterrents predict ESG policy change extending
beyond disclosure and design but broader, co-participative engagement and governance.
Even if research works such as ref. [25] assume user behavior modelers and facilities man-
agers to be promoters of ESG outcomes, only frail empirical evidence can be provided,
and experimental confirmation needs to be carried out. G-Governance. Governance is
ESG’s third pillar and key to long-term sustainability within the built environment but
has been revealed to have an inadequate operational governance mechanism. Regulatory
fragmentation and inability to maintain follow-up on constructed buildings are common
attributes of certain studies.

G-Governance. Systemic ESG issues, such as inefficient regulatory coordination and
regulatory gaps, are highlighted in [26]. Ref. [27] clearly suggest that operational data
requirements remain a consideration; however, minimal consideration continues to be given
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to the long-term ESG performance effects emanating from facility-level operations. Physical
elements of design often drive ESG implementation, but ref. [28] finds that it is further
influenced by administrative rituals, such as communication between relevant parties
and energy use tracking, thereby encapsulating building management within governance
effectiveness. Contract provisions that interface with ESG obligations at inception, between
design and everyday use, are featured in [29]. This continues to be carried forward by [30],
who suggest that Chinese agendas incorporate ESG into property agendas, but making such
incorporation a reality in everyday operational use remains elusive. But policy and financial
arrangements fail in governance. Investment programs, such as sustainable investments,
offer positive financial returns but do not necessarily raise doubts about whether they
lead to reform at a facility level [31]. Likewise, ref. [32] note that, while tenants account
for ESG certificates within rent premiums, administrators of buildings seldom receive
assessments regarding their compliance with ESG standards in the long term, resulting in a
gap between market incentives and governance accountability. A green certificate often fails
to institutionalize governance in most instances. Ref. [33] note that standardized certificate
requirements mostly overlook the operational dimension—the dimension where attention
is focused on documentation but not on use. Only in a similar manner do ref. [34] identify
gaps between taxonomy at an EU level and schemes such as BREEAM-SE, inducing distress
in building managers in making long-term compliance plans. Refs. [35,36] go further to
identify how reform efforts within facilities’ sectors primarily call upon ESG but without
designing operationally successful observance systems. Furthermore, managers’ roles
within buildings and facilities’ governance are repeatedly mentioned in some studies.
Ref. [37] identify an increase in property uptake but overlook the facilities’ use of smart
technology, while ref. [12] suggest that post-construction monitoring often falls victim to
administrative inertia. Ref. [11] again sarcastically identifies ESG compliance and repeatable
operating commitments as supporting governance’s role at a building level. If there are no
enforcing processes in place, then the ESG will be susceptible to becoming a label rather
than a change-based governing process.

Governance, ESG’s third pillar, is central to making the constructed environment
sustainable in the long term; however, operating governance mechanisms are surprisingly
absent in the literature. Some of the literature refers to regulatory gaps and disjointed
follow-up after construction. Ref. [26] present evidence of structural ESG challenges, such
as non-coordination and regulatory gaps. Ref. [27] refer to operational data requirements
that are increasingly accepted; however, facility-level, everyday processes are essentially
left out of consideration for their contribution to long-term ESG performance. Ref. [28]
reveals that ESG is not only administratively applied to the physical side of processes but
also in processes such as tracking edifice management and energy, and this is at the core of
governance performance. Ref. [29] suggest that contractual clauses bring ESG requirements
into conception and link design and everyday implementation. This is also reported by [30],
who note that ESG adoption is becoming integrated but does not yet seem to be translating
into regular operational practice. However, governance also raises questions about policy
and the limits of finances. Ref. [31] reveals evidence that sustainable investment funds
yield better monetary returns, but does not raise questions about whether these investment
increments have a tangible impact on governance at the executive level. Likewise, ref. [32]
report that tenants pay premiums for ESG certification, and facade managers work mainly
but are seldom measured, on compliance with ESG requirements; an increasingly significant
gap is emerging between market incentives and accountability in governance performance.
Green certification does not institutionalize governance. Ref. [33] conclude that certified
requirements tend to exclude the operational dimension—the theory of documentation,
instead. Likewise, ref. [34] identify inconsistencies between the EU taxonomy and local
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sets, such as BREEAM-SE, which makes it challenging for edifice managers to devise
long-term compliance strategies. Refs. [35,36] further outline, based on construction reform,
often relying on ESG but not converting it into operationally reflective mechanisms of
oversight. Lastly, facilities governance and the positions of building managers receive
attention in several remarks. Ref. [37] refer to innovative technological development at a
property level but not facility managers’ application of such technology. Ref. [12] note that
post-construction monitoring is often hindered by administrative routine inertia. Ref. [11]
personally equates ESG compliance with reproducible operational necessities and reiterates
the governance function at a building level. Without enforceable, evolutionary standards,
ESG risks amount to a label but not a transformational governance role (Table 1).

Table 1. ESG dimensions and their property-level implications in the building sector.

ESG Dimension References Main Results Comparison with Our Study

E-Environmental [1,7–17,20,28,30–32,35–40].

ESG certifications and
technologies are often
disconnected from actual
emission outcomes;
operational routines are
key but under-applied.

Our study directly quantifies
the impact of environmental
ESG indicators (e.g.,
renewable energy, air quality)
on building emissions,
validating their role with
econometric models.

S—Social [8,18–25,29].

Social aspects are
conceptually
acknowledged but rarely
implemented operationally;
issues of equity, inclusion,
and behavior are
underdeveloped.

Our study empirically links
social variables (e.g., gender
equity, income equality, labor
participation) to emission
levels, revealing both
mitigation and
rebound effects.

G—Governance [1,10–12,15,17,19,24,26–36,39–44].

Governance is often
fragmented; regulation and
institutional routines are
disconnected from
long-term ESG outcomes.

Our study finds that
governance indicators (e.g.,
government effectiveness,
political stability) may
paradoxically correlate with
higher emissions, especially in
higher-income countries,
highlighting the complexity of
governance–ESG links.

3. Modeling Building-Related Emissions Through ESG Dimensions: A
Multi-Method Analysis Using Econometrics, Clustering, and
Machine Learning

The built environment and climate change cannot be separated. The building sector
accounts for approximately one-third of global CO2 emissions [1]. The current research
examines building-sector CO2 emissions against the ESG prism. Multi-method research
combines econometrics, clusterization, and machine learning. The panel econometrics com-
prises 180 nations (2000–2021). Fixed- and random-effect regressions are linked between
building emissions and environmental, social, and governance indicators [45,46]. National
typologies are highlighted by cluster analysis. Normalized ESG–emissions data cluster
states into groupings with similar structures or fragmented profiles [47,48]. Supervised
machine learning also preserves non-linear relationships. Random Forest, SVR, k-NN,
and Boosting predict and rank ESG attributes by importance [49,50]. Results converge.
Balanced ESG pillars are associated with lower emissions. Broken governance or weak
social equity are associated with higher emissions [51,52]. Results show interdependence.
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Environmental action becomes effective only if governance and social equity co-evolve.
Disjointed ESG pillars are ineffective for lowering emissions. This triangulative approach
clears up causal, predictive, and structural dynamics. The strong triangulation of economet-
rics, cluster analysis, and machine learning enhances validity [53–55]. Policy prescriptions
are immediate: decarbonization of buildings is achievable only with governance quality,
social inclusiveness, and environmental enforcement simultaneously. Fragmented ESG
strategies are unsuccessful. See Figure 1. A complete description of the variables used to
estimate the ESG model is provided in Appendix A.

Figure 1. Multi-method analytical framework for ESG-driven building sector decarbonization.
Note: Multi-method analytical framework for modeling building sector CO2 emissions using ESG
indicators. The framework begins with the decomposition of ESG into Environmental (E), Social
(S), and Governance (G) dimensions (Panel (A)), followed by econometric modeling through fixed
and random effects using panel data from 180 countries over 2000–2022 (Panel (B)). Clustering
techniques (Panel (C)) such as density-based and hierarchical algorithms are applied to uncover
emission patterns. Finally, machine learning regression models (Panel (D)) including k-NN, Random
Forest, and SVM are used to predict emissions. This integrated approach captures both causal
relationships and complex predictive patterns across ESG dimensions.

4. Decoding Building Emissions: Environmental Drivers in an ESG
Framework (2000–2022)

Estimating the environmental determinants of building-related carbon dioxide emis-
sions (BCE) holds the key to synchronizing the policies of decarbonization with ESG (envi-
ronmental, social, and governance) targets. This section introduces the first phase of the
empirical work on analyzing the effect of environmental indicators on BCE during the years
2000–2022 in 180 countries. With the help of fixed and random effects panel regressions, the
study evaluates the effect of prominent energy and pollution-based indicators—access to
clean fuels (CFTC), electricity access (ELEC), per capita energy usage (ENUC), particulate
matter pollution (PM2.5), and renewable energy contribution (RENC)—on building-related
emissions. The outcomes serve as a quantitative underpinning for the interpretation of
the environment’s sustainability through the lens of ESG and present direct and indirect
channels through which energy systems impact outcomes on emissions. This model forms
a crucial diagnostic tool through which one can assess the environment’s performance as
well as the structural dynamics shaping carbon intensity in the built environment on an
evidence-based trajectory. The metric characteristics of the variables used to estimate the
ECB component with respect to the E-Environmental variables within the ESG model are
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summarized in Appendix B. Diagnostic tests for autocorrelation and heteroscedasticity for
the econometric estimates are provided in Appendix E.

4.1. Modeling the Environmental Determinants of Building Emissions: A Global ESG-Informed
Econometric Analysis

To quantify the environmental determinants of building-related carbon emissions
(BCE), this section presents a panel regression model estimating the effects of key energy-
related indicators. Drawing on data from 180 countries over the period 2000–2022, the
model incorporates variables aligned with the “E” pillar of the ESG framework, including
clean fuel access, electricity availability, per capita energy use, PM2.5 exposure, and renew-
able energy consumption. The analysis employs both fixed and random effects estimators,
with results providing robust statistical insights into how national energy infrastructure
and environmental conditions shape BCE outcomes globally.

Specifically we have estimated the following equation:

BCEit = α1 + β1(CFTC)it + β2(ELEC)it + β3(ENUC)it + β4(PM25)it + β5(RENC)it

where i = 180 and t = 2000–2022. The results are shown in the following Table 2.
Building-sector CO2 emissions (BCE) are a key environmental (E) metric within the

ESG framework, making use of 180 countries’ (2000–2022) panel data. The approach relates
BCE to accessibility, quality, and composition of energy, including cleaner fuel transition
(CFTC), electricity accessibility (ELEC), per capita energy use (ENUC), exposure to PM2.5,
and use of renewable energy (RENC). The results establish that CFTC stimulates social
performance while increasing BCE unless fueled by low-carbon energy [48,54]. On the
contrary, a transition to electricity reduces the rate if electricity is generated from cleaner
sources, thereby maintaining ESG co-benefits for universal electricity accessibility [56].
Increasing ENUC matches with rising emissions, making efficiency policies relevant for
high-consumption nations. From a governance (G) perspective, proper planning, conserva-
tion incentives, and regulating energy-intensive tech are central [57]. PM2.5 exhibits a high
and desirable correlation with BCE, supporting the convergence between environmental
damage and public health hazards and integrating the E–S pillars within ESG. On the
contrary, the use of renewable energy (RENC) shares a high negative correlation with
emissions, validating green energy as a prime avenue for a resilient future. The fixed-effect
formulation yields a high R2 value for the panel estimates, validating the use of BCE as
a robust metric for ESG while accounting for country-wise dissimilarity. The results, in
general, reveal that electrification and renewables lead to abatement of emissions, while
energy efficiency is crucial for offsetting per capita demand growth [54,56]. The linkage
between BCE and PM2.5 provides a compelling rationale for integrating policies on both air
quality and climate that need to be globally instituted, especially for emerging economies
with lower regulations [48]. The results position BCE at the core of ESG performance,
where the building sector’s performance is dependent on accessibility, quality, efficiency,
and governance [47,57].

Table 2. Results of the panel data.

Random Effects (GLS), Using 990 Observations,
Dependent Variable: BCE

Fixed Effects, Using 990 Observations
Dependent Variable: BCE

Coefficient Std. Error z Coefficient Std. Error t-Ratio

const 9.3166 11.6274 0.8013 10.2987 10.6061 0.9710

CFTC 0.318025 *** 0.0842985 3.773 0.355114 *** 0.0893023 3.977
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Table 2. Cont.

Random Effects (GLS), Using 990 Observations,
Dependent Variable: BCE

Fixed Effects, Using 990 Observations
Dependent Variable: BCE

Coefficient Std. Error z Coefficient Std. Error t-Ratio

ELEC −0.245591 *** 0.0923988 −2.658 −0.273064 *** 0.0964139 −2.832

ENUC 0.00269113 *** 0.000691466 3.892 0.00284832 *** 0.000735797 3.871

PM25 0.664678 *** 0.131472 5.056 0.691987 *** 0.144470 4.790

RENC −0.489147 *** 0.104604 −4.676 −0.513324 *** 0.112617 −4.558

Statistics

Mean dependent var 2.480 2.480

Sum squared resid 5,836,005 90,688

Log-likelihood −5702 −3640

Schwarz criterion 11,445 8.413

Rho 0.756174 0.756174

S.D. dependent var 7.753

S.E. of regression 7.697

Akaike criterion 11,416

Hannan–Quinn 11,427

Durbin–Watson 0.324935

LSDV R-squared 0.984747

LSDV F(163, 826) 3.271

Test

‘Between’ variance = 4971.73, ‘Within’
variance = 91.6047, mean theta = 0.935247, Joint
test on named regressors—Asymptotic test
statistic: chi-square(5) = 109.56 with
p-value = 5.0646 × 10−22

Joint test on named regressors—
Test statistic: F(5, 826) = 20.981
with p-value = P(F(5, 826) > 20.981) = 8.85584 × 10−20

Breusch–Pagan test—Null hypothesis: Variance
of the unit-specific error = 0, Asymptotic test
statistic: chi-square(1) = 3155.73 with p-value = 0

Test for differing group intercepts—Null hypothesis:
The groups have a common intercept
Test statistic: F(158, 826) = 319.607
with p-value = P(F(158, 826) > 319.607) = 0

Hausman test—Null hypothesis: GLS estimates
are consistent, Asymptotic test statistic:
chi-square(5) = 5.09644, with p-value = 0.404224

Note: *** p < 0.01.

4.2. Evaluating Clustering Strategies for Building Emissions: A Multi-Metric Comparison

To disclose building-related carbon emission (BCE) global patterns and underly-
ing country groupings that are structurally regular, we employ clustering techniques.
Six methods are systematically compared across ten standardized performance measures,
which vary from statistical fit and cohesion to quality of separation. The comparative
benchmarking identifies the best possible segmentation technique for emission profiles,
ensuring appropriate classification across countries by BCE structure. Moving beyond the
selection of techniques, the application of clustering supports the interpretational strength
of diagnostics that are ESG-based through correlation with environmental indicators. The
approach possesses both technical sophistication and analytical coherence and constitutes a
tool that scales for comparing emission dynamics across diverse country settings (Figure 2).



Buildings 2025, 15, 3601 9 of 72

Figure 2. Comparative performance of clustering algorithms on building-related carbon emissions
(BCE) profiles across ten normalized metrics.

Six cluster procedure performances were compared against ten standardized indices
(R2, AIC, BIC, silhouette, Dunn, maximum diameter, minimum separation, entropy, and
Calinski–Harabasz), each on a 0–1 scale. The density-based algorithm performed excep-
tionally well, achieving a mean score of 0.599, surpassing the optimal AIC and BIC (1.0)
and achieving perfect separation indices (1.0), which is typical for well-defined and tightly
clustered data [58]. Its silhouette value was high (0.8), beaten only by hierarchical (1.0),
and satisfactory performance on maximum diameter (0.696) and Pearson’s γ (0.489). On R2

and entropy, they performed poorly, although these indices are better suited for non-linear
cluster shapes and are more suitable for DBSCAN [59]. Hierarchical was best in terms of
R2, silhouette, and γ while performing poorly in terms of separation, suggesting potential
overfitting. The neighborhood- and model-based techniques showed one-dimensional
strengths and mixed performance. The density-based approach showed the best-rounded
performance and handles noisy or cluttered data the best.

Evaluating Cluster Quality and Structure in ESG-Driven Density-Based Analysis

This section reports on results from density-based environmental and energy indicator
clustering relevant to ESG (environmental, social, governance). The leading indicators—
clean fuel access (CFTC), electricity access (ELEC), per capita energy use (ENUC), PM2.5

exposure, and renewable energy use (RENC)—produced several sharply differentiated
clusters and one noise group. The clusters varied in size, shape, and separation, as indi-
cated by the within-cluster sum of squares (WSS), explained heterogeneity, and silhouette
statistics. The latter two statistics corroborate both statistical stability and interpretational
soundness of the solution. The results link country energy infrastructures and environmen-
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tal configurations with building-related CO2 emissions (BCE) and reveal clustering as a
gauge for benchmarking and ESG-centered sustainability reporting (Table 3).

Table 3. Cluster characteristics from density-based clustering on ESG-linked energy and environmen-
tal indicators.

Cluster Noise Points 1 2 3 4 5

Size 1 949 6 6 20 8

Explained proportion
within-cluster heterogeneity 0.000 0.999 8.471 × 10−4 2.529 × 10−5 1.102 × 10−5 4.580 × 10−4

Within sum of squares 0.000 4.584 3.888 0.116 0.051 2.103

Silhouette score 0.000 0.347 0.632 0.968 0.985 0.820

The DB model identified one noise point and five distinct clusters. The cluster qual-
ity was determined based on size, explained variance, WSS, and silhouette measure.
The noise point, a typical DBSCAN characteristic [60], exhibited a WSS and silhouette
value of 0, indicating evident separation from the cluster. Cluster 1, with 949 data points,
exhibited high explained variance (0.999) but low isolation (silhouette = 0.347) and was
therefore observed to create an overlap boundary artifact [61]. Clusters 2–5 were much
smaller, each having between 6 and 20 data points. Cluster 4 was an outlier (WSS = 0.051;
silhouette = 0.985), and Clusters 3 (silhouette = 0.968), 5 (0.820), and 2 (0.632) also passed
the 0.5 interpretability cutoff [62]. The entire cluster display showed primarily spherical,
compact shapes with acceptable isolation, although resolution within the noise was low.
Cluster 1 showed lower discrimination compared to the small clusters, which exhibited
sharper and clearer groupings (Figure 3).

Figure 3. Mean indicator values for ESG-based clusters identified through density-based clustering.
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Examining the environmental (E) pillar within ESG, the model correlates building-
related CO2 emissions (BCE) with a set of five indicators: clean cooking fuels (CFTCs),
electricity access (ELEC), per capita energy use (ENUC), PM2.5 exposure, and renewable en-
ergy share (RENC). The strategy is consistent with integrated sustainability indices [63,64].
The nations fall within six groups. Cluster 0 represents energy poverty, characterized by
low electricity, high PM2.5 levels, low renewable energy sources, and a moderate BCE.
Cluster 1 has balanced and low BCE regimes. Cluster 2 is more closely associated with
high pollution and low renewable energy sources and thus receives a moderate BCE from
fossil-heavily dominated urban–industrial systems. Cluster 3 achieves high electricity
and renewables, as well as moderate BCE, due to efficiency gains. Cluster 4 has very
low BCE and PM2.5 levels, which is likely due to its nuclear or hydrocarbon dependence.
Cluster 5 balances clean energy and low pollution yet maintains a moderate BCE, charac-
teristic of efficient, high-income fossil fuel economies. Overall, each cluster plots distinct
energy–environment portfolios, testifying to how integrating indicators strengthens the
ESG diagnostics (Figure 4).

Figure 4. DBSCAN clustering and 5-Nearest Neighbor distance plot for environmental indicator-
based country segmentation.

4.3. Explaining Carbon Emissions in the Built Environment: A Comparative Machine
Learning Approach

This section presents a rigorous comparison of multiple machine learning regres-
sion models—ranging from ensemble methods to neural networks and proximity-based
learners—evaluated through standardized performance metrics. By identifying the most
reliable and accurate algorithm for predicting building-sector emissions, the analysis sheds
light on model suitability and interpretability, with a particular focus on the role of lo-
cal energy consumption, pollution exposure, and access variables in shaping emissions
profiles (Figure 5).

Model performance was evaluated using MSE, RMSE, MAE, MAPE, and R2, with the
metrics normalized and inverted for ease of comparison. Composite scores showed that
k-Nearest Neighbors (k-NNs) strongly dominated the rest, with error rates being low and
an R2 level of 1.0, consistent with a perfect explanation of variance. This is the fit between
k-NN’s similarity principle and patterned data structures, as well as its adaptiveness with
weak functional assumptions [65]. Despite the risk of overfitting driven by a perfect score,
k-NN performed strongly across various error measures. Compared to that, Boosting
yielded similar results with higher errors and lower R2 [66]. Decision Trees overfitted
(low MSE but R2 = 0), while linear, regularization, and neural network models lacked
complexity. Random Forest was stable without localized precision. Overall, k-NN’s high
level of accuracy, along with its parsimonious and flexible character, highlights its strength
for locally regularized data in empirically tested, simple models, consistent with prior
results in software engineering estimation [67]. See Figure 6.
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Figure 5. Comparative performance of machine learning regression models for predicting building-
sector CO2 emissions.

Figure 6. Feature importance rankings based on mean dropout loss in predicting building-
sector emissions.

By applying k-Nearest Neighbors (k-NNs) with dropout loss (RMSE on
50 permutations), we determined significant environmental associates for building-related
CO2 emissions (BCE) in the ESG “Environment” pillar. The power consumption of fossil
fuel use, combined with simultaneous air conditioning and heating, was the top contributor
to air pollution (PM2.5) (90.969), highlighting the significant impact of fossil fuel use on
power, heating, and air conditioning consumption, as well as the climate–health hazard
associated with decarbonization policy [62]. Consumer energy consumption of renewable
energy (RENC) came a close second (76.284), indicating a reduction in carbon intensity and
facilitating policy-mandated decarbonization [65]. Clean fuel for cooking (CFTC) came
in a distant third (68.672), associated with biomass dependence and the infrastructural
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vulnerability of low-income countries [68]. Energy use per capita (ENUC) (63.747) delivered
demand-side increases in emissions, while electricity penetration (ELEC) delivered the
weakest effect (40.879) due to near-universal penetration. Overall, PM2.5 and RENC were
chief initiators, followed by CFTC and ENUC, and followed by marginal ELEC. The impli-
cations are for renewable installation, clean fuel consumption, and air quality management
as central BCE mitigation activities within ESG policy. See Figure 7.

Figure 7. Additive feature contributions to building CO2 emissions predictions (test cases).

Additive decompositions for k-NN predictions of building-related CO2 emissions
(BCE) provide contributions for clean fuels (CFTC), electricity access (ELEC), energy use
per capita (ENUC), PM2.5, and renewables (RENC) compared to a base level of 25.434.
For Case 1 (BCE = 12.257), maximum reduction (−16.664) was brought on by low PM2.5,
in line with evidence for air quality and emissions associations [62]; ENUC and RENC
reduced, while CFTC and ELEC increased emissions by higher accessibility [65]. For
Case 2 (BCE = 0.500), a reduction was observed for PM2.5 (−17.110) and ENUC/RENC,
offset by CFTC and ELEC, which is typical for low-emitting systems. For Case 3
(BCE = 18.570), a notable reduction by ENUC (−13.891) was offset by a favorable effect by
RENC (+9.796) and ELEC. For Cases 4–5 (BCE = 4.024), the high negative contributions
for ELEC (−20.170; −18.398) indicate a preference for low-carbon generating alternatives,
such as hydro. Generally, PM2.5 and RENC are repeated movers for BCE reduction, while
accessibility-related indicators (CFTC, ELEC) increase or decrease emissions according
to system efficiency and mix. The exploratory findings for these jobs in ML reveal clean
energy and air quality as the key factors for ESG policy [68]. See Figure 8.



Buildings 2025, 15, 3601 14 of 72

Figure 8. Additive feature contributions to building-related CO2 emissions: k-NN model explanations
across five cases.

5. Equity, Participation, and Emissions: Social Determinants of
Building-Sector CO2

This paper examines the linkage between building-sector CO2 emissions (BCE) and
social development indicators within the context of ESG, with a focus on the oft-overlooked
“Social” pillar. Using panel econometrics and machine learning, we quantify the impact of
distributive income inequality, labor force participation, educational parity, food output,
and female political empowerment on the level of emissions. The results demonstrate
robust relationships across specifications: distributive income inequality and higher food
production are linked with higher emissions, while schooling and female political repre-
sentation are linked with reductions. The relationships reveal that social equity, economic
inclusion, and institutional representation are stimulants to sustainable environmental
performance and not just moral prescriptions. The integration of social considerations
into ESG assessment enhances predictive strength and highlights how inclusive policy
directly impacts long-term decarbonization trajectories. The metric characteristics of the
variables used to estimate the ECB component with respect to the S-Social variables within
the ESG model are summarised in Appendix C. Diagnostic tests for autocorrelation and
heteroscedasticity for the econometric estimates are provided in Appendix E.

5.1. Social Dimensions of Carbon Emissions: A Panel Data Approach to the Building Sector

This subsection applies panel data econometrics to estimate the degree to which social
considerations drive building-sector CO2 emissions (BCE). From a universe of 180 nations
and over 1200 observations, drawn from a global dataset, the research tests associations
between emissions and a group of five indicators: food production (FOOD), female parity
in primary schooling (GPIE), income share for the bottom 20% (INC20), labor force partici-
pation (LABF), and women in legislatures (WPAR). Fixed- and random-effect regressions
forecast the size and significance of impacts. Results show that country-level emission
profiles are shaped by social equity, accessibility of schooling, and political representation,
demonstrating the importance of social dimensions as a driver of ESG-related sustainability,
rather than a side concern.

Specifically, we have estimated the following equation:

BCEit = α+ β1(FOOD)it + β2(GPIE)it + β3(INC20)it + β4(LABF)it + β5(WPAR)it

where i = 180 and t = 2000–2020 (Table 4).
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Table 4. Impact of social indicators on building-related CO2 emissions: fixed-effect and random-effect
panel regression results (2000–2020).

Fixed Effects, Using 1246 Observations
Dependent Variable: BCE

Random Effects (GLS), Using 1246 Observations
Dependent Variable: BCE

Coefficient Std. Error t-Ratio Coefficient Std. Error z

const 46.5798 *** 8.08670 5.760 36.0405 10.5431 3.418

FOOD 0.0863615 *** 0.0236010 3.659 0.0868547 0.0233877 3.714

GPIE −0.00173333 ** 0.000727140 −2.384 −0.00171224 0.000720050 −2.378

INC20 0.454688 ** 0.215227 2.113 0.451706 0.213527 2.115

LABF −0.323534 *** 0.114301 −2.831 −0.299359 0.111774 −2.678

WPAR −0.169214 *** 0.0504386 −3.355 −0.169434 0.0499015 −3.395

Statistics

Mean dependent var 31.32247 Mean dependent var 31.32247

Sum squared resid 73,866 Sum squared resid 9479

LSDV R-squared 0.992108 Log-likelihood −7335.684

LSDV F(142, 1103) 976.5221 Schwarz criterion 14,714

Log-likelihood −4311.281 Rho 0.727702

Schwarz criterion 9641.822 S.D. dependent var 86.70740

Rho 0.727702 S.E. of regression 87.39678

S.D. dependent var 86.70740 Akaike criterion 14,683

S.E. of regression 8.183426 Hannan–Quinn 14,694

Within R-squared 0.032513 Durbin–Watson 0.486805

p-value (F) 0.000000

Akaike criterion 8908.562

Hannan–Quinn 9184.263

Durbin–Watson 0.486805

Tests

Joint test on named regressors—
Test statistic: F(5, 1103) = 7.41335
with p-value = P(F(5, 1103) > 7.41335) = 7.51925 × 10−7

‘Between’ variance = 6423.31, ‘Within’ variance = 59.2827,
mean theta = 0.953035, Joint test on named
regressors—Asymptotic test statistic:
chi-square(5) = 36.391 with p-value = 7.93233 × 10−7

Test for differing group intercepts—
Null hypothesis: The groups have a common intercept
Test statistic: F(137, 1103) = 1002.32
with p-value = P(F(137, 1103) > 1002.32) = 0

Breusch–Pagan test—Null hypothesis: Variance of the
unit-specific error = 0
Asymptotic test statistic: chi-square(1) = 5098.24, with
p-value = 0

Hausman test—Null hypothesis: GLS estimates are
consistent, Asymptotic test statistic:
chi-square(5) = 2.65474
with p-value = 0.753031

Note: *** p < 0.01, ** p < 0.05.

This paper positions building-sector CO2 emissions in the ESG matrix with a focus on
the overlooked “Social” pillar. Using panel econometrics with fixed- and random-effect
specifications, we test four social indicators—gender parity in primary schooling (GPIE),
income share for the poorest 20% (INC20), labor force participation (LABF), and women in
parliament (WPAR)—for their roles in signaling educational equity, income distribution,
labor inclusiveness, and political representation. Results reveal robust associations. Female
schooling (GPIE) is associated with lower pollution, confirming the value of schooling
in sustainability [69]. Political representation for women (WPAR) also reduces pollution,
corroborating evidence that female empowerment produces cleaner building codes, en-
ergy standards, and solar subsidies [70,71]. Increasing participation in the labor force
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(LABF) has a negative impact on residential energy use, suggesting that jobs lead to greater
efficiency [72]. Increasing incomes for the poorest (INC20), however, drive up pollution,
since new consumption creates more carbon-demanding use from illumination and domes-
tic appliances [73]. Poverty reduction thus demands simultaneous investments in solar
infrastructure and energy literacy. Generally, social equity, inclusiveness, and political
representation are key drivers of the low-carbon transition, not adjuncts. Building on
data for 180 countries over one generation, the study confirms the universality of these
associations [74]. Low-carbon inclusivity demands the union of social justice and environ-
mental defense.

5.2. Clustering Social Determinants of Emissions: An Evaluation of Algorithmic Performance

This research positions building-sector CO2 emissions within the ESG framework,
aiming to address the often-overlooked “Social” pillar. With fixed- and random-effect panel
econometrics, we study the effect on CO2 emissions from female parity in primary schooling
(GPIE), income share for the poorest 20% (INC20), labor force participation (LABF), and
women in parliament (WPAR) as proxies for educational equity, income distribution,
labor inclusion, and political voice. Results show high associations. GPIE is significantly
linked to negative CO2 impacts, highlighting the importance of female education for
sustainability [69]. Likewise, a negative effect emerges for WPAR, supporting the results
that female political leadership is associated with greener building codes, energy codes,
and green and renewable subsidies [70,71]. A correlation emerges between residential
energy consumption and LABF, indicating a link to job efficiency [72]. INC20 appears to be
significantly linked with CO2 increases, as higher incomes for the poor result in a boost to
fossil-intensive consumption [73]. The result supports the notion that the “Social” pillar is
central, not peripheral, to ESG. Across over 180 countries spanning multiple generations,
the research establishes the universality of these associations [74], thus supporting the
notion that low-carbon transitions that are inclusive depend on aligning social equity and
environmental protection. See Figure 9.

 

Figure 9. Comparative performance of clustering algorithms for ESG-based environmental data:
evaluation across statistical and validity metrics.
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We experimented with six clusters—density-based, Fuzzy C-means, hierarchical,
model-based, neighborhood-based, and Random Forest—with ten validity indices (R2, AIC,
BIC, entropy, silhouette, maximum diameter, minimum separation, Pearson’s γ, Dunn, and
Calinski–Harabasz). They measure fit, error minimization, and quality structure in high-
dimensional ESG data. Model-based and Random Forest excelled in R2 (0.003), although
their superiority over other techniques was slight, while density-based and neighborhood-
based performed the worst (0.001). Random Forest performed best on AIC and BIC
(0.016; 0.017), with model-based a close second (0.011; 0.012), indicating that explanatory
strengths predominated over penalties for complexity [75]. Separation and silhouette
measures were close to zero across techniques, with density-based being slightly higher
(0.004), indicating a weak cluster definition. Dunn indices were unanimous zero, supporting
reports that compaction in ESG clusterings was low [76]. Entropy measures varied on a
small scale, with model-based (0.008) and Random Forest (0.007) best. Calinski–Harabasz
was a flat 1.0, likely due to normalization. Overall, Random Forest was the best-balanced
performer, excelling in AIC, BIC, and entropy, while tying with model-based on R2. Fuzzy
C-means, hierarchical, and neighborhood-based were inconsistent performers, with near-
zero separation and validity [77].

Decoding Emissions and Equity: A Density-Based Clustering Approach to ESG
Social Metrics

The research employs a density-based cluster model to analyze an ESG-related en-
vironmental dataset in the context of sectoral CO2 emissions and certain societal devel-
opment indicators. The cluster structure identifies four clusters and one outlier, covering
both leading and niche configurations in the societal development and emissions process.
The evaluation determines compactness and distinctiveness within the cluster, as well as
within-cluster heterogeneity, using Silhouette indices and the respective sum of squares,
along with their explanatory power. The model acknowledges an implicit consideration
of the interrelation between environmental impact and societal dimension, thereby pro-
viding a more refined explanation for the diverse sustainability trajectories across nations.
See Table 5.

Table 5. Cluster characteristics from density-based clustering of ESG and building CO2

emissions data.

Cluster Noise Points 1 2 3 4

Size 1 1188 21 15 21

Explained proportion
within-cluster heterogeneity 0.000 0.956 0.006 0.002 0.036

Within sum of squares 0.000 2.288 13.632 5.502 84.952

Silhouette score 0.000 0.618 0.851 0.878 0.768
Note: The between sum of squares of the 4-cluster model is 5054.78. Note: The total sum of squares of the 4-cluster
model is 7447.41.

The density-based strategy identified four large and one noise point group, based
on the number of firms, captured heterogeneity, as accounted for by WSS, and silhouette
statistics. The largest group (Cluster 1), comprising 1188 firms, exhibited 95.6% within-
cluster heterogeneity; it had a high size-related WSS (2,288,542) and a moderate silhou-
ette (0.618), characteristics typical of large heterogeneous groups [78]. The small lumps
(Clusters 2–4), comprising 21, 15, and 21 firms, were better defined and higher on sil-
houettes (0.851, 0.878, 0.768) and low on WSS (13,632; 5502; 84,952). The overall model
explained 67.9% of the variance (BSS = 5054.78, TSS = 7447.41), characteristic of strong
unsupervised performance on non-convex shapes [78]. One noise point signals aptness for
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ESG data, where such points typically flag data errors or outlier performers [79,80]. The
output produces one large, heterogeneous cluster and three small, tight groups, suggest-
ing the possibility of extracting both pervasive shape and weak ESG-related information.
See Figure 10.

Figure 10. Cluster centroids from density-based model: ESG and building CO2 emissions contextual-
ized by social indicators.

The density-cluster model associates building-sector CO2 emissions (BCE) and social
indicators—food production (FOOD), gender parity in primary enrolment (GPIE), income
share of the poorest 20% (INC20), labor force participation (LABF), and women in parlia-
ment (WPAR)—for the “S” component of ESG. Cluster 0 has a low BCE (−0.354), high food
production (FOOD = 4.285); however, it exhibits low equity within genders and income
levels (≈ −0.1) and low labor force participation (LABF = −1.442). High rates of women
in parliament (1.410) reflect middle-income countries where political representation has
caught up with educational and labor advances [81]. Cluster 1 represents a moderately neg-
ative BCE (−0.117) with balanced rates across indicators, typical of transitional economies
close to global means, served by a limited mix and efficient social infrastructure [82].
Cluster 2 includes high BCE (6.826) and weak social performance—negative GPIE (−0.129),
INC20 (−0.236), and WPAR (−0.107), with just slightly favorable participation in the labor
force (LABF = 0.548)—typifying industrial economies that are pollution-increasing and
structurally inequitable and relying on fossil fuel [51]. See Figure 11.
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Figure 11. Clustering the social foundations of building emissions: ESG-based density model output.

Cluster 3 has a low BCE (−0.337) yet extremely heterogeneous social indicators, char-
acterized by extremely low labor participation (−4.439; −2.845) and exceptionally high
female parliamentary representation (2.214). This profile characterizes scenarios in which
narrow labor market inclusion coexists with political equity advances and low emissions
being a by-product more of poverty limits than on-regulation across emissions, consistent
with evidence that poor economies are lower emitters yet development challenges [83,84].
Cluster 4 exhibits a near-neutral BCE (0.044) but high social performance variability, char-
acterized by high GPIE (7.518), INC20 (7.328), and WPAR (4.165), which are accompanied
by low LABF (−4.759) and a negative FOOD (−3.916). They are possible high-income
scenarios with equitable allocations, yet structural economic limits. Past research has
confirmed non-linear and, at times, negative associations between social indicators and
emissions [51]. On their own, Cluster 2 complements high emissions and inequity, Clusters
0 and 3 exhibit low emissions and mixed social performance, and Cluster 4 illustrates
selected equity–emissions decoupling. The finding corroborates multisided ESG, where
environmental and social elements exhibit interlocking and context-aware relationships.

5.3. Finding the Best Fit: A Comparative Evaluation of Regression Models on ESG Data

We compared a broad range of regression methods on ESG data with conventional
error measures (MSE, RMSE, MAE, MAPE, and R2). The assessment covered classical tech-
niques (linear regression, Decision Trees) and current-state methods (ensemble methods,
neural networks). The findings reveal clear trade-offs: ensemble methods consistently
achieved optimal predictive quality and generalization, while linear methods achieved
the best interpretability and computational efficiency. The quality of neural networks was
patchy, being superior on some occasions and unstable. The research presents the optimal
regression methods for ESG prediction tasks, striking a balance between quality, efficiency,
and interpretability. See Figure 12.

A comparison between error measures and R2 values from regression models reveals
sharp contrasts in the prediction and generalization capacities. Compared models are
linear, regularized linear, tree-based, k-Nearest Neighbors (k-NNs), support vector ma-
chines (SVMs), neural networks, and Boosting. Multi-model benchmarking similar to
that provided is common in cryptocurrency predictions [85], vehicle price prediction [86],
and e-commerce satisfaction modeling [87]. The best R2 was 1.0, a perfect explanation of
variance. Decision Tree (0.677) and k-NN (0.655) were close, while linear and regularized
linear regressions (0.014) and SVM (0.0) were poor. From error measures (MSE, RMSE,
MAE), Random Forest stood out above the others, with 0s reflecting an extremely close fit
that nonetheless raises some concern about overfitting in the absence of cross-validation.
The best error was logged by SVM, corroborating its poor prediction performance. k-NN
demonstrated consistent performance (RMSE = 0.285, MAE = 0.17), while Decision Tree
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was decent (RMSE = 0.782, MAE = 0.741). The best MAPE was logged by Boosting (1.0),
followed by Neural Networks (0.376), k-NN (0.453), and SVM scored 0.0 again. On MAPE,
linear models underperformed across the board, with regularization yielding little im-
provement. Overall, Random Forest demonstrated the best prediction appropriateness and
reliability and thus is best suited for the current regression task, while k-NN and Decision
Tree are fair options where interpretability or computational efficiency is paramount.

Figure 12. Performance metrics of regression models for ESG-informed emissions prediction.

Social Drivers of Emissions: Interpreting BCE Through Machine Learning and
ESG Indicators

Random Forest feature-importance methods were employed to select the most im-
portant building-sector CO2 emissions (BCE) determinants at the prediction level with
additive accounts. Income distribution, labor force participation, and gender equity were
found to be the most significant socio-economic indicators influencing emission outcomes.
The indicators were overwhelmingly the most important across measures of importance,
revealing a crucial underlying driving force for patterns in BCE. Case-level decompositions
also revealed that changes in social equity and participation directly reposition amounts
predicted for emissions. The findings provide evidence at a microlevel that environmental
performance has social components in an ESG context, and they establish a linkage between
equity, governance, and decarbonization strategies. See Figure 13.
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Figure 13. Feature importance analysis of socio-economic determinants in building CO2 emissions
via Random Forest model.

Random Forest importance indicators (MDA, TINP, MDL) are significant indicators
of socio-economic push factors influencing building-sector CO2 emissions (BCE). The
income share for the bottom 20% (INC20) has the greatest predictivity in each measure
(MDA = 56.464, TINP = 973.192, MDL = 83.505), suggesting income distribution—the
bottom quintile in particular—as crucial for BCE and likely a consequence of unequal
accessibility to energy efficiency in buildings, renewable energy, and support infrastructure.
The labor force participation (LABF) variable comes in a close second. Although with
a moderate level of MDA (4.113), high TINP (755.169) and MDL (81.929) support high
predictivity. High participation rates are associated with urban, energy-intensive building
use, while low participation rates indicate structural fragility and inefficient energy demand.
See Figure 14.

Results from the Random Forest model indicate that social indicators are significant
predictors of building-sector CO2 emissions. Female parliamentary representation (WPAR)
becomes significant (MDA = 1.018, Node Purity = 599.087, Dropout Loss = 64.896), con-
sistent with its correlation with progressive building standards and energy-efficacy policy.
Gender parity in education (GPIE) also emerges strongly (MDA = 1.209, Node Purity
= 517.854, Dropout Loss = 61.618), indicating that knowledge and competence are key
triggers for low-emissions building. The Food Production Index (FOOD) has a smaller
yet complementary effect (Node Purity = 434.772, Dropout Loss = 58.385), which connects
rural land use and agro-industrial energy networks. The findings align with studies that
identify socio-economic and structural variables as underlying factors in emitters’ trajecto-
ries [88–90]. Among the myriad variables tested, the income share of the poorest quintile
(INC20) emerges as the best predictor, indicating that inclusiveness and equity are at the
heart of ESG-driven sustainability. See Figure 15.
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Figure 14. Relative importance of socio-economic indicators in predicting building CO2 emissions
using Random Forest.

Figure 15. Additive feature contributions to predicted building CO2 emissions: social indicators
and Random Forest interpretability. Note: Displayed values represent feature contributions to the
predicted value without features (column ‘Base’) for the test set.
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Additive model decompositions reveal the respective contributions of social indicators
to projected building-related CO2 emissions (BCE) relative to a base level of 35.711 Mt
CO2. Case 1 (35.045) experiences the greatest negative effect (−12.268) for labor force
participation (LABF), balanced in part by women in parliament (WPAR, +10.702) and parity
in children’s educational attainment (GPIE, +6.325); low-infrastructure agrarian settings are
experienced for food production (FOOD, −5.862). Case 2 drops to 15.396 on the strength
of a sharp loss for the income share for the poorest 20% (INC20, −15.411), and marginal
losses for WPAR and LABF. Case 3 (21.101) again experiences a sharp negative effect for
LABF (−15.392), while INC20 becomes positive (+2.898), reflecting energy growth due to
income equalization. Case 4 (18.029) experiences losses for both LABF (−14.523) and parity
in girls’ and boys’ educational attainment (−6.516) against a small gain for INC20 (+7.341).
Case 5 jumps to 45.117, as WPAR (+20.099) and LABF (+12.822) propel high-income and
high-energy systems, balanced in part by negative INC20 (−15.323) and negative food
production (−10.631). Altogether, LABF exerts a constant negative effect on emissions,
while WPAR and GPIE act contextually, and INC20 alternates between these two effects.

6. Governance and Carbon: Unpacking the Institutional Drivers of
Building-Sector Emissions

This part assesses how governance elements impact building-sector CO2 emissions
(BCE), which is highlighted in the “G” pillar of ESG. The fixed- and random-effect
regressions are conducted on panel data (n = 982) to ascertain if government effectiveness
(GOVT), expenditure on education (EDUE), political stability (STAB), rule of law (LAWR),
R&D expenditure (RNDG), hospital expenditure (HOSP), and scientific productivity (SCIE)
have significant impacts on BCE. The results reveal complex interplays. Elevated gov-
ernance capacity often coexists with higher emissions. The latter is a product reflecting
infrastructure-push development. Auxiliary clustering (see Section 6.2) categorizes coun-
tries on governance and emission patterns. The analysis highlights the various ways in
which governance impacts environmental performance in the built environment. A metric
summary of the G-Governance component variables within the ESG model used to esti-
mate the value of BCE is shown in Appendix D. Diagnostic tests for autocorrelation and
heteroscedasticity for the econometric estimates are provided in Appendix E.

6.1. Governance and the Carbon Cost of Development: A Panel Analysis of Building Emissions

This section examines how considerations regarding governance influence building-
sector CO2 emissions (BCE) in relation to the “G” pillar of ESG. On a 982-observation
panel, fixed- and random-effects regressions examine government effectiveness, political
stability, the rule of law, educational and research and development (R&D) expenditure,
hospital infrastructure, and science output. The results present multifaceted and sometimes
contradictory associations: higher governance capacity is often accompanied by higher
emissions, providing evidence for development being infrastructure-driven. The study
provides empirical evidence for a linkage between governance quality and environmen-
tal performance in the built environment, as well as for the interdependence between
institutional strength and emission pathways across countries.

We have estimated the following equation:

BP = α+ β1(GOVT)it + β2(EDUE)it + β3(STAB)it + β4(RNDG)it + β5(LAWR)it + β6(HOSP)it + β7(SCIE)it

where i = 180 and t = 2000–2020 (Table 6).
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Table 6. Panel regression results: governance indicators and building-sector CO2 emissions (BCE).

Fixed Effects, Using 982 Observations
Dependent Variable: BCE

Random Effects (GLS), Using 982 Observations
Dependent Variable: BCE

Coefficient Std. Error t-Ratio Coefficient Std. Error z

const 14.7556 ** 6.12013 2.411 4.37823 9.08037 0.4822

GOVT 12.7921 *** 2.42217 5.281 11.2943 *** 2.15647 5.237

EDUE 0.450092 * 0.245066 1.837 0.404457 * 0.237995 1.699

STAB −3.19087 *** 1.16516 −2.739 −2.29649 ** 0.964108 −2.382

RNDG −4.11812 ** 1.71293 −2.404 −4.25068 ** 1.65044 −2.575

LAWR −4.29609 ** 2.00928 −2.138 −1.36151 * 0.755280 −1.803

HOSP 3.80015 *** 0.612354 6.206 3.75312 *** 0.589134 6.371

SCIE 0.000433491 *** 2.56973 × 10−5 16.87 0.000462643 *** 2.50122 × 10−5 18.50

Statistics

Mean dependent var 44.83643 Mean dependent var 44.83643

Sum squared resid 88,339.25 Sum squared resid 6,648,511

LSDV R-squared 0.992464 Log-likelihood −5724.171

LSDV F(108, 873) 1064.614 Schwarz criterion 11,503.46

Log-likelihood −3602.578 Rho 0.766045

Schwarz criterion 7956.121 S.D. dependent var 109.3165

Rho 0.766045 S.E. of regression 82.57715

S.D. dependent var 109.3165 Akaike criterion 11,464.34

S.E. of regression 10.05935 Hannan–Quinn 11,479.22

Within R-squared 0.299880 Durbin–Watson 0.464047

p-value (F) 0.000000

Akaike criterion 7423.156

Hannan–Quinn 7625.898

Durbin–Watson 0.464047

Tests

Joint test on named regressors-
Test statistic: F(7, 873) = 53.4184
with p-value = P(F(7, 873) > 53.4184) =
1.58042 × 10−63

‘Between’ variance = 5929.08
‘Within’ variance = 89.9585
Mean theta = 0.942699
Joint test on named regressors-
Asymptotic test statistic: chi-square(7) = 437.883
with p-value = 1.77433 × 10−90

Test for differing group intercepts-
Null hypothesis: The groups have a
common intercept
Test statistic: F(101, 873) = 78.0485
with p-value = P(F(101, 873) > 78.0485) = 0

Breusch–Pagan test-
Null hypothesis: Variance of the unit-specific
error = 0
Asymptotic test statistic: chi-square(1) = 2207.29
with p-value = 0

Hausman test-
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: chi-square(7) = 73.1884
with p-value = 3.34305 × 10−13

Note: *** p < 0.01, ** p < 0.05, * p < 0.10.

The present study distinguishes the governance dimension of ESG (“G”) as a
predictor for building-sector CO2 emissions (BCE), including residential, commercial,
and other building-related emissions (IPCC, 2006; AR5). From a global panel for
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982 observations, fixed-effect (LSDV) and random-effect (GLS) specifications are estimated,
with BCE as the dependent variable and governance quality proxied by government effec-
tiveness (GOVT), political stability (STAB), rule of law (LAWR), expenditure on education
(EDUE), R&D expenditure (RNDG), hospital infrastructure (HOSP), and scientific out-
put (SCIE). The results show that GOVT enters significantly and positively for emissions
(12.79 FE; 11.29 RE, p < 0.01), reflecting convergence between effective governments and
energy-prolific economies with high incomes [91]. EDUE enters significantly and posi-
tively (p < 0.10), reflecting a growing demand for infrastructure to support human capital
development phases. On the contrary, political stability reduces emissions (−3.19 FE;
−2.30 RE), enabling the effective enforcement of regulations [92]. R&D expenditure
(−4.12 FE; −4.25 RE) and LAWR (−4.30 FE; −1.36 RE) lower emissions, corroborating
the importance of investing in science and legal capacity for building efficiency and ESG
conformity. HOSP enters significantly and positively (∼3.80, highly significant), reassert-
ing that healthcare has a high carbon intensity and that mitigation hinges on efficiency
upgrades [93,94]. SCIE enters significantly and positively but non-significantly, reflecting
that research systems are both high-energy intensity providers and innovation facilita-
tors. The fixed-effect specifications dominate (R2 = 0.992; AIC/BIC superior; Hausman
χ2 = 73.19, p < 0.01), supporting unobserved heterogeneity. Overall, governance is a key
predictor of BCE, but its impact hinges on context: while better institutions, stability, and
R&D lower emissions, governance intensity in high-income economies comes alongside
simultaneous growth driven by infrastructure and supporting higher carbon output [95].
Aligning governance quality with focus-tuned policy and conformity mechanisms is thus
crucial to align institutional capability for sustainable decarbonization.

6.2. Governance and Emissions: Clustering Insights from Neighborhood-Based Algorithms

As a supplement to regression analysis, we employed clustering to identify latent
groupings among nations based on governance attributes and building-sector CO2 emis-
sions (BCE). Performance measures included R2, AIC/BIC, silhouette statistics, and entropy,
as well as robust tests for statistical fit, compaction, and interpretability. Neighborhood-
based clustering was optimal, achieving perfect explanatory power (R2 = 1.0) with superior
cohesion and separation compared to other methods. The outcome provides a rigorous tem-
plate to unveil how diverse governance structures are plotted against profiles of emissions,
with a sounder analytics basis for ESG-driven diagnostics. See Figure 16.

Neighborhood-based clustering was the best performer among the criteria. Per-
formance was strong and consistent across quality indices. The algorithm achieved an
R2 value of 1.0, accounting for 100% of the variance, a very stringent test for model fit.
Calinski–Harabasz index was 1.0, supporting tight and well-separated clusters. The AIC
and BIC were not at a minimum, reflecting higher complexity, yet better practical validity
indices did exist. The Silhouette measure (0.449) registered strong cohesion and sharp
separation between groups. Entropy was high (0.962), reflecting structural order. Minimum
separation and Pearson’s γ were strong, yet not the best. Balanced strength across both
statistical and structural indices confirms Neighborhood-based clustering as the best and
most comprehensible approach. Neighborhood-based clustering is the best solution when
explanatory power and cluster quality are key.

Mapping Governance-Emission Profiles: Insights from Neighborhood-Based Clustering

To further elucidate the relationship between governance traits and structure-
associated CO2 emissions (BCE), the following is an exploration of the resulting
neighborhood-based clustering algorithm, deemed optimal based on comparisons with
preceding models. By clustering nations based on eight governance and infrastructural
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indicators (including BCE, government effectiveness, education, research and development
(R&D), and institutional quality), such an exploration identifies distinct profiles of countries.
By identifying divergent relationships between governance and emissions within these
clusters, it yields a profound observation regarding the institutional qualities that converge
towards environmental ends amidst diverse development contexts. See Figure 17.

Figure 16. Comparison of clustering algorithms on governance indicators and building CO2

emissions (BCE).

Figure 17. Country clusters by governance profiles and building CO2 emissions: results from
neighborhood-based clustering. Normalized data. The y-axis shows the normalized values between
0 and 1. The x-axis shows the number of clusters.
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Countries cluster based on eight indicators: building-related CO2 emissions, govern-
ment effectiveness, education, political stability, R&D, rule of law, hospital density, and
scientific output. Cluster 3 has high cohesion (silhouette = 0.911). Governance, stability, and
law are high, while education and science are low, indicating weak knowledge-investing
regimes. Cluster 6 has the highest emissions and is closely linked to scientific production
and R&D. Healthcare is relatively weak. They are industrial states that trade innovation
for environmental cost. Cluster 2 (204 countries) clusters around the global means. Low
silhouette means an undifferentiated group. Cluster 7 has an emphasis on education, low
on R&D. Emerging nations are characteristic of this profile. Cluster 10 invests heavily
in education but falls short in health and R&D, thereby limiting development spillovers.
Clusters 3 and 6 are distinct: knowledge-constrained states that are stable and high-carbon
trade-offs that are stuck in knowledge-intensive states. Such profiles reinforce evidence
that structural forces are driving emissions [96,97]. Diversified profiles inform bespoke
CO2 mitigation, according to policy scenarios supplied by [98].

6.3. Predicting Emissions with Precision: Machine Learning Models for Governance and BCE

The econometric regressions are augmented with machine-learning regressions. The
regressions are K-Nearest neighbors, Decision Trees, Random Forests, and Boosting. The
performance is calculated as MSE, RMSE, MAE, MAPE, and R2. The results establish the
optimal performing algorithms for non-linear and complex relationships. The forecast
precision validates governance variables as significant predictors for building-sector CO2

emissions (BCE). The exercise establishes a data-driven benchmark for tracking environ-
mental outcomes that are shaped by governance. See Figure 18.

Figure 18. Regression model performance on governance-based prediction of building CO2

emissions (BCE).
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Evaluation confirms KNN as the best predictor. Errors are eradicated (MSE, RMSE,
MAE = 0; MAPE = 0.054). R2 is 1.0 for ideal predictions for building-sector CO2 emissions
(BCE). Decision Trees are also robust (R2 = 0.957). Boosting and Random Forest are similarly
close (R2 = 0.843, 0.857). Linear and regularized forms perform poorly. Neural networks are
unsuccessful, with an R2 value of 0, indicating a failure in proper generalization. KNN’s
strength lies in its non-parametric flexibility, yet it is vulnerable to overfitting without
validation. Past research has confirmed both the superiority and limitations in scale-
extensive tasks [85,99,100]. Despite the computational cost, KNN is the most accurate and
reliable method under the research’s configuration. The hyperparameter optimization
settings for the KNN machine learning regression algorithm are given in Appendix F.

What Drives Emissions? Feature Importance of Governance and Knowledge Indicators

This section explores the predictive influence of governance-related variables on
building-sector CO2 emissions (BCE) using feature importance metrics and additive
model explanations. Feature importance, measured through mean dropout loss across
50 permutations, highlights the central role of scientific output (SCIE), healthcare in-
frastructure (HOSP), and education and R&D investment in driving model accuracy.
See Figure 19.

Figure 19. Governance feature importance in predicting building CO2 emissions: dropout loss-
based ranking.

RMSE (50 permutations) drop-out loss ranks building-sector CO2 emissions predictors
across fields of science, socio-economics, and governance. Most strongly ranked is scientific
output (SCIE, 170.266), citing roles for knowledge intensity and research infrastructures,
in line with [101]. Conflict between hospital and system adequacy ranks two (33.765).
Education expenditure (EDUE, 31.846) and R&D expenditure (RNDG, 29.399) again feature
strongly for human and technological development, in line with [100]. The governance
indicators are less contributory yet significant longitudinally: government efficiency (21.112)
and political stability (19.785) are favorable for institutional persistence. Rule of law (3.374)
has the lowest rank, demonstrating an indirect, intangible effect. The results validate
knowledge production, healthcare, and R&D as lead drivers, and governance quality as
complementary infrastructure. See Figure 20.
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Figure 20. Additive explanations of governance feature contributions to BCE predictions.

Figure 20 reports additive contributions for five scenarios relative to a base of 50.263.
SCIE, the quantity of scientific publications, is the most negative driver. Offsets range
between −33.359 (Cases 1–2) and −4.794 (Case 5). There is a systematic negative corre-
lation between building-related CO2 emissions (BCE) and scientific output. Expanding
scientific production is consistent with lower BCE. The mechanism accounts for techno-
logical innovation, efficiency in building design, and research-driven policy decisions.
See Figure 21.

Figure 21. Additive effects of governance features on predicted building CO2 emissions: case-
level decomposition.

Government effectiveness (GOVT) and R&D expenditure (RNDG) boost emissions.
Case 1 exhibits a +24 increase, and similar effects are observed in Cases 2 and 4. Education
expenditure (EDUE) and political stability (STAB) exhibit erratic behavior. They are positive
for Cases 1–2 and negative for Cases 3–5, which support the notion of non-linear, context-
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dependent dynamics. Rule of law (LAWR) makes a moderate contribution, peaking in
Case 2 at +16.392. Hospital beds (HOSP) add little explanatory power. Scientific production
(SCIE) uniformly reduces emissions across scenarios, and it is a successful mitigation force.
Overall, GOVT and RNDG push emissions higher, while SCIE balances them, exposing
the structural dualism of development: institutional strength drives growth, and science
reduces emissions.

7. Harnessing ESG Dimensions for Effective Building Sector
Climate Action

Comparative research finds country clusters in building-sector CO2 and ESG. Poli-
cies are diverse in context while requiring a technological foundation in building
engineering [102]. Emission profiles are derived from envelope performance, material
choice, and HVAC efficiency. Strategies must be context-aware while being technologically
distinct. Decarbonization in Germany, Denmark, Finland, and Nordic Europe is a sophisti-
cated endeavor, albeit limited by the possibilities of engineering. Institutionalized actors
require air-tight envelopes in the retrofit programs, triple glazing, and digitalized energy
monitoring. Carbon pricing on building elements has the potential to provide lifecycle
neutrality. Governance and innovation flag-bearers must lead domestic decarbonization
and invest in green transitions abroad [103–105]. Disseminations in modular architec-
ture, passive architecture, and retrofitting have the potential to transform global practices.
Emerging markets, such as India, Indonesia, and Brazil, are experiencing rapid urbaniza-
tion. Policy priorities include green transportation, affordable housing, and procuring
ESG-compliant products. Prefabrication leads to waste reduction. District solar or wind
cooling deters HVAC emissions. Cooperation enables leapfrogging [106–108]. Codes with
specifications for bamboo composites or recycled steel reinforce sustainability. Capacity-
constrained states such as Nigeria, Kenya, and Pakistan require institution-building and
ESG-conformant programs. Ventilation and compressed earth block pilot retrofits sup-
press emissions while building social acceptability. School and hospital investments build
legitimacy. Global fora build cooperative retrofitting with local adaptability [109]. The
Orient and East Asia, comprising China and Korea, lead in governance while experiencing
equity gaps. Redistributive policy is required. Subsidized low-cost building retrofits are
immediate. Green roof and high-performance envelopes are imminent. AI-generational
HVACs, fresh materials, and adaptive urbanism must be propagated [110,111]. Indoor
air quality requires continuous monitoring. High-income emitters such as the US and
Arab states require strict regulation. Near-zero codes, carbon taxes, and thermal storage
constitute key policy measures. Double-skin buildings and recoverable heat systems must
be the foundation for high-rise portfolios under green leasing schemes. All contexts require
ESG integrity, dependent on coherence. Environmental, governance, and social pillars must
be brought into alignment. Clean energy uptake requires governance capacity and social
equity. Fragmented ESG does not deliver. Indicators must inform interventions rather than
merely serving symbolic alignment [112,113]. Engineering indicators, including insulation
transmittance, rates of recovery, and embodied carbon, must be delivered alongside ESG
reports [114,115]. Clustering evidence confirms bespoke strategies: OECD leaders take
leapfrogging and transfer approaches; new economies leap ahead with modularity and
construction; at-risk states fortify their institutions; East Asia balances equity and gover-
nance; high-carbon OECD states set codes and establish carbon markets. All else being
equal, without engineering integration, ESG remains symbolic. Through interconnection,
buildings can achieve net-zero targets and make significant progress on climate mitigation
at scale.
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8. Limitations
Research correlates CO2 output from buildings with environmental, social, and gover-

nance (ESG) indicators across 180 countries. There is strong evidence, and some limitations.
However, the analysis depends on national aggregates spanning 22 years. Urban–rural
gaps and intra-city differences remain largely invisible, despite their significant importance
for emission dynamics. Most sectoral and energy policies take place subnationally. The
limited availability of local data restricts the transferability to municipal and urban admin-
istrations. Approaches are based on machine learning, econometrics, and clustering. The
models are computationally tractable but constrained by crude ESG proxies, specifically
end-use energy and air quality [116–118]. National-level coverage for governance and
social ESG data is sparse [102,119], which restricts its use at smaller scales. Neural-network
models did not perform well. The R2 value was approximately zero, and errors were
large, indicating shortcomings in the dataset and hyperparameters [120]. Noise, low sam-
ple boards, and lack of parameter tuning prevented generalizability. Generalizable AI is
expected to reveal non-linear and threshold dynamics in follow-up research. Another point
of consideration is that the data ends in 2021. Pandemic-driven transformations—hybrid
work, office underuse, and plans for recovery are lacking [121]. Given these factors, future
research demands near-real-time data, enriched collections, and novel reporting standards.
Only thus are evolving trajectories of emissions detectable by ESG models.

9. Conclusions
CO2 releases by the building sector were compared with ESG indicators across

180 countries. Econometrics, cluster analysis, and machine learning detected multifaceted,
multidimensional drivers. Releases are shaped by technology, governance, science, and
social investment. Institutions and societies are just as important as engineering. Scientific
output was associated with CO2 releases. Higher research intensity nations are better
buffered, spread knowledge, innovative, and codified sound policy. Institutional quality
and R&D investments reported mixed findings. Strong institutions were ubiquitous in
low-emissions economies and densely infrastructured, high-demand economies of aging
economies. Governance, innovation, and country-tailored sustainability policies need to be
aligned for effective buffering. Social investments build viability for sustainable practice
and environmental reform capacity. Equity-led policies are ethical and more. They facilitate
direct low-carbon transitions. Education, healthcare, and inclusiveness build resilience and
transformation. Integration across methodologies is this study’s strength. Regression, fea-
ture importance, and cluster detection distinguish country profiles, institutional trajectories,
and predictive dynamics beyond monomethod research. Decarbonizing buildings cannot
rely solely on markets or technology. Success depends on governance, science, social in-
vestments, and ESG frameworks that value the interdependence between the environment,
society, and institutions.
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Appendix A. Data Description
Table A1 compiles an exhaustive set of World Bank variables that constitute the

foundation of the ESG framework used in the building sector. The environmental dimension
encompasses building-related CO2 emissions (BCE), energy use per unit (ENUC), access to
electricity (ELEC), cleaner fuel (CFTC), PM2.5 air pollution, and consumption of renewable
energy (RENC), reflecting the balance between energy development and sustainability.
The social dimension encompasses food production (FOOD), gender parity in education
(GPIE), income share held by the bottom quintile (INC20), participation in the labor force
(LABF), as well as parliament participation by women (WPAR), which reflect exclusion
and equity. The governance dimension encompasses government effectiveness (GOVT),
political stability (STAB), rule of law (LAWR), expenditure on research and development
(RNDG), expenditure on education (EDUE), hospital beds (HOSP), and scientific output
(SCIE). These, together, allow for a comprehensive view of sustainability (Table A1).

Table A1. We used the following variables acquired from the World Bank.

Acronym Variables Definition

BCE

Carbon Dioxide
(CO2) Emissions
From Building
(energy) (Mt CO2e)

Total annual carbon dioxide equivalent (CO2e) emissions from energy use in the
buildings sector, covering IPCC 2006 categories 1.A.4 (Residential and other) and
1.A.5 (Unspecified), converted to CO2e using global warming potentials from the
IPCC Fifth Assessment Report (AR5). Unit: Mt CO2e per year.

CFTC

Access to Clean
Fuels and
Technologies
for Cooking

Access to clean cooking fuel and technology estimates come from the WHO Global
Household Energy Database with national representative household surveys as
the sole data source (e.g., DHS, MICS, LSMS, WHS, national censuses). A
multivariate hierarchical model—split by urban and rural—estimates fuel-type
trends by grouping them as ‘clean’ (e.g., gas, electricity, alcohol) and ‘polluting’
(e.g., biomass, charcoal, coal, kerosene). There are estimates for 191 countries.
High-income countries (by World Bank 2022 classification) have universal clean
fuel access assumed.

ELEC Access to Electricity

Reliable and secure electricity is essential for economic growth, poverty reduction,
and human development. As countries decarbonize, dependence on clean,
efficient power will grow. Electricity access enables basic services (lighting,
refrigeration, appliances) and is a key indicator of energy poverty. Especially in
lower-income countries, governments are prioritizing electrification through rural
programs and national agencies. While vital for raising living standards, electricity
generation can harm the environment—its impact depends on the energy sources
used, with fossil fuels like coal being especially carbon-intensive.

https://databank.worldbank.org/
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Table A1. Cont.

Acronym Variables Definition

ENUC Energy Use
per Capita

Total energy consumption gauges final energy use after conversion into end-use
fuels (e.g., electricity, processed oil). It encompasses energy from combustible
renewables and waste—like biomass, biogas, and municipal waste. Biomass
describes plant materials used as such or converted into fuel, heat, or power.
Figures, as gathered by the IEA, use per capita estimates from the World Bank
population. National non-OECD data are converted to IEA equivalence. Figures
are imprecise and not completely comparable for countries because of limited data
quality, particularly for waste and renewables. Energy values have been computed
in terms of oil equivalents on the basis of 33% thermal conversion for nuclear and
100% for hydropower.

PM25 PM2.5 Pollution

Population-weighted exposure to ambient PM2.5 refers to the average level of fine
particulate matter (PM2.5) pollution that a country’s population is exposed to.
PM2.5 particles, with a diameter smaller than 2.5 microns, can penetrate deep into
the lungs and pose serious health risks. This measure is calculated by weighting
the annual average PM2.5 concentrations by the population distribution across
urban and rural areas.

RENC Renewable Energy
Consumption

The share of total final energy consumption derived from renewable sources,
based on data from IEA, IRENA, UNSD, WHO, and the World Bank
(Tracking SDG 7, 2023).

FOOD Food Production
Index

The Food Production Index reflects the output of edible crops that offer nutritional
value. It excludes items like coffee and tea, which, despite being consumable, do
not contribute meaningfully to nutrition. This metric emphasizes food sources that
support dietary needs, aligning production data with human nutritional
requirements rather than general edibility alone.

GPIE Gender Parity in
Enrollment

The Gender Parity Index (GPI) in primary education is calculated by dividing
female gross enrollment by male gross enrollment. Data are collected by UNESCO
from national education surveys and aligned with ISCED standards to ensure
international comparability. The current methodology was adopted in 2011.
Reference years reflect when the school year ends. A GPI below 1 indicates girls
are disadvantaged; above 1 indicates boys are. Achieving gender parity enhances
women’s opportunities and contributes to broader social and
economic development.

INC20 Income Share
Lowest 20%

The percentage share of income or consumption reflects the portion received by
population subgroups, typically divided into deciles or quintiles. Due to rounding,
quintile shares may not total exactly 100%. Data come from household surveys via
national statistics agencies and World Bank departments, with high-income
country data largely from the Luxembourg Income Study. These measures support
the World Bank’s goal of shared prosperity—focusing on income growth among
the bottom 40%—and help assess inequality within and across countries.

LABF Labor Force
Participation

The labor force participation rate represents the share of the population aged 15
and older that is economically active, including all individuals engaged in the
production of goods and services during a specific period. Data, sourced from the
ILO’s modeled estimates, highlight persistent gender disparities: women’s labor
force participation is generally lower than men’s due to social, legal, and cultural
norms. In low-income countries, women often work unpaid in family enterprises,
while, in high-income nations, higher education has expanded their access to
better employment opportunities, though inequalities persist.
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Table A1. Cont.

Acronym Variables Definition

WPAR Women in
Parliament

Women in parliament refers to the percentage of seats held by women in a single
or lower house of national parliaments. Although progress has been made,
women remain significantly underrepresented in decision-making roles, especially
in lower-income countries. Gender inequality in political participation limits
women’s influence on policy and national priorities. Equal representation is
essential for inclusive governance and sustainable development. True democracy
requires full participation of women, whose perspectives and leadership are vital
for shaping equitable and effective public policies.

GOVT Government
Effectiveness

Government effectiveness: Estimated measures of perceptions of public service
quality, civil service independence, policy formulation and implementation, and
government credibility. Scores range from −2.5 to 2.5, based on a standard
normal distribution.

EDUE Gov. Expenditure
on Education

General government expenditure on education, including current spending,
capital outlays, and transfers, is measured as a percentage of GDP. It accounts for
education funding from all government levels—local, regional, and central—and
includes international transfers to the government. This indicator reflects the
government’s financial commitment to the education sector relative to the
country’s economic output.

STAB Political Stability

Political stability and absence of violence/terrorism reflect perceptions of the risk
of political unrest, government instability, and politically motivated violence or
terrorism. Countries are ranked by percentile, from 0 (least stable) to 100 (most
stable), allowing global comparison. Percentile ranks are adjusted over time to
ensure consistency despite changes in the number of countries included in the
Worldwide Governance Indicators (WGIs).

RNDG R&D Expenditure

Gross domestic expenditures on research and development (R&D), measured as a
percentage of GDP, represent a country’s financial commitment to innovation and
technological progress. This includes both capital and current spending across
four key sectors: business enterprises, government institutions, higher education,
and private non-profits. It encompasses all R&D activities—basic research, applied
research, and experimental development—supporting economic and
scientific advancement.

LAWR Rule of Law

Rule of law reflects perceptions of how much confidence individuals and
institutions have in societal rules, particularly regarding contract enforcement,
property rights, police effectiveness, and judicial independence. It also considers
the likelihood of crime and violence. Countries receive a score ranging from
approximately −2.5 (weak rule of law) to 2.5 (strong), based on a standard
normal distribution.

HOSP Hospital Beds

Hospital beds refer to the total number of beds that are maintained, staffed, and
immediately available for the admission of patients. These include inpatient beds
in public and private hospitals, general and specialized institutions, and
rehabilitation centers. The count typically covers beds used for both acute and
chronic care, reflecting the overall healthcare system’s capacity for treatment
and recovery.

SCIE Scientific Articles

Scientific and technical journal articles represent the total number of
peer-reviewed publications in key research areas, including physics, biology,
chemistry, mathematics, clinical medicine, biomedical research, engineering and
technology, and earth and space sciences. These articles reflect ongoing
advancements, innovation, and collaboration within the global scientific
community, contributing to knowledge expansion and technological development
across multiple disciplines and industries.
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Appendix B. E-Environment
Descriptive statistics suggest high dispersion in all indicators, a very high building-

sector CO2 emission (BCE) range, echoing its very high range of (0–729,783 Mt CO2e) and
extreme skewness of 7251, as an estimator of high-emitting countries’ tail effect. Clean
fuel consumption (CFTC) and electricity consumption (ELEC) indicate a high median and
mode of 100%, as would be expected in high-income nations with widespread electricity
use. High standard deviations indicate widespread inequity worldwide. Per capita energy
consumption (ENUC) and PM2.5 air pollution exhibit high interquartile ranges and kurtosis,
indicating the presence of outliers. Renewable energy consumption (RENC) remains
uneven, reflecting the uneven nature of the global energy transition (Table A2).

Table A2. Descriptive statistics of building emissions (BCE) and associated energy-environmental indicators.

CFTC ELEC BCE ENUC PM25 RENC

Valid 3916 3940 4140 2173 2180 3805

Missing 224 200 0 1967 1960 335

Mode 100,000 100,000 0.006 1720 17,869 0.000

Median 83,450 97,000 1098 1190 22,748 24,690

Mean 63,312 77,349 18,177 2347 28,010 33,772

Std. Error of Mean 0.626 0.497 1052 62,281 0.383 0.488

95% CI Mean Upper 64,540 78,323 20,239 2469 28,761 34,728

95% CI Mean Lower 62,085 76,376 16,114 2225 27,260 32,816

Std. Deviation 39,179 31,169 67,687 2903 17,871 30,072

95% CI Std. Dev. Upper 40,067 31,873 69,178 2992 18,418 30,764

95% CI Std. Dev. Lower 38,330 30,496 66,260 2819 17,356 29,411

Coefficient of Variation 0.619 0.403 3724 1237 0.638 0.890

MAD 16,550 3000 1064 851,251 9497 20,700

MAD Robust 24,537 4448 1578 1,262,064 14,081 30,690

IQR 77,400 44,176 6976 2,531,125 21,584 49,260

Variance 1534 971,537 4581 8.429 × 106 319,361 904,338

95% CI Variance Upper 1605 1015 4785 8.954 × 106 339,207 946,397

95% CI Variance Lower 1469 930,018 4390 7.949 × 106 301,215 865,034

Skewness −0.509 −1129 7251 2758 1059 0.649

Std. Error of Skewness 0.039 0.039 0.038 0.053 0.052 0.040

Kurtosis −1431 −0.236 59,218 9911 0.716 −0.932

Std. Error of Kurtosis 0.078 0.078 0.076 0.105 0.105 0.079

Shapiro–Wilk 0.797 0.737 0.265 0.699 0.917 0.885

p-value of Shapiro–Wilk <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Range 99,900 99,928 729,783 21,419 97,808 98,340

Minimum 0.100 0.072 0.000 1540 −2566 0.000

Maximum 100,000 100,000 729,783 21,420 95,243 98,340

25th percentile 22,600 55,824 0.168 536,617 15,575 7450

50th percentile 83,450 97,000 1098 1190 22,748 24,690
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Table A2. Cont.

CFTC ELEC BCE ENUC PM25 RENC

75th percentile 100,000 100,000 7144 3067 37,158 56,710

25th percentile 22,600 55,824 0.168 536,617 15,575 7450

50th percentile 83,450 97,000 1098 1190 22,748 24,690

75th percentile 100,000 100,000 7144 3067 37,158 56,710

Sum 247,931 304,755 75,251 5.102 × 106 61,062 128,502

Kernel density and histogram plots of building-sector CO2 emissions (BCE) and
corresponding environmental and social indicators: access to clean fuels (CFTC), electricity
access (ELEC), per capita energy use (ENUC), PM2.5 air pollution, and renewable energy
consumption (RENC). The graphs reveal right-skewness of BCE and ENUC and clustering
at complete access (100%) for CFTC and ELEC, with variation across countries (Figure A1).

Figure A1. Distribution plots of BCE and related ESG indicators.

A matrix of scatterplots with marginal density plots of bivariate relations between
building-related CO2 emissions (BCE), access to clean fuels (CFTC), electricity access
(ELEC), energy use per capita (ENUC), PM2.5 air pollution, and renewable energy con-
sumption (RENC) is presented. Plots indicate non-linear and highly skewed relations,
where BCE and ENUC exhibit strong right-skewness and a shared clustering pattern,
predominantly at energy access and pollution exposure variables (Figure A2).

Figure 3 shows boxplots of building-related CO2 emissions (BCE) and matching ESG
indicators: CFTC, ELEC, ENUC, PM2.5, and RENC. BCE and ENUC exhibit high right-skew,
with extreme outliers, such as points exceeding 700 Mt CO2e and per capita energy con-
sumption above 20,000 units, indicating the presence of high-emission, high-consumption
countries. Conversely, CFTC, ELEC, and RENC register more slender interquartile ranges
with concentrations of points near 100%, indicating widespread access in high-income
countries. PM2.5 captures medium variation with some extreme pollution conditions. The
visualization reveals the planetary heterogeneity and unequal distribution of emissions
and energy access (Figure A3).
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Figure A2. Pairwise scatterplots and density distributions of BCE and ESG-related indicators.

Figure A3. Boxplots of BCE and ESG-related indicators with outliers highlighted.

Figure 4 presents Q–Q (quantile–quantile) plots of building-sector CO2 emissions
(BCE) and corresponding ESG indicators: CFTC, ELEC, ENUC, PM2.5, and RENC. Each
variable’s empirical distribution is contrasted with a normal distribution. BCE and ENUC
considerably deviate from normality, with heavy right tails and outliers, reflecting positive
skew and the presence of extreme values, as would be predicted given unequal worldwide
energy use and emissions. CFTC and ELEC have truncated left tails, reflecting many
observations at near-universal access. PM2.5 displays moderate curvature, while RENC
exhibits moderate skewness. These non-normal distributions necessitate the application of
robust, non-parametric, or transformed approaches in modeling (Figure A4).
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Figure A4. Q–Q plots assessing normality of BCE and ESG-related indicators.

The scatterplot matrix in Figure 5 graphs pairwise relationships between building-
sector CO2 emissions (BCE) and five significant ESG-related variables: access to clean fuels
(CFTC), electricity access (ELEC), energy use per capita (ENUC), PM2.5 pollution, and
renewable energy consumption (RENC). BCE is weakly positive with ENUC and PM2.5,
as would be anticipated with higher consumption and pollution with higher emissions.
BCE is weakly negative with RENC, indicating a compensating effect of renewable energy.
More sizeable correlations emerge between CFTC and ELEC, whereas RENC is negative
with CFTC as well as with ELEC. The density curves identify non-normal distributions
across variables (Figure A5).

Figure A5. Scatterplot matrix with density overlays for BCE and ESG-related variables.

Table 2 presents the covariance matrix between building-related CO2 emissions (BCE)
and several ESG indicators: clean fuel access (CFTC), electricity access (ELEC), per capita
energy use (ENUC), PM2.5 air pollution, and renewable energy use, in relation to BCE.
Covariances define the direction and strength. BCE has a moderate positive correlation
with CFTC (328.1), ELEC (294.5), and ENUC (29.0) due to related higher consumption
and energy accessibility, which is typically associated with higher emissions. BCE has a
strong negative correlation with RENC (−416.6), confirming the use of renewable energy in
emission offset. Strong covariation between CFTC and ELEC (715.0) defines the associated
infrastructuring development process, while negative covariations vs. RENC suggest
energy change mismatches. These covariations highlight systemic relationships defining
emission dynamics worldwide (Table A3).

The correlation matrix reveals significant relationships between building-related CO2

emissions (BCE) and ESG-energy indicators. BCE is weakly positively correlated with clean
fuel access (0.122), electricity access (0.137), and per capita energy consumption (0.125)
while exhibiting a moderate growth increase in the latter, particularly with higher structure
and consumption. BCE is negatively correlated with renewable consumption (−0.197) in
supporting the renewables-driven process of decarbonization. Electricity access is highly
correlated with access to electricity and clean fuels (0.739), while demonstrating a depen-
dency between the two infrastructures. Renewable energy consumption (RENC) is highly
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negatively correlated with consumption-based carbon pollution (CFTC) (−0.783) and with
electricity consumption (ELEC) (−0.605), indicating possible energy transition trade-offs.
PM2.5 pollution shows weak positive correlations with other indicators (Table A4).

Table A3. Covariance matrix of BCE and ESG-related indicators.

CFTC ELEC BCE ENUC PM25 RENC

CFTC 1.212 715.040 328.145 49.067 −281.490 −744.185

ELEC 715.040 771.991 294.482 33.913 −112.064 −458.817

BCE 328.145 294.482 6.011 28.989 −8.701 −416.588

ENUC 49.067 33.913 28.989 8.975 × 106 −3.560 −26.307

PM25 −281.490 −112.064 −8.701 −3.560 310.835 109.470

RENC −744.185 −458.817 −416.588 −26.307 109.470 746.022

Table A4. Pearson correlation matrix of building-sector CO2 emissions (BCE) and ESG-
energy indicators.

CFTC ELEC BCE ENUC PM25 RENC

CFTC 1.000 0.739 0.122 0.470 −0.459 −0.783

ELEC 0.739 1.000 0.137 0.407 −0.229 −0.605

BCE 0.122 0.137 1.000 0.125 −0.006 −0.197

ENUC 0.470 0.407 0.125 1.000 −0.067 −0.321

PM25 −0.459 −0.229 −0.006 −0.067 1.000 0.227

RENC −0.783 −0.605 −0.197 −0.321 0.227 1.000

Appendix C. S-Social
Below is the table of descriptive statistics of five chief social indicators—food produc-

tion (FOOD), gender parity in education (GPIE), income share of the bottom 20% (INC20),
labor force participation (LABF), and women in parliament (WPAR)—and building-related
CO2 emissions (BCE). BCE is extremely right-skewed (skewness = 7251) and extremely
kurtotic due to the impact of some high-emitting states. Socio-environmental indicators
like LABF and GPIE exhibit a relatively even distribution, while WPAR is unsurprisingly
at the tail end on average, as it registers long-term patterns of divergent gender represen-
tation. Incidentally, FOOD and INC20 have high variance coupled with high skewness,
which reflect structural inequity. Contrast between dispersion and distribution shows the
perception about the lopsidedness of socio-environmental states of nations (Table A5).

Table A5. Descriptive statistics of social indicators and building-related CO2 emissions (BCE).

FOOD GPIE INC20 LABF WPAR BCE

Valid 4102 2665 1607 3998 3963 4140

Missing 38 1475 2533 142 177 0

Mode 0.123 0.990 7100 55,146 0.000 0.006

Median 96,020 0.998 7100 67,324 17,302 1098

Mean 92,769 216,096 7879 65,663 19,263 18,177

Std. Error of Mean 0.383 47,245 0.236 0.186 0.204 1052
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Table A5. Cont.

FOOD GPIE INC20 LABF WPAR BCE

95% CI Mean Upper 93,520 308,737 8341 66,029 19,663 20,239

95% CI Mean Lower 92,017 123,454 7416 65,297 18,863 16,114

Std. Deviation 24,542 2438 9458 11,791 12,847 67,687

95% CI Std. Dev. Upper 25,085 2506 9797 12,055 13,136 69,178

95% CI Std. Dev. Lower 24,022 2375 9142 11,538 12,570 66,260

Coefficient of Variation 0.265 11,287 1200 0.180 0.667 3724

MAD 10,000 0.024 1500 6989 7927 1064

MAD Robust 14,826 0.035 2224 10,361 11,752 1578

IQR 21,758 0.049 3050 14,340 16,190 6976

Variance 602,295 5.949 × 106 89,448 139,028 165,038 4581

95% CI Variance Upper 629,238 6.281 × 106 95,972 145,331 172,554 4785

95% CI Variance Lower 577,053 5.642 × 106 83,570 133,129 158,005 4390

Skewness 2615 11,601 7932 −0.916 1197 7251

Std. Error of Skewness 0.038 0.047 0.061 0.039 0.039 0.038

Kurtosis 43,986 135,463 65,260 1406 2689 59,218

Std. Error of Kurtosis 0.076 0.095 0.122 0.077 0.078 0.076

Shapiro–Wilk 0.816 0.060 0.250 0.954 0.930 0.265

p-value of Shapiro–Wilk <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Range 502,017 33,376 93,769 76,467 87,730 729,783

Minimum 0.123 0.000 0.187 13,156 0.000 0.000

Maximum 502,140 33,376 93,956 89,623 87,730 729,783

25th percentile 81,757 0.971 5350 59,368 10,000 0.168

50th percentile 96,020 0.998 7100 67,324 17,302 1098

75th percentile 103,515 1020 8400 73,709 26,190 7144

Sum 380,537 575,894 12,660 262,520 76,338 75,251

Figure A6 presents the distribution of the social component variables under the ESG
framework, highlighting their diversity and the occurrence of skewness in some indicators.
The Food Production Index (FOOD) reveals a positively skewed distribution, where most
observations are clustered below 150, indicating that even though most countries exhibit
moderate food production, some countries exhibit significantly higher levels. The Gender
Parity Index in Education (GPIE) also reveals a strong positive skew, where most coun-
tries are clustered around lower values, with a small fraction achieving very high values,
indicating uneven convergence in schooling equity. Likewise, the variable Income Share
of the Poorest 20% (INC20) is skewed to the right, indicating that in most instances the
poorest quintile shares just a small fraction of the country’s income. Variable Labor Force
Participation (LABF), on the other hand, approximates a normal distribution, centered
around the value of 60%, indicating a more balanced distribution across the population.
Women in Parliament (WPAR) are distributed widely, albeit still skewed, indicating that
many countries exhibit modest representation, while others exhibit relatively high repre-
sentation. Variables Building-sector CO2 Emissions (BCE) and Building Performance (BP)
indicate strong right-skewness, where most values cluster around the low values, albeit a
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few extreme values overshading the distribution. Generally, the figure highlights the asym-
metric distribution of social and emission-related variables, where structural inequality
and varying distribution paths across countries are indicated (Figure A6).

Figure A6. Distribution of social component variables in the ESG framework.

Boxplots illustrating the spread and outliers of key social indicators used in the ESG
framework. Variables include food expenditure (FOOD), public investment in education
(GPIE), household income (INC20), labor force participation (LABF), women’s participation
rate (WPAR), and basic consumption expenditure (BCE). Outliers are labeled and represent
extreme values deviating from the interquartile range (Figure A7).

Figure A7. Boxplot distributions of social ESG variables with outlier detection.

Quantile–Quantile (Q–Q) plots for variables represent the social component in ESG
analysis. The deviation of points from the theoretical normal line indicates non-normal
distributions, particularly for FOOD, GPIE, INC20, and BCE, which exhibit strong right
skewness and heavy tails. These findings suggest the need for transformation or robust
statistical methods (Figure A8).

The scatterplot matrix of the social component variables from the ESG framework
includes FOOD, GPIE, INC20, LABF, WPAR, and BCE. The diagonal panels display the
univariate density distributions, while the off-diagonal panels show pairwise scatterplots.
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The matrix reveals strong non-normality, right-skewed distributions, and possible non-
linear associations between variables such as INC20 and GPIE (Figure A9).

Figure A8. Normality assessment of social ESG variables via Q–Q plots.

 

Figure A9. Scatterplot matrix and density distributions of social ESG variables.
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The plot visualizes the bivariate scatter distributions and marginal densities among
the social indicators employed in the model, including FOOD (food production volume),
GPIE (gross primary income equity), INC20 (income share of the bottom 20%), LABF
(labor force participation rate), WPAR (women in parliament), and BCE (building-related
CO2 emissions). This matrix enables an exploratory assessment of linear associations and
potential collinearity among the variables constituting the social dimension of the ESG
framework, thereby contributing to a deeper understanding of their influence on emission
patterns within the built environment (Figure A10).

Figure A10. Pairwise correlation plot of social pillar variables in the ESG framework.

The table reports the covariances among key social indicators—FOOD, GPIE, INC20,
LABF, WPAR—and building-related CO2 emissions (BCE). Positive values indicate a di-
rect relationship in variability between variable pairs, whereas negative values suggest
an inverse relationship. High absolute values reflect stronger associations in the vari-
ance structure, which may inform multicollinearity diagnostics in subsequent regression
models (Table A6).

Table A6. Covariance matrix of social ESG variables and building-related CO2 emissions.

FOOD GPIE INC20 LABF WPAR BCE

FOOD 424.789 −37.108 −96.944 114.735 −82.864 107.769

GPIE −37.108 1.262 × 107 35.079 −24.538 26.719 1.483

INC20 −96.944 35.079 102.362 −65.165 77.834 −0.529

LABF 114.735 −24.538 −65.165 126.359 −32.177 39.820

WPAR −82.864 26.719 77.834 −32.177 191.207 −29.946

BCE 107.769 1.483 −0.529 39.820 −29.946 7.518

The table presents Pearson correlation coefficients among the selected social
indicators—FOOD, GPIE, INC20, LABF, and WPAR—and the variable BCE, represent-
ing building-related CO2 emissions. Strong positive correlations are observed between
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GPIE and INC20 (r = 0.976), while negative associations emerge between GPIE and LABF
(r = −0.615) and between INC20 and LABF (r = −0.573). Correlations with BCE are weak,
suggesting limited linear association with social variables in this model (Table A7).

Table A7. Pearson correlation matrix among social ESG variables and building-related CO2 emissions.

FOOD GPIE INC20 LABF WPAR BCE

FOOD 1.000 −0.507 −0.465 0.495 −0.291 0.060

GPIE −0.507 1.000 0.976 −0.615 0.544 0.005

INC20 −0.465 0.976 1.000 −0.573 0.556 −6.033 × 10−4

LABF 0.495 −0.615 −0.573 1.000 −0.207 0.041

WPAR −0.291 0.544 0.556 −0.207 1.000 −0.025

BCE 0.060 0.005 −6.033 × 10−4 0.041 −0.025 1.000

Appendix D. G-Governance
This table includes complete descriptive statistics of seven governance and public

service indicators (GOVT: government effectiveness; EDUE: education expenditure; STAB:
political stability; RNDG: R&D expenditure; LAWR: rule of law; HOSP: hospital beds;
SCIE: scientific publications) and the variable BCE (building-related CO2 emissions). Such
statistics include central tendency, dispersion, shape (skewness and kurtosis), and results
of the Shapiro–Wilk normality test. High skewness and extreme kurtosis of a number
of variables (e.g., BCE, LAWR, SCIE) suggest non-normal distributions likely requiring
transformation prior to modeling (Table A8).

Table A8. Descriptive statistics of governance and public service variables related to building
CO2 emissions.

BCE GOVT EDUE STAB RNDG LAWR HOSP SCIE

Valid 4140 3907 2760 3949 1883 3941 2030 3782

Missing 0 233 1380 191 2257 199 2110 358

Mode 0.006 −1.158 0.000 1.170 0.018 0.834 1.300 0.000

Median 1.098 −0.215 14.031 −0.019 0.577 −0.270 3.015 226.270

Mean 18.177 −0.029 14.370 −0.009 0.948 0.583 3.733 10.180

Std. Error of Mean 1.052 0.021 0.097 0.025 0.023 0.138 0.060 688.649

95% CI Mean Upper 20.239 0.012 14.561 0.040 0.994 0.854 3.850 11.530

95% CI Mean Lower 16.114 −0.069 14.180 −0.058 0.902 0.312 3.616 8.830

Std. Deviation 67.687 1.300 5.102 1.558 1.017 8.682 2.683 42.350

95% CI Std. Dev. Upper 69.178 1.329 5.240 1.594 1.051 8.878 2.769 43.327

95% CI Std. Dev. Lower 66.260 1.272 4.971 1.525 0.986 8.494 2.603 41.417

Coefficient of Variation 3.724 −45.259 0.355 −171.768 1.073 14.889 0.719 4.160

MAD 1.064 0.660 3.235 0.711 0.430 0.700 1.715 222.835

MAD Robust 1.578 0.979 4.797 1.054 0.638 1.038 2.543 330.375

IQR 6.976 1.373 6.506 1.424 1.138 1.440 3.878 3.153

Variance 4.581 1.690 26.028 2.429 1.034 75.370 7.201 1.794 × 109

95% CI Variance Upper 4.785 1.767 27.458 2.540 1.104 78.812 7.665 1.877 × 109

95% CI Variance Lower 4.390 1.617 24.707 2.325 0.971 72.149 6.777 1.715 × 109
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Table A8. Cont.

BCE GOVT EDUE STAB RNDG LAWR HOSP SCIE

Skewness 7.251 4.152 0.454 6.009 1.273 11.968 1.111 8.482

Std. Error of Skewness 0.038 0.039 0.047 0.039 0.056 0.039 0.054 0.040

Kurtosis 59.218 34.610 1.477 63.863 1.633 143.174 1.259 85.379

Std. Error of Kurtosis 0.076 0.078 0.093 0.078 0.113 0.078 0.109 0.080

Shapiro–Wilk 0.265 0.734 0.977 0.615 0.858 0.112 0.911 0.235

p-value of Shapiro–Wilk <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Range 729.783 14.580 44.802 22.960 7.586 111.216 14.590 669.746

Minimum 0.000 −2.439 0.000 −3.313 −1.880 −2.591 0.100 −2.283

Maximum 729.783 12.141 44.802 19.647 5.706 108.625 14.690 669.744

25th percentile 0.168 −0.796 10.877 −0.722 0.230 −0.854 1.603 25.813

50th percentile 1.098 −0.215 14.031 −0.019 0.577 −0.270 3.015 226.270

75th percentile 7.144 0.577 17.383 0.702 1.368 0.586 5.480 3.179

Sum 75.251 −112.215 39.661 −35.830 1.785 2.297 7.577 3.850 × 107

This figure displays kernel density estimates and histograms for BCE (building-related
CO2 emissions), GOVT (government effectiveness), EDUE (education expenditure), STAB
(political stability), RNDG (research and development expenditure), LAWR (rule of law),
HOSP (hospital beds), and SCIE (scientific publications). Most variables exhibit skewed
distributions, particularly BCE, LAWR, and SCIE, suggesting potential non-normality and
the need for transformation prior to parametric analysis (Figure A11).

Figure A11. Density distributions of governance and public service indicators related to building
CO2 emissions.

This scatterplot matrix exhibits the bivariate relationships and marginal density distri-
butions between BCE (building-related CO2 emissions), GOVT (government effectiveness),
EDUE (education expenditure), STAB (political stability), RNDG (research and devel-
opment expenditure), LAWR (rule of law), HOSP (hospital beds), and SCIE (scientific
publications). It facilitates visualization of patterns of correlation, hetero-scedasticity, and
distributional skewness in aid of preliminary diagnostics for multivariate modeling within
the ESG context (Figure A12).
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Figure A12. Pairwise scatterplot matrix of governance and public service variables related to building
CO2 emissions.

Figure A13 shows boxplots of distributions and outliers of BCE (building-related
CO2 emissions), GOVT (government effectiveness), EDUE (education expenditure), STAB
(political stability), RNDG (research and development expenditure), LAWR (rule of law),
HOSP (hospital beds), and SCIE (scientific publications). Most of these variables contain
apparent outliers and asymmetries, signifying signs of skewed distributions and a need to
normalize or utilize robust estimation methods in subsequent analyses (Figure A13).

Quantile–Quantile (Q–Q) plots check normality of variables such as BCE (building-
related CO2 emissions), GOVT (government effectiveness), EDUE (education expenditure),
STAB (political stability), RNDG (research and development expenditure), LAWR (rule of
law), HOSP (hospital beds), and SCIE (scientific publications). Strong departures from the
reference line in all plots, especially for BCE, LAWR, and SCIE, indicate heavy-tailed and
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right-skewed distributions and thus non-normality and potential need for transformation
in statistical modeling (Figure A14).

Figure A13. Boxplot distribution of governance and public service indicators related to building
CO2 emissions.

Figure A14. Q–Q plots for governance and public service indicators related to building CO2 emissions.

Figure A15 uncovers a scatter plot matrix exploring the relationship between building-
related CO2 emissions (BCE) and ESG governance metrics. Scatters reveal varied pat-
terns, including both positive and negative associations across variables. Government
effectiveness (GOVT) is strongly positively associated with BCE, such that high-institution-
capability economies also exhibit high emissions, likely the result of infrastructure ex-
pansion. Expenditure on education (EDUE) depicts a moderate positive association with
emissions, such that investments in human capabilities are accompanied by higher energy
consumption. Political stability (STAB) and the rule of law (LAWR) tend to exhibit negative
associations with BCE, as hypothesized, considering the role that strong order plays in
enforcing regulations that reduce emissions. R&D expenditure (RNDG) exhibits a negative
association with BCE, indicating that innovations can serve as a source of emissions sav-
ings. Expenditure on hospitals (HOSP) exhibits a positive association, reflecting the carbon
intensities embedded in the health sector. Finally, scientific productivity (SCIE) depicts
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a multifaceted relationship: high output accompanied by emissions reflecting advanced
economies, while high scientific productivity is also a source reflecting innovations that
yield emissions savings. As a panel, the figure separates the double-edged role of gov-
ernance: capable institutions enable reductions, while in high-income cases, governance
emerges hand-in-hand with carbon-intensive growth trajectories (Figure A15).

Figure A15. Scatter plot matrix of building-related CO2 emissions (BCE) and G-governance indicators.

Table A9 provides some indication regarding the covariance connection between
building-related CO2 emissions (BCE) and governance indicators. It uncovers both rein-
forcing and conflicting dynamics. BCE significantly covaries positively with both R&D
expenditure (27.514) and scientific output (6.849 × 106), substantiating that innovative
economies pay a higher price in emissions due to energy-intensive infrastructure. Con-
versely, BCE negatively covaries with both the rule of law (−15.110) and political stability
(−14.152), indicating that effective institutions can impose environmental regulations as
well as decelerate emissions. It is surprising, however, that government effectiveness (4.309)
positively covaries with BCE, signaling the irony that effective government is often associ-
ated with high-carbon economies that are sophisticated. Similarly, hospital infrastructure
(−4.792) also exhibits a moderate negative covariance, reflecting the cost that the carbon
sector incurs in health systems. Education expenditure (−3.168) negatively covaries with
BCE, although it exhibits strong negative relationships with governance indicators, indicat-
ing trade-offs in resource allocation. As a panel, the matrix sheds insight into the double
responsibility that governance has, generating growth while also inflicting structure-based
challenges within decarbonization (Table A9).

The table shows Pearson correlation coefficients between BCE (building-related CO2

emissions) and governance-related indicators like GOVT (government effectiveness),
EDUE (education expenditure), STAB (political stability), RNDG (research and devel-
opment expenditure), LAWR (rule of law), HOSP (hospital beds), and SCIE (scientific
publications). The highly positive relationship between BCE and SCIE (r = 0.953) sug-
gests intense co-movement, while GOVT and STAB suggest high mutual correspondence
(r = 0.916) too. These correlations provide some insights into likely multi-collinearity
patterns and directional relationships across the governance dimension within the ESG
framework (Table A10).
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Table A9. Covariance matrix of governance and public service variables in relation to building
CO2 emissions.

BCE GOVT EDUE STAB RNDG LAWR HOSP SCIE

BCE 11.950 4.309 −3.168 −14.152 27.514 −15.110 −4.792 6.849 × 106

GOVT 4.309 2.653 −2.943 3.235 0.722 18.655 0.966 5.898

EDUE −3.168 −2.943 16.500 −3.925 −0.818 −21.927 −4.630 −4.123

STAB −14.152 3.235 −3.925 4.703 0.433 26.401 1.816 −8.322

RNDG 27.514 0.722 −0.818 0.433 1.011 1.560 0.665 22.538

LAWR −15.110 18.655 −21.927 26.401 1.560 169.873 6.960 −34.172

HOSP −4.792 0.966 −4.630 1.816 0.665 6.960 7.315 −5.751

SCIE 6.849 × 106 5.898 −4.123 −8.322 22.538 −34.172 −5.751 4.319 × 109

Table A10. Pearson correlation matrix of governance and public service variables related to building
CO2 emissions.

BCE GOVT EDUE STAB RNDG LAWR HOSP SCIE

BCE 1.000 0.024 −0.007 −0.060 0.250 −0.011 −0.016 0.953

GOVT 0.024 1.000 −0.445 0.916 0.441 0.879 0.219 0.055

EDUE −0.007 −0.445 1.000 −0.446 −0.200 −0.414 −0.421 −0.015

STAB −0.060 0.916 −0.446 1.000 0.199 0.934 0.310 −0.058

RNDG 0.250 0.441 −0.200 0.199 1.000 0.119 0.245 0.341

LAWR −0.011 0.879 −0.414 0.934 0.119 1.000 0.197 −0.040

HOSP −0.016 0.219 −0.421 0.310 0.245 0.197 1.000 −0.032

SCIE 0.953 0.055 −0.015 −0.058 0.341 −0.040 −0.032 1.000

Appendix E. Autocorrelation and Heteroscedasticity
Appendix E.1. Autocorrelation for E-Environment

The Wooldridge residual-regression test for the panel-data disturbances shows evident
first-order serial correlation: from a sample containing 570 observations, an auxiliary
regression of residual on its first lag generates an F statistic of 382.97 with a p-value < 0.001
for rejection of the null hypothesis of no temporal dependence. We observe a coefficient for
lagged residual of 0.756, supported by a t ratio of 19.57 and an R-squared of 0.403. This
implies that about three-quarters of each disturbance spills over into the next period, with
the intercept effectively being 0; there is no systematic bias once persistence is controlled
for. Such a strong AR(1) pattern is noteworthy because standard fixed- or random-effect
estimators, in conjunction with standard homoscedastic standard errors, are too low in
estimating sampling variability and risk misleading inferences and because ordinary least-
squares sacrifices efficiency by forgoing information in dependence structure (Table A11).

To restore valid inference, we therefore re-estimate the model under both fixed-effect
and random-effect frameworks using covariance matrices that are cluster-robust by coun-
try; this adjustment keeps standard errors consistent in the simultaneous presence of
heteroskedasticity and any form of within-panel autocorrelation, allowing t, F, and Wald
statistics to be interpreted with confidence even in light of the persistence revealed by the
Wooldridge test. The baseline fixed-effect regression explains little of the within-country
variation in building-sector CO2 emissions: the within R2 is only 0.11 and the joint F test
on the five covariates is far from conventional significance (p = 0.174). Standard errors
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clustered by country are appropriately large, and, as a result, none of the coefficients reach
the 5% level. The point estimates for energy use per capita, particulate pollution, and
renewable energy share are plausible in sign, yet their p-values hover just above 0.07,
signaling fragile statistical support (Table A12).

Table A11. Wooldridge-Type Test for First-Order Autocorrelation (Residual Regression Method).

Source SS df MS

Model 12,807.621 1 12,807.621

Residual 18,995.4902 568 33.4427644

Total 31,803.1112 569 55.8929898

Number of obs 570

F(1, 568) 382.97

Prob > F 0.000

R-Squared 0.4027

Adj R-Squared 0.4017

Root MSE 5.783

Uhat Uhat_lag _cons

Coefficient 0.7561607 −0.0021011

Std. Err. 0.0386394 0.2423395

T 19.57 −0.01

p > |t| 0.680267 −0.4780921

[95% Con. Interval] 0.8320543 0.4738899

Table A12. Fixed-effect regression results (baseline model for building sector emissions).

Model
Statistics Value Model Statistics Value Model Statistics Value

Number of
observations 990 Observations

per group (max) 20 ρ (rho) 0.9784

Number of
groups (N) 159 F(5, 158) 1.56 Observations

per group (avg) 6.2

R-squared
(Within) 0.1127 Prob > F 0.1740 Observations

per group (min) 1

R-squared
(Between) 0.0337 corr(ui Xb) −0.1328 σe (sigma_e) 104.782

R-squared
(Overall) 0.0312 σu (sigma_u) 705.105

CFTC ELEC ENUC PM25 RENC _cons

Coefficient 0.3551 −0.2731 0.0028 0.6920 −0.5133 102.987

Std. Err. 0.3332 0.2572 0.0016 0.3869 0.2821 121.714

t 1.07 −1.06 1.83 1.79 −1.82 0.85

** p < 0.05 0.288 0.290 0.070 0.076 0.071 0.399

95% Conf.
Interval

[−0.3029,
1.0132] [−0.7810, 0.2349] [−0.0002,

0.0059] [−0.0722, 1.4562] [−1.0705,
0.0438]

[−13.7409,
34.3383]

Note: ** p < 0.05.
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The random-effect GLS yields almost identical slopes and only a marginal improve-
ment in precision, with the share of renewables attaining significance at the 5% threshold,
while the Wald statistic as a whole remains weak (p = 0.066). The diagnostic statistics
reveal the root of the problem: the estimated serial-correlation parameter ρ is close to one,
indicating that the idiosyncratic disturbance is dominated by highly persistent shocks, and
the variance of the unobserved country component significantly exceeds the idiosyncratic
variance. Put simply, most of the action takes place in low-frequency movements that the
standard within transformation treats as noise, inflating standard errors and obscuring
any true relationship between the covariates and emissions. Retaining clustered variance
estimators safeguards inference, but it does so at the cost of substantial efficiency; with a
mean time dimension of merely six years per country, that loss is keenly felt (Table A13).

Table A13. Random-effect GLS regression results (building sector emissions).

Description Value Description Value Description Value

Number of
observations 990 Number of

groups (N) 159 R-squared
(Within) 0.1126

R-squared
(Between) 0.0341 R-squared

(Overall) 0.0316 Observations
per group (min) 1

Observations
per group (avg) 6.2 Observations

per group (max) 20 Wald chi2(5) 10.33

Prob > chi2 0.0664 corr(ui, X)
(assumed) 0 σu (sigma_u) 699.504

σe (sigma_e) 104.782 ρ (rho) 0.9781

CFTC ELEC ENUC PM25 RENC _cons

Coefficient 0.3110 −0.2399 0.0027 0.6584 −0.4853 94.543

Robust Std. Err. 0.2739 0.2280 0.0014 0.4349 0.2393 105.143

z 1.14 −1.05 1.86 1.51 −2.03 0.90

p > |z| 0.256 0.293 0.063 0.130 0.043 0.369

95% Conf.
Interval

[−0.2259,
0.8479] [−0.6868, 0.2070] [−0.0001,

0.0055] [−0.1940, 1.5108] [−0.9542,
−0.0164]

[−11.1532,
30.0619]

To manage autocorrelation and heteroskedasticity in panel regressions carefully, we
estimated both fixed-effect and random-effect regression specifications using Driscoll–
Kraay standard errors that are robust to general spatial and temporal dependencies. It is
a particularly useful method in empirical applications where cross-sectional dependence
co-occurs with serial correlation—a common feature in environmental as well as energy-
oriented datasets. The fixed-effect model had an F-statistic value of 3071.86 (df = 25, 20) for
the joint significance of all covariates with a p-value < 0.0001. The adjusted R-squared was
estimated at 0.1188, indicating a significant explanatory capacity for a model that accounts
for endogeneity caused by individual heterogeneity (Table A14).

The random-effect model estimated using generalized least squares (GLS) had a Wald
statistic of 36,113.22 with a p-value < 0.0001, which indicated very strongly that there is a
significant set of explanatory variables jointly responsible for explaining variance in the
dependent variable. Furthermore, an estimated intra-class correlation coefficient (ρ) came
out to be 0.9774, suggesting that nearly 98% of all variation in the dependent variable
results from variations between groups rather than within groups. Such a large value
for rho suggests an overriding influence by unmeasured, time-invariant factors specific
to groups in shaping the outcome variable. Under such circumstances, estimation based
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on random effects is usually appropriate, as it efficiently accounts for both within- and
between-group variation. However, robust standard errors should still be used to account
for possible classical assumption violations (Table A15).

Table A14. Fixed-effect regression with Driscoll–Kraay standard errors and time fixed effects (building
sector emissions).

Method Number of
Observations

Number
of Groups

Group
Variable (i)

F-Statistic
(25, 20)

Maximum
Lag Prob > F Within

R-Squared

Fixed-effect
regression 990 159 n 3071.86 2 0.0000 0.1188

Variable Coefficient Std. Err. t p > |t| CI Lower CI Upper Note

cftc 0.3376 0.0550 6.14 0.000 0.2228 0.4523

elec −0.2915 0.0967 −3.01 0.007 −0.4933 −0.0897

enuc 0.0028 0.0005 5.09 0.000 0.0016 0.0039

pm25 0.7560 0.2161 3.50 0.002 0.3052 12.067

renc −0.5190 0.1812 −2.86 0.010 −0.8968 −0.1411

t = 1 empty

t = 2 0.2862 31.141 0.09 0.928 −62.097 67.820

t = 3 28.584 14.427 1.98 0.061 −0.1509 58.678

t = 4 39.223 14.521 2.70 0.014 0.8934 69.512

t = 5 39.634 14.640 2.71 0.014 0.9095 70.173

t = 6 13.700 0.3800 3.61 0.002 0.5773 21.627

t = 7 37.745 14.251 2.65 0.015 0.8018 67.473

t = 8 −13.783 14.871 −0.93 0.365 −44.803 17.238

t = 9 17.018 14.956 1.14 0.269 −14.181 48.216

t = 10 15.751 14.764 1.07 0.299 −15.047 46.549

t = 11 11.696 0.5777 2.02 0.056 −0.0354 23.746

t = 12 0.0126 0.4635 0.03 0.979 −0.9541 0.9794

t = 13 −0.3014 0.5163 −0.58 0.566 −13.785 0.7757

t = 14 13.368 0.7711 1.73 0.098 −0.2717 29.453

t = 15 15.676 10.223 1.53 0.141 −0.5648 37.000

t = 16 0.1722 10.759 0.16 0.874 −20.720 24.164

t = 17 −26.097 14.772 −1.77 0.093 −56.910 0.4716

t = 18 −33.658 14.779 −2.28 0.034 −64.487 −0.2828

t = 19 −32.244 14.882 −2.17 0.043 −63.287 −0.1201

t = 20 −45.234 14.859 −3.04 0.006 −76.228 −14.240

t = 21 −60.561 14.831 −4.08 0.001 −91.498 −29.625

t = 22 omitted

t = 23 omitted

_cons 109.813 90.204 1.22 0.238 −78.349 297.975
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Table A15. Random-effect GLS regression with time dummies and robust standard errors (building
sector emissions).

Maximum Lag corr(u_i, Xb) Overall
R-Squared Sigma_u Sigma_e Rho

2 0 (assumed) 0.0305 69.51 10.57 0.9774

Number of
observations

Number of
groups Group variable (i) Method Wald chi2(25) Prob > chi2

990 159 n Random-effects
GLS regression 36,113.22 0.0000

Variable Coef. Std. Err. t p > |t| [95% Conf. Interval]

cftc 0.2941 0.057 5.16 0.0 (0.1753, 0.4129)

elec −0.2602 0.0815 −3.19 0.005 (−0.4303, −0.0902)

enuc 0.0026 0.001 2.65 0.016 (0.0006, 0.0047)

pm25 0.705 0.163 4.32 0.0 (0.3649, 1.045)

renc −0.4967 0.1158 −4.29 0.0 (−0.7383, −0.255)

t2 0.114 17.325 0.07 0.948 (−3.4999, 3.728)

t3 29.329 15.102 1.94 0.066 (−0.2173, 6.083)

t4 39.908 15.132 2.64 0.016 (0.8342, 7.1473)

t5 40.245 15.249 2.64 0.016 (0.8437, 7.2054)

t6 13.775 0.2382 5.78 0.0 (0.8807, 1.8743)

t7 36.424 15.469 2.35 0.029 (0.4156, 6.8693)

t8 −13.299 15.465 −0.86 0.4 (−4.5559, 1.8962)

t9 17.429 15.774 1.1 0.282 (−1.5475, 5.0332)

t10 16.287 15.933 1.02 0.319 (−1.6949, 4.9523)

t11 12.912 0.1402 9.21 0.0 (0.9986, 1.5837)

t12 0.1817 0.2021 0.9 0.379 (−0.24, 0.6034)

t13 −0.1231 0.191 −0.64 0.527 (−0.5215, 0.2753)

t14 14.741 0.1939 7.6 0.0 (1.0698, 1.8785)

t15 16.722 0.2935 5.7 0.0 (1.06, 2.2845)

t16 0.1989 12.419 0.16 0.874 (−2.3917, 2.7895)

t17 −25.584 14.557 −1.76 0.094 (−5.5948, 0.4781)

t18 −33.152 15.049 −2.2 0.039 (−6.4544, −0.176)

t19 −31.796 15.339 −2.07 0.051 (−6.3793, 0.02)

t20 −44.768 15.331 −2.92 0.008 (−7.6748, −1.2789)

t21 −60.081 15.257 −3.94 0.001 (−9.1906, −2.8256)

_cons 10.548 70.989 1.49 0.153 (−4.26, 25.3559)

Driscoll–Kraay errors permit robustness for classical-assumption failures. Nonpara-
metric covariance estimation allows for autocorrelation and heteroscedasticity in large-
T panels. Lag truncation at two counterbalances temporal dynamics and overfitting.
Predictors CFTC, ELEC, PM2.5, ENUC, and RENC are significant across specifications.
Fine particulate matter (PM2.5) presents a consistently positive, high-significance effect
(p < 0.001), confirming robust environmental–health linkages. The temporal dummies
(t3–t21) show dynamic variations, a couple of periods significantly different from the base.



Buildings 2025, 15, 3601 54 of 72

The impacts are not due to model specification. The Driscoll–Kraay estimators compensate
for autocorrelated shocks and inter-regional spill-ins, making plausible inferences where
classical errors underestimate variability. Robust estimation improves validity. The results
confirm genuine empirical relationships, rather than model-driven noise. Robustness of
this kind is essential for providing evidence for climate policy based on longitudinal data.

Appendix E.2. Autocorrelation and Heteroscedasticity for S-Social

Robust macro-panel regression inference is called for. When data encompasses many
countries over extended time horizons, classical estimators are tainted by serial correlation
and heteroscedasticity, which increases significance and weakens reliability. Diagnostic
evidence leaves little doubt: the Wooldridge test (F = 8.892, df = 1, 66, p = 0.004) confirms
first-order autocorrelation, exposing the fragility of usual fixed-effect models. Driscoll–
Kraay and cluster-robust estimators overcome these frailties by simultaneously addressing
temporal dependence and heteroscedasticity. Application of those estimators strengthens
inference, repressing true signals and removing false ones. The ensuing models are robust
under test and develop policy applicability, forming better bases for research on sustain-
ability. The study illustrates a foundational tenet: sound methodology is subordinate to
being necessary. Robust estimation transforms tentative results into robust conclusions,
providing a solid foundation for scientific and policy advancements using global panel
data (Table A16).

Table A16. Wooldridge test for first-order autocorrelation in panel data.

Test Null Hypothesis F-Statistic Degrees of Freedom p-Value

Wooldridge test for
autocorrelation

No first-order
autocorrelation 8.892 (1, 66) 0.004

The fixed-effect regression was estimated with Driscoll–Kraay errors. The procedure
accounts for autocorrelation, cross-sectional and macro-panel level heteroskedasticity,
and cross-sectional dependence that are characteristic of macro-panels. The data include
1246 observations across 138 units. The group variable is “n”. The maximum lag is two,
a characteristic of practice. The F-stat. is 37.78 (df = 5, 21; p < 0.001). The regressors
are jointly significant. The R2 is 0.0325. The explanatory variables leave little within-
entity variation to be explained. The result is characteristic of the social sciences due to
unobserved heterogeneity and measurement error. The results for the coefficients are as
follows. wpar is significantly negative (p < 0.001). High value means low outcome. labf
has a significant negative effect (p = 0.009). inc20 has a significant positive effect (p = 0.006).
A higher bottom—20% income is linked with a higher outcome. Gpie has a negative and
significant effect (p < 0.001). It could be due to economic distress or the inequality effect.
Food has a strong and narrow confidence interval, a positive effect. The prediction is robust.
The constant is high and significantly high. The baseline outcome remains at a high level
when the predictor is at zero (Table A17).

Overall, the results confirm that the model formulation and estimation plan were
appropriate in handling the statistical problems inherent in macro-panel datasets. The de-
tection of autocorrelation using the Wooldridge test also justified the use of Driscoll–Kraay
standard errors, which correctly addressed both heteroskedasticity and serial correlation
to make standard errors and test statistics robust. Although the R-squared value is low,
indicating low explanatory power, the statistical significance results and correct signs
for the main variables indicate meaningful and significant associations. Significant neg-
ative coefficients for variables such as wpar, labf, and gpie indicate social vulnerability
pockets, whereas significant positive effects for inc20 and food indicate food-correlated
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and inclusive economic benefits in predicting social sustainability outcomes. Overall, the
model reflects appropriate econometric handling of the information and offers support for
plausible inferences, upon which policy-oriented conclusions are made based on observed
covariate associations.

Table A17. Fixed-effect panel regression with Driscoll–Kraay standard errors.

Regression
Method

Number of
Observations

Number of
Groups

Group
Variable (i)

F-Statistic
(df = 5, 21) Maximum Lag

Fixed-effect
regression DK 1246 138 n 37.78 2

Prob > F Within
R-squared

0.0 0.0325

Variable Coefficient DK Std. Err. t p > |t| 95% Conf. Interval

wpar −0.1692485 0.03145 −5.38 0.0 (−0.2346524, −0.1038446)

labf −0.3234765 0.111633 −2.9 0.009 (−0.55563, −0.091323)

inc20 0.4546287 0.1480379 3.07 0.006 (0.1467669, 0.7624904)

gpie −0.0017332 0.0004127 −4.2 0.0 (−0.0025915, −0.0008749)

food 0.0863615 0.0209798 4.12 0.0 (0.0427317, 0.1299913)

_cons 46.57 8.37 5.56 0.0 (29.15322, 64.001)

Appendix E.3. Autocorrelation and Heteroscedasticity for G-Governance

A first-order autocorrelation test was conducted on the panel data to determine if a
first-order serial correlation exists in the residuals within the model. A null hypothesis
(H0) is that no first-order autocorrelation exists. An F-statistic of 19.200 was discovered
during a test with a degree of freedom (1, 66) and a corresponding p-value of 0.0000. Since
the p-value is exceedingly small in comparison to common significance levels (e.g., 0.05
or 0.01), we reject the null hypothesis. This suggests strongly that first-order autocorre-
lation exists in the residuals. Autocorrelation has the ability to create biased standard
errors; hence, it can trigger invalid statistical inferences. Accordingly, it is preferable to
treat it with the right corrective measure. Potentially used robust standard errors include
Driscoll–Kraay or clustered standard errors, along with estimation strategies that accom-
modate serial correlation, such as the use of Prais–Winsten or Arellano–Bond estimation
strategies (Table A18).

Table A18. Wooldridge test for first-order autocorrelation in panel data.

Test F-Statistic Degrees of Freedom (df) p-Value (Prob > F) Decision on H0

Wooldridge test for
first-order autocorrelation 19.200 (1, 66) 0.0000 Reject H0: first-order

autocorrelation is present

Fixed-effect regression relates governance and institutions to building-sector CO2

emissions (BCE). There are 982 observations across 102 units. Within R2 is 0.3000, explain-
ing 30% within-unit variation. Joint significance is ongoing (F(7, 873) = 53.46; p < 0.001).
The unit effects are dominant in residual variance (ρ = 0.983). Government effectiveness
(12.843; p < 0.001) is positive, indicating that governance contributes to emissions through
infrastructure development. The hospital availability coefficient (3.800; p < 0.001) is pos-
itive, reflecting the carbon intensity of healthcare. Institutional stability, the rule of law,
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and regulatory quality are negatively correlated, meaning that stronger institutions are
associated with lower pollution. Education exerts a weak but positive effect (p = 0.065),
supporting energy demand for school development. Scientific output is mildly positive,
likely due to research energy use. The test for homoskedasticity is refuted (χ2 = 1,930,609.76;
p < 0.001). Robust inference is guaranteed by Driscoll–Kraay estimation (Table A19).

Table A19. Fixed-effect regression results with heteroskedasticity and autocorrelation diagnostics.

Variable Coefficient Std. Error t p > |t| 95% Confidence Interval

govt 12.843 2.421 5.31 0.000 [8.092, 17.594]

edue 0.452 0.245 1.84 0.065 [−0.029, 0.933]

stab −3.198 1.165 −2.74 0.006 [−5.485, −0.911]

rndg −4.102 1.713 −2.39 0.017 [−7.464, −0.740]

lawr −4.354 2.011 −2.16 0.031 [−8.302, −0.407]

hosp 3.800 0.612 6.21 0.000 [2.598, 5.002]

scie 0.000433 0.000026 16.87 0.000 [0.000383, 0.000484]

_cons 14.801 6.118 2.42 0.016 [2.793, 26.808]

Model Info Value F-statistic (7, 873) 53.46 F test (all ui = 0),
F(101, 873) 78.08

Number of
observations 982 Prob > F 0.0000 Prob > F 0.0000

Number of groups 102 corr(ui, Xb) 0.0035 Test Value

Observations
per group

(min/avg/max)
1/9.6/19 Statistic Value Chi2 (df = 102) 1,930,609.76

R-squared (within) 0.3000 sigma_u (variance due
to group effects) 77.265 Prob > Chi2 0.0000

R-squared
(between) 0.2641 sigma_e (variance due to

idiosyncratic error) 10.058 Decision Reject H0: Groupwise
heteroskedasticity is present

R-squared (overall) 0.2527 rho (variance due to ui) 0.983

A fixed-effect panel regression with Driscoll–Kraay errors accommodates heteroskedas-
ticity, serial correlation, and cross-sectional dependence, which are typical issues in macro-
panel data. The data include 982 observations for 102 units. The maximum lag length
is limited to two, ensuring short-run persistence. The explanatory variables are jointly
significant (F = 59.38; p < 0.001). The within R2 is 0.30, accounting for a significant por-
tion of the variance in building-sector emissions (BCE). Government expenditure has a
large positive coefficient (12.84; p < 0.001). Increasing expenditure is linked to increased
emissions, possibly because of infrastructure development and energy use. The coefficient
for hospital infrastructure is also high and positive (3.80; p < 0.001), reflecting a carbon-
intensive approach to healthcare delivery. The coefficient for law-right protections reduces
emissions (−4.35; p = 0.032). Robust institutions align with green approaches. Scientific
activity is associated with increased emissions (p = 0.004). Research intensity may trigger
increased energy demand for industrial and development-related activities. Education and
R&D expenditure are weakly significant, possibly reflecting low variation or multicollinear-
ity. Driscoll–Kraay estimation confirms robustness. Robust inference survives elaborate
temporal and spatial error structures.
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Appendix F. Hyperparameter Optimization of KNN Regression Algorithm
Feature Selection. The methodology forecasts building-related CO2 releases (BCE)

in environmental, social, and governance (ESG) regions. The specification reflects the
econometric model. The same set of predictors is uniformly applied to ESG regions. The
same function is implemented in three environments: econometric analysis, cluster, and
machine learning regression. Methodology equivalence permits comparability. Variance
disparity is a result of methodology, and not predictor variation. The application of a
fixed set of predictors permits interpretability across ESG regions. The conventional versus
data-driven choice becomes apparent in the BCE explanation. Methodology equivalence
between econometric inference and machine learning applications emerges. Robustness in
feature selection confirms findings across methodology. See Figure A16.

Figure A16. Multi-method analytical framework for ESG-driven building sector decarbonization.
Note: It shows how environmental, social, and governance (ESG) indicators are decomposed and
analyzed through three methods—econometric models, clustering analysis, and machine learning
regression—to study building-related CO2 emissions (BCE).

Choice of k. k-Nearest Neighbors (k-NN) regression parameter k was determined on a
per-dimension basis for ESG features through automated hyperparameter tuning. This was
carried out to make k’s choice data-dependent, minimize the MSE on a validation hold-out
set, and achieve a trade-off between complexity and generalization. For each dimension,
we partitioned the dataset into training, validation, and testing sets, and we tested k-values
ranging between 1 and 10. We made our selection based on validation performance and
then retested it on a separate, independent testing set.

Choice of k for E—Environment. Parameter choices for the k-Nearest Neighbor (k-NN)
regression model were made through an automated hyperparameter tuning process tailored
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to the Environment (E) component of the ESG model. It aimed to predict building-related
CO2 emissions (BCE) based on a set of environmental predictor features like renewable
energy use, particulate levels, availability of clean fuels, and energy use per capita. Rather
than choosing a fixed k a priori, we allowed the model to search for the optimum number of
neighbors and chose k to be such that a minimum mean squared error (MSE) was attained
on a held-out validation set consisting of 20% of the data. Training-validation-test split was
performed in keeping with an 80-20-20 split. Optimization probed k values between 1 and
10 and concluded that k = 2 resulted in minimized validation error. The adoption of the
Euclidean distance metric was coupled with a rectangular weighting function. To ensure
fair computation of distance, features were standardized preparatory to model building.
Upon application to the testing collection, the optimized k-NN model yielded an MSE of
2264.407, an RMSE of 47.586, and an R-squared (R2) of 0.577, demonstrating satisfactory
predictive power in model-building BCE using environmental proxies. Though k-NN is
non-parametric and does not involve parameter estimation in typical use, tuning k helped
achieve a balance between model complexity and ability to generalize. Optimization was
conducted in a validation-based manner, in line with the mainstream literature in machine
learning. These methodological details, unique to the Environment component of the ESG
framework, have now been transparently spelled out in this revised version of the work,
with a focus on improving feature selection transparency where model specification and
predictive power are particularly important (Table A20).

Table A20. Hyperparameter optimization results for k-NN regression on environmental (E) indicators
of ESG.

Item Value/Description

Model type k-Nearest Neighbors (k-NN) regression

Target variable Building-related CO2 emissions (BCE)

Predictor variables (features) PM2.5, RENC, ENUC, CFTC, ELEC (environmental indicators)

Feature scaling Applied to all variables (standardization-enabled)

Distance metric Euclidean

Weighting function Rectangular (equal weights to neighbors)

Optimization method for k Automated hyperparameter tuning based on validation MSE

Range of k tested 1 to 10

Optimal k selected 2

Data split Training: 633 (64%), Validation: 159 (16%), Test: 198 (20%)

Validation MSE (used for tuning) 6.353

Test MSE 2.264

Test RMSE 47.586

Test R2 0.577

Mean dropout loss (feature importance) PM2.5: 83.622 RENC: 71.355 ENUC: 68.092 CFTC: 61.716 ELEC: 48.405

Software settings used Split: 20% test/20% validation, Scale features: Yes, Set seed: 1
Note: Summary of k-NN hyperparameter tuning for the environmental (E) dimension of ESG, showing the choice
of k = 2 as optimal for predicting building-related CO2 emissions (BCE).

Choice of k for S—Social. For the Social (S) dimension within this ESG model, the choice
of parameter k in k-Nearest Neighbors (k-NN) regression was made through an automatic
hyperparameter tuning procedure, aiming to minimize the mean squared error (MSE) on a
validation set withheld during tuning. This process was utilized in particular to ensure the
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selection of k was data-driven rather than a matter of arbitrary choice. Experimentation
was performed on k levels between 1 and 10, and k = 10 was selected, which achieved
the minimum validation error. Optimization was performed within a data partitioning
procedure tightly managed: we partitioned the dataset into training (64%), validation (16%),
and testing (20%) partitions, ensuring no leakage between these phases. The validation
MSE returned during tuning was 5830.302, while the terminal test MSE was 7185.254.
While higher than validation MSE, the test MSE does not suggest any level of overfitting,
considering that this is clearly accompanied by a moderate level of test R2 (0.253). All
features were standardized prior to entering the modeling process to facilitate a compara-
ble state between these within-distance computations. We utilized a Euclidean distance
metric accompanied by rectangular (uniform) weighting. These procedural steps follow
common best practices within machine learning regression. They provide a transparent and
reproducible route to parameter tuning within non-parametric model inference. Therefore,
k-selection within the social component is soundly motivated by empirical evidence and
fully integrated into a validation-based selection protocol between competing models. That
serves to increase the validity of k-NN findings and help validate the comparability across
all three ESG dimensions (Table A21).

Table A21. Choice of k for k-NN regression: social (S) dimension.

Item Value/Description

ESG Component S—social

Target Variable Building-related CO2 emissions (BCE)

Model Type k-Nearest Neighbors (k-NN) regression

Feature Set Social indicators (e.g., income, labor force, education,
representation)

Feature Scaling Applied (standardization-enabled)

Distance Metric Euclidean

Weighting Function Rectangular (uniform weights)

k Values Tested 1 to 10

Optimization Method Automated hyperparameter tuning on validation MSE

Optimal k Selected 10

Training Set Size 797 observations (64%)

Validation Set Size 200 observations (16%)

Test Set Size 249 observations (20%)

Validation MSE 5.830.302

Test MSE 7.185.254

Test RMSE 84.684

Test R2 0.253

Overfitting Evidence No significant overfitting observed

Conclusion k = 10 chosen based on best validation performance
Note: Hyperparameter tuning results for the social (S) dimension of the ESG framework, selecting k = 10 as the
optimal value for predicting building-related CO2 emissions (BCE).

Choice of k for G—Governance. For this ESG model’s regression method within the Gov-
ernance (G) dimension, the k-Nearest Neighbor (k-NN) regression choice of k parameter
was made through an automated hyperparameter tuning process designed to forestall over-
fitting and maximize generalization. All observations were entered into three partitions:
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628 measurements went into training (approximately 64%), 158 went into validation (16%),
and 196 went into testing (20%). Rather than choosing a number of neighbors ahead of
time to set a number, model exploration was performed over k within the range 1 to 10.
Validation-based MSE was minimized to locate optimal k. That was k = 2. With this k,
model validation MSE was 1067.181, while test MSE was a drastically minimized level of
129.452. Root mean squared error was 11.378 on unseen data in the test collection, and
a corresponding R2 was witnessed at a level of 0.975, identifying very high predictive
power. It appears that the model’s generalization is incredibly good across unseen data,
and choosing k = 2 does a very good trade-off between model complexity versus variance.
Other model specifications were the use of a rectangular weighting function and the use
of Euclidean distance. All features were normalized prior to training such that a distance
metric was not skewed due to range of variables. Validation-based tuning coupled with
impressive out-of-sample behavior provides powerful justification to a chosen level of k,
substantiating that k is a good choice within a Governance-driven regression model setup
within this ESG model (Table A22).

Table A22. Hyperparameter optimization results for k-NN regression: governance (G) dimension.

Item Value/Description

ESG Dimension Governance (G)
Model Type k-Nearest Neighbors (k-NN) regression

Training Set Size 628 observations (≈64%)
Validation Set Size 158 observations (≈16%)

Test Set Size 196 observations (≈20%)
Hyperparameter Tuned Number of Nearest Neighbors (k)

Range of k Tested 1 to 10
Optimal k Selected 2 (minimizes Validation MSE)

Validation MSE 1.067
Test MSE 129.452

Test RMSE 11.378
Test R2 0.975

Distance Metric Euclidean
Weighting Scheme Rectangular (uniform weights)

Feature Scaling Applied Yes (all features standardized)

Conclusion on k Selection Optimized via validation MSE, k = 2
balances accuracy and complexity

Note: Validation-based tuning of k in the governance (G) dimension identify k = 2 as optimal, yielding high
predictive accuracy (R2 = 0.975) for building-related CO2 emissions (BCE).

Multicollinearity. When modeling the environmental (E) dimension of the ESG model,
the issue of multicollinearity presents special importance even while operating non-
parametrically and making no assumptions about regression coefficients. For ESG research,
environmental covariates such as PM2.5, renewable energy use, per capita energy con-
sumption, use of clean fuels, and electricity coverage tend to be correlated, as they serve
as indicators of structural complexity in energy systems and environmental strength. If
left unaddressed, multicollinearity can obscure the unique effect of different indicators,
limiting interpretation and further dampening the strength of sustainability analysis. For
instance, renewable energy consumption and electricity access can be highly correlated in
higher-income countries, while air pollution and per capita consumption can compensate
for each other across a fast-industrializing state. Focusing on the peril of latent redundancy
between predictor variables is thus instrumental in ensuring that ESG-based models iden-
tify actual distinct drivers in emissions rather than a construct of intersecting variables.
For this research work, precautions such as feature scaling, permutation importance-based
dropout selection, and cautious selection of predictor features were employed to mitigate
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the risks of collinearity. Through this process, this research provides a higher level of
validity to both a model-based projection of CO2 emissions associated with buildings and
makes a broader case for the appropriateness of ESG indicators in producing relevantly
interpretable results to inform sustainable policy development.

E—Environment. For the environment (E) component within the ESG model, we under-
stand that, due to the non-parametric nature of the k-Nearest Neighbor (k-NN) algorithm, it
does not require formal testing against multicollinearity, as it does not imply the estimation
of regression coefficients. Nevertheless, we assumed a possible multicollinearity effect on
predictor features, employing a two-pronged approach that combined preprocessing opera-
tions and metrics-based informability. First, all environmental input features, including
PM2.5, renewable energy consumption (RENC), energy use per capita (ENUC), use of clean-
ing fuels (CFTC), and electricity supply use (ELEC), were standardized prior to training.
Feature scaling is necessary in k-NN to prevent any supplied variable from dominating
the distance measurement due to differences. Additionally, to evaluate the relative level of
distinctness and informativeness of every feature, we employed a dropout-based feature
importance quantification. The resulting dropout losses across a wide range of divergent
predictors indicated that the model was not relying on redundant or collinear features
while producing estimates. Although we did not apply formal testing for multicollinearity,
such as the Variance Inflation Factor (VIF), applicable to linear models, a combination
of feature scaling, normalized feature inputs, and permutation-based feature evaluation
provided adequate protection against distortions due to highly correlated features. Such
methodological precautions were taken, especially within the environment model, in a bid
to ensure that estimations of building-related CO2 emissions were not adversely affected
by hidden redundancies between input features (Table A23).

Table A23. Feature scaling and multicollinearity control in k-NN regression: environmental (E) dimension.

Aspect Value/Description

Model type k-Nearest Neighbors (k-NN) regression

Target variable (Y) Building-related CO2 Emissions (BCE)

Predictors (X variables) PM2.5, RENC (renewable energy consumption), ENUC (energy use
per Capita), CFTC (clean fuel access), ELEC (electricity access)

Number of predictors 5 environmental variables

Feature scaling applied Yes—All variables standardized before training

Reason for scaling To prevent any feature from dominating distance calculations due to
scale differences

Multicollinearity test (formal) Not performed—VIF not applicable to non-parametric models

Alternative control methods used Feature scaling + feature importance (dropout loss) + manual selection

Feature importance method Dropout-based permutation importance (50 permutations)

Dropout loss values PM2.5: 83.62 RENC: 71.36 ENUC: 68.09 CFTC: 61.72 ELEC: 48.41

Interpretation of dropout spread Wide variation in loss suggests that predictors contribute uniquely → no
dominance or redundancy

Conclusion on multicollinearity No evidence of harmful multicollinearity affecting predictions in the
E-component model

Note: Evaluation of predictor distinctness for the environmental (E) dimension of the ESG framework. Stan-
dardization and dropout-based feature importance confirm no harmful multicollinearity among environmental
indicators (PM2.5, RENC, ENUC, CFTC, ELEC) in predicting building-related CO2 emissions (BCE).

S–Social. Regarding the Social (S) element within this application of the ESG model,
multicollinearity was addressed through a combination of model-specific issues and non-
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parametric learning and preprocessing methods. Since k-Nearest Neighbors (k-NN) regres-
sion does not yield coefficients, it is not susceptible to the same statistical aberrations caused
by multicollinearity infecting linear regression-based applications. Therefore, model-based
testing, such as the Variance Inflation Factor (VIF), is neither applicable nor necessary in
this case. Precautions were still taken to guard against redundant or highly correlated
predictor features that could obfuscate model performance. First, features were normal-
ized beforehand during training, ensuring that no variable dominated distance metrics
due to scale differences. More substantively, feature importance was evaluated through
dropout loss analysis, whereby the predictive influence contributed by each variable was
quantitatively estimated across 50 permutations. Results reflected apparent and clear-cut
variability in dropout loss between predictor features (e.g., LABF = 84.697, WPAR = 81.206,
GPIE = 66.064), indicating that every variable contributed disparate information to this
model. Such variability serves to corroborate evidence that model performance was not
overly reliant upon some singular or collinear feature subset. The table of additive ex-
planation further demonstrates that per-individual predictive contributions arise due
to a variegated combination of inputs. Overall, these elements provide both quantita-
tive and methodological evidence, indicating that multicollinearity did not diminish the
predictive integrity of this k-NN application within the Social component. Although tech-
nically not tested due to a non-significant relationship between model applications across
these components, this combination of feature scaling and interpretation across permuta-
tions provides a powerful safeguard against multicollinearity within this non-parametric
application (Table A24).

Table A24. Multicollinearity control and feature importance in k-NN regression: social (S) dimension.

Item Value/Description

ESG Component S—Social

Model Type k-Nearest Neighbors (k-NN) Regression

Target Variable Building-related CO2 Emissions (BCE)

Predictor Variables LABF, WPAR, FOOD, INC20, GPIE

Number of Predictors 5 Social Indicators

Distance Metric Euclidean

Weighting Scheme Rectangular (equal weights)

Feature Scaling Applied Yes (all variables standardized)

Multicollinearity Diagnostic Used Not Applicable (k-NN is non-parametric;
VIF not suitable)

Alternative Safeguards Standardization + Permutation-based Feature
Importance (Dropout Loss)

Feature Importance (Dropout Loss) LABF: 84.697 WPAR: 81.206 FOOD: 77.663
INC20: 73.991 GPIE: 66.064

Dropout Loss Method Based on 50 Permutations Using RMSE Impact

Interpretation High Variability In Dropout Loss Indicates
Non-Redundant Predictors

Conclusion No Harmful Multicollinearity Detected; Each
Feature Contributes Uniquely

Note: Although formal multicollinearity diagnostics such as VIFs are not applicable to non-parametric models like
k-NN, safeguards are implemented through standardization and dropout-based feature importance. Variability in
dropout loss across the five social predictors confirms their unique contributions, ensuring that no single variable
dominates or introduces redundancy.
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G—Governance. Regarding Governance (G) within the ESG model, the multicollinearity
problem was addressed by considering the features of the k-Nearest Neighbors (k-NN)
regression algorithm. While linear regression algorithms estimate coefficients, k-NN does
not, and it is consequently not susceptible to the parametric model instability associated
with multicollinearity. Therefore, formal diagnostic statistics such as the Variance Inflation
Factor (VIF) could not be employed. Nonetheless, precautions were taken to prevent
redundancy between predictors, which disrupted the distance-based learning process. All
predictors related to governance features, such as SCIE, HOSP, EDUE, RNDG, GOVT, STAB,
and LAWR, were standardized before training. By doing so, no variable could overpower
the distance function due to differing scales. Feature contribution was then observed via
dropout-based importance analysis across 50 permutations. Dropout-based importance
analysis across permutations numbering 50. Results indicated a wide variance, such that
dropout loss ranged from SCIE at 165.690 to LAWR at 6.726. Such diffusivity reveals
that the predictors contribute variably and not simply as redundant copies of each other.
Furthermore, additive explanations relating to test set cases confirm that model predictions
map to the effects of a variegated arrangement of features, rather than a redundant set.
Overall, the evidence suggests that multicollinearity did not compromise the predictive
validity of the governance model. Although no formal analysis in terms of VIF was
required here due to the non-estimation of coefficients, the use of standardization, careful
selection between features to be entered, and permutation-based interpretation served to
keep the model resistant against distortions likely to be occasioned by highly correlated
features (Table A25).

Table A25. Multicollinearity safeguards and feature importance in k-NN regression:
governance (G) dimension.

Item Value/Description

ESG Dimension Governance (G)

Model Type k-Nearest Neighbors (k-NN) regression

Target Variable Building-related CO2 Emissions (BCE)

Predictor Variables SCIE, HOSP, EDUE, RNDG, GOVT, STAB, LAWR

Number of Predictors 7 governance indicators

Feature Scaling Applied (all variables standardized
before modeling)

Distance Metric Euclidean

Weighting Function Rectangular (equal weights for neighbors)

Multicollinearity Test (VIF) Not applied (not relevant to non-parametric k-NN)

Alternative Assessment Permutation-based dropout loss (50 permutations)

Feature Importance
(Dropout Loss)

SCIE: 165.690 HOSP: 30.104 EDUE: 28.272 RNDG:
28.038 GOVT: 20.035 STAB: 18.963 LAWR: 6.726

Interpretation Wide variability in dropout loss values indicates that
predictors contribute uniquely

Conclusion No evidence of harmful multicollinearity; predictors
are complementary, not redundant

Note: Standardization and dropout-based feature importance confirm that governance indicators (SCIE, HOSP,
EDUE, RNDG, GOVT, STAB, LAWR) contribute uniquely within the k-NN model. No harmful multicollinearity
is detected, supporting the robustness of the governance (G) dimension in predicting building-related CO2
emissions (BCE).
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Overfitting. To deter the danger of overfitting in the environment (E) factor within the
ESG model, we employed a rigorous model validation and data partitioning procedure. A
dataset was partitioned into separate training (64%), validation (16%), and test (20%) sets
such that model training and hyperparameter tuning were carried out without considera-
tion of model performance for a concluding evaluation. Optimal k-NN model selection
was achieved in selecting a k value associated with a minimum mean squared error on a
validation dataset such that a model was safeguarded against a fit to a training dataset.
Notably, model performance on a test dataset did not suffer but instead performed better
relative to a validation dataset (test MSE = 2264.407 vs. validation MSE = 6353.665) such
that model successful generalization was evidenced, and neither was overfit to a training or
validation dataset. Additionally, validation in the form of a test R2 of equaling 0.577 ensures
a satisfactory predictive power without evidence of model overfitting. These precautions,
tailored to include a data partitioning component, validation-based hyperparameter tuning,
and out-of-sample evaluation, were particularly adopted to deter a danger of overfit-
ting within a k-NN regression model employed within a calculation of building-related
CO2 emissions.

E—Environment. To manage the peril associated with having an environmental (E)
element within the ESG model, we adopted a systematic model validation and data parti-
tioning procedure. We divided the dataset into separate training (64%), validation (16%),
and testing (20%) sets such that model training and hyperparameter tuning occurred with-
out affecting the final evaluation. We trained a k-NN model and selected k such that it
resulted in minimum mean squared error on validation set to avoid overfitting to training
data. Incidentally, model performance on unseen testing did not degrade but rather im-
proved compared to that on validation dataset (test MSE = 2264.407 compared to validation
MSE = 6353.665), suggesting that model generalized fairly and was not overfitted to both
training and validation data. Also, a corresponding test R2 of 0.577 further exemplifies good
predictability without generating model overfitting concerns. These precautions, including
partitioning data, hyperparameter tuning on a validation dataset rather than on training
or testing datasets or even out-of-sample testing, were particularly developed to manage
the danger of overfitting within the k-NN regression model employed in approximating
building-related CO2 emissions (Table A26).

S—Social. To guard against the peril of overfitting within the social (S) part of the ESG
model, a formal breakdown between training, validation, and testing was made such that a
stringent separation was maintained between model training, hyperparameter tuning, and
final evaluation. Data was split into three sets: 64% for training (797 observations), 16% for
validation (200 observations), and 20% into a test dataset (249 observations). Such a setup
prevented leaks between model evaluation and optimization. A k-Nearest Neighbor (k-NN)
regression model was optimized such that k was selected such that mean squared error
(MSE) was minimized in validation dataset. Optimization was performed across k such that
k ranged between 1 and 10, and k was selected such that validation MSE was minimized.
Validation MSE was 5830.302, while ultimate test MSE was 7185.254. Although a large error
rate on a test is very large, this difference was neither dominatingly large nor significant
to indicate overfitting. This is further supported by a test R2 of 0.253, such that the model
possesses predictability evident across unseen data. All features were normalized before
model development so that equal computation across distances and equal weight were
given. A Euclidean distance measure and rectangular weighting function were common
approaches among k-NN family members. Test set performance overall supports the
proposition that the model fairly generalizes but not too fitted within training or validation
data. Validation-based tuning accompanied by independent evaluation across a test serves
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as a strong defense against such overfitting that predictive inferences within the Social
model across ESG remain supported (Table A27).

Table A26. Overfitting control and validation outcomes in k-NN regression: environmental (E) dimension.

Aspect Value/Description

Model type k-Nearest Neighbor (k-NN) regression

Target variable Building-related CO2 Emissions (BCE)

Predictor variables (features) PM2.5, RENC, ENUC, CFTC, ELEC
(environmental indicators)

Training set size 633 observations (64% of dataset)

Validation set size 159 observations (16% of dataset)

Test set size 198 observations (20% of dataset)

Hyperparameter tuning method Automated optimization of k based on lowest
validation MSE

Optimal k selected 2

Validation MSE 6.353.665

Test MSE 2.264.407

Test RMSE 47.586

Test R2 0.577

Performance comparison Test performance better than validation →
no overfitting

Overfitting control techniques Train-validation-test split + validation-based tuning
+ out-of-sample test evaluation

Interpretation Model generalizes well with no signs of overfitting
Note: Train–validation–test partitioning and validation-based tuning ensured the environmental (E) k-NN model
avoided overfitting. Superior test performance (MSE = 2264.407; R2 = 0.577) confirmed robust generalization in
predicting building-related CO2 emissions (BCE).

Table A27. Overfitting control and validation outcomes in k-NN regression: social (S) dimension.

Item Value/Description

ESG Dimension Social (S)

Model Type k-Nearest Neighbor (k-NN) regression

Training Set Size 797 observations (64%)

Validation Set Size 200 observations (16%)

Test Set Size 249 observations (20%)

Hyperparameter Tuned Number of nearest neighbors (k)

Range of k Tested 1 to 10

Optimal k Selected 10

Validation MSE 5.830.302

Test MSE 7.185.254

Test RMSE 84.766

Test R2 0.253

Distance Metric Euclidean

Weighting Function Rectangular (uniform weights)

Feature Scaling Applied Yes (all features standardized)
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Table A27. Cont.

Item Value/Description

Overfitting Evidence No clear signs of overfitting; test performance
remains stable

Safeguard Against Overfitting Independent validation and test splits,
validation-based k selection

Conclusion The model generalizes well and retains predictive
power on unseen data

G—Governance. In the governance (G) component of the ESG model, a risk of overfit-
ting was addressed in a cautious manner through systematic training, validation, and test
splits, along with hyperparameter tuning. The data was split into 628 training observations
(64%), 158 validation observations (16%), and 196 test observations (20%), allowing for the
calibration of the model and evaluation of its performance to occur entirely autonomously.
A k-Nearest Neighbor (k-NN) regression was obtained using automatic tuning of the
number of neighbors, with testing k-values ranging from 1 to 10 and selecting the k-value
that resulted in a minimal mean squared error (MSE) on the validation set. Based on this
process, k = 2 was found to be an optimal setup. The validation MSE was 1067.181, but the
corresponding test MSE was drastically lower at 129.452, corresponding to an associated
RMSE of 11.378 and an R2 measure of 0.975 on the test part. A rock-solid but smaller test
error compared to validation error does not appear, but rather it is a strong indication that
the model does not seem to be overfitted to the training dataset, suggesting instead that
the model has a very good ability to generalize when subjected to unseen data. Other
precautions included feature scaling, ensuring a fair measurement of distance, and the use
of Euclidean distance with rectangular weights, thereby adhering to the relevant k-NN
regression best practices. When combined, partitioning of data, tuning based on validation
evidence, and relentless out-of-sample performance provide firm evidence supporting the
claim that a governance model does not overscale. Instead, it demonstrates a remarkable
ability to generalize while maintaining predictive accuracy (Table A28).

Table A28. Overfitting control and validation outcomes in k-NN regression: governance (G) dimension.

Item Value/Description

ESG Dimension Governance (G)

Model Type k-Nearest Neighbor (k-NN) regression

Training Set Size 628 observations (≈64%)

Validation Set Size 158 observations (≈16%)

Test Set Size 196 observations (≈20%)

Hyperparameter Tuned Number of neighbors (k)

Range of k Tested 1 to 10

Optimal k Selected 2

Validation MSE 1.067.181

Test MSE 129.452

Test RMSE 11.378

Test R2 0.975

Distance Metric Euclidean

Weighting Function Rectangular (uniform weights)
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Table A28. Cont.

Item Value/Description

Feature Scaling Applied (all variables standardized before training)

Overfitting Evidence No signs of overfitting: test error lower than validation
error, stable high R2

Conclusion Model generalizes well, predictions are robust and
not overfitted

Note: Systematic train–validation–test partitioning and validation-based tuning identify k = 2 as optimal for the
Governance (G) model. Superior test performance (MSE = 129.452; R2 = 0.975) confirms robust generalization and
no evidence of overfitting in predicting building-related CO2 emissions (BCE).
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