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Abstract

Building Information Modeling (BIM) is widely used in highway bridge engineering,
making compliance with complex design specifications crucial. Existing checks rely heavily
on manual review, which is time-consuming and inefficient. This study proposes an
automated framework using large language models (LLMs) to parse unstructured design
specifications and extract structured rules with 79.5% accuracy, stored in a knowledge graph.
IFC-formatted BIM component attributes are then compared with these rules to check
structural completeness and compliance, achieving 84.4% precision. The results indicate
that the framework offers an effective solution for automated rule extraction and has the
potential to improve compliance-checking efficiency and accuracy in engineering practice.

Keywords: building information modeling; large language model; highway bridge;
knowledge graph; automated model checking

1. Introduction
With the rapid development of information technology, Building Information Mod-

eling (BIM) has been widely adopted in the engineering sector and has become a core
approach driving the digital transformation and intelligent management of construction
projects [1]. In highway bridge engineering, BIM is gradually replacing traditional 2D
drawings, becoming the primary digital medium for design and construction. BIM models
not only provide improved visualization but also integrate geometry, component attributes,
and inter-component relationships. However, the increasing complexity of BIM models
and the growing volume of design specifications pose significant challenges for efficient
and accurate automated checking.

Automated checking of BIM models involves using computational tools to evalu-
ate whether design models comply with engineering codes and standards. Considerable
progress has been made internationally and domestically. Eastman et al. [2] pioneered
rule-based compliance checking in building design, outlining a four-stage process: rule
interpretation and logical representation, model preparation, rule execution, and report
generation. Early information extraction methods were mainly rule-based, relying on
manually created rules to extract entities and relationships from texts. They required
substantial human effort, and their performance depended heavily on the quality of the
rules. El-Gohary et al. [3–5] conducted in-depth research on specification information
extraction, employing rule-based methods, deep learning, and fully automated compli-
ance frameworks integrating semantic natural language processing (NLP) with logical

Buildings 2025, 15, 3465 https://doi.org/10.3390/buildings15193465

https://doi.org/10.3390/buildings15193465
https://doi.org/10.3390/buildings15193465
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-3188-2889
https://orcid.org/0009-0000-4625-4602
https://doi.org/10.3390/buildings15193465
https://www.mdpi.com/article/10.3390/buildings15193465?type=check_update&version=1


Buildings 2025, 15, 3465 2 of 17

reasoning. Xue et al. [6] applied deep learning to part-of-speech tagging in regulatory
documents, Machine learning–based methods gradually emerged, such as Support Vec-
tor Machines (SVM) [7], Hidden Markov Models (HMM) [8] and K-Nearest Neighbors
(KNN) [9]. Peng et al. [10] proposed a framework based on BIM and knowledge graphs
(KGs), employing machine learning for information extraction to enable automated compli-
ance verification. However, these methods still require substantial manual involvement in
feature engineering, and the effectiveness of information extraction is closely dependent on
the quality of the manually constructed features. Moreover, maintaining these systems was
technically demanding, and their scalability was limited. These constraints reduced their
applicability to large and evolving design specifications.

Despite considerable progress in specification information extraction and automated
checking of BIM models, challenges remain in extracting complex rules from engineering
specifications, representing them effectively for automated reasoning, and integrating them
with BIM model attributes. To address these challenges, this study focuses on the following
two main research questions:

RQ1. How can rules be extracted from highway bridge design specifications?

RQ2. How can the extracted rules be used for automated compliance and structural integrity
checking of BIM models?

To address these challenges, this study employs large language models (LLMs) and
natural language processing (NLP) techniques to extract information from design specifica-
tions. Unlike existing methods that rely heavily on manual feature engineering and rule
coding, our approach directly extracts structured rules from the specifications. This reduces
manual work, lowers the operational threshold, and achieves a rule extraction accuracy
of 79.5%. The extracted rules are stored in a domain-specific knowledge graph to support
intelligent rule representation and efficient querying. The framework can handle multiple
specifications with complex conditional logic, providing strong scalability and ease of
maintenance. Component attributes from IFC-formatted BIM models are automatically
compared with the rules in the knowledge graph to perform structural completeness and
compliance checking. Performance evaluation shows an accuracy of 65.2%, precision of
84.4%, recall of 70.7%, and F1 score of 76.9%. These results indicate that the method offers a
practical and promising solution for automated rule extraction and can potentially improve
the efficiency of compliance-checking processes.

A technical framework for automated checking of highway bridge BIM models is pro-
posed, consisting of four key stages as illustrated in Figure 1: (1) structured transformation
of design specifications, (2) extraction of BIM model data, (3) compliance checking via a
graph database, (4) automated generation of checking reports. This framework addresses
both the technical challenges of specification information extraction and the practical
needs of BIM-based bridge design, providing a foundation for digital transformation and
high-quality delivery of highway bridge projects.

 

Figure 1. Framework for automated checking of BIM models.
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2. Semantic Structuring of Engineering Specifications Using LLMs
2.1. Overview of Language Modeling Development

As illustrated in Figure 2, the development of language modeling can be broadly
categorized into four stages. Initially, research focused on language translation and ba-
sic grammar parsing, relying on hand-crafted rules with limited adaptability. With the
advancement of computational power and the availability of large-scale corpora, Statis-
tical Machine Translation (SMT) [11,12] gradually supplanted rule-based systems. The
breakthroughs in deep learning, particularly the introduction of attention mechanisms
and the Transformer architecture, significantly accelerated progress in machine translation.
In recent years, NLP research has gradually shifted toward cross-modal fusion and rein-
forcement learning, achieving more comprehensive language understanding [13,14], and
evolving from statistical language models to LLM [15].

Figure 2. Overview of NLP development stages and their applications.

LLMs have billions to trillions of parameters. They can analyze language structures
and semantic representations, making them well-suited for processing complex and lengthy
engineering specifications. Transformer-based models, in particular, use self-attention
mechanisms to capture long-range dependencies in input sequences. This significantly
improves the model’s ability to handle language representation and long-text modeling.
The GPT series [16], a leading example of large models, performs exceptionally well in this
regard. Li et al. [17] used LLMs to extract structured data from engineering specifications,
achieving 71.6% accuracy. Dagdelen [18] fine-tuned GPT-3 and LLaMA-2 models to extract
structured information from the scientific literature. These studies show that LLMs can
convert unstructured engineering specifications into structured, machine-readable rules.

2.2. LLM-Based Structuring of Design Specifications

The rapid development and widespread application of large language models (LLMs)
have made it possible to decompose engineering specifications and extract structured
information from them. This enables the construction of domain-specific knowledge bases,
which provide essential support for the automated checking of BIM models. As shown in
Figure 3, this study proposes an LLM-driven technical framework for structuring design
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specifications. The process consists of four main stages: (1) text preprocessing; (2) prompt
engineering; (3) knowledge extraction via LLMs; (4) structured data storage.

 

Figure 3. LLM-based framework for specification data structuring.

2.2.1. Text Preprocessing

Text preprocessing is the first step in converting engineering specifications into struc-
tured information that can be processed by LLMs. The specific process involves the
following key steps:

1. Format Conversion: Convert engineering specification texts from various sources
(e.g., PDF, Word, HTML) into a standardized text format to ensure data consistency
and operability.

2. Removal of Irrelevant Content: Eliminate unrelated parts, such as covers, tables of
contents, and copyright statements, retaining only the clauses and main body of
the text.

3. Clause Segmentation: Automatically divide the text into independent clauses based
on the clause numbers in the specification, ensuring clear boundaries for each clause
and preventing information confusion.

4. Separation of Comments and Main Text: Separate clause comments from the main
body of the specification. Comments are often crucial for understanding the clauses,
and separating them facilitates further processing.

5. Text Standardization: Standardize various expressions, units, and symbols to ensure
consistency in the text, making subsequent information extraction easier.

2.2.2. Prompt Engineering

To ensure that the LLMs can accurately extract structured information from the
specifications, this study employs a structured prompt design method called
“Role-playing—Thought-Chain—Requirements—Example” [19,20], as illustrated in
Figure 4. The prompt is further enhanced through iterative optimization to improve
its effectiveness.

1. Role-playing: The prompt design involves role-playing, where the LLM’s role is that
of a “highway bridge engineering expert” proficient in the use and analysis of specifi-
cations. The task is to extract structured data from the bridge design specifications,
particularly information related to design parameters and constraints.

2. Thought Chain: The thought chain technique enables the LLM to better generate the
required results. When processing each clause step by step, the model should follow
this thought chain:
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• Understand the content and structure of the clause and identify the main
design requirements.

• Extract key attributes (such as dimensions, strength, etc.), constraints (such as
size limits, ratio requirements), and scope from the clause.

• Organize the extracted structured information into a processable format
(e.g., JSON, tables, etc.).

3. Requirements: Detailed requirements ensure more accurate content.

• Accuracy: The extracted information must strictly conform to the specification
requirements, avoiding any misunderstandings or omissions.

• Consistency: Information from different clauses should follow the same structure
to ensure the model can uniformly process all clauses.

• Clarity: Each extracted attribute and constraint should have a clear definition
and boundary.

4. Example: Provide input–output examples to help the LLM better generate the desired
content. Giving templates for the LLM to learn from is a common and effective
method for adjusting large models.

 

Figure 4. Structured design of prompts.

Additionally, during prompt design, initial prompts may not achieve the desired
results. To enhance the accuracy and consistency of structured information extraction by
LLMs, we introduced an iterative optimization process consisting of five iterations. In each
iteration, the role was adjusted, for example, from a specification writing expert to a high-
way bridge engineering expert. The thought chain and requirements were progressively
refined to be more specific and precise. Most importantly, examples were continuously
improved, as illustrated in Figure 5, by splitting and categorizing information to better
structure the extracted data.
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Figure 5. Example refinement process in iterative prompt optimization; by modifying the structure
of ‘property’ and ‘constraint’, the generated data becomes more structured, facilitating subsequent
operations. The ‘relation’ field was removed to reduce computational load.

To clearly illustrate the structured prompt design for rule extraction, we provide a
detailed example in Figure 6.

Figure 6. Specific application of the prompt: input prompt; input specification text; output JSON data.

2.2.3. Knowledge Extraction and Structured Storage Based on Large Language Models

For the preprocessed specification text, this study uses ChatGPT-4.1 (temperature = 0,
top-p = 0.9, frequency penalty = 0, presence penalty = 0) and DeepSeek-V3 (temperature = 0,
top-p = 0.9, frequency penalty = 0, presence penalty = 0) to extract structured knowledge
using the designed prompt templates. Max_token was set to 1.5 × input token count, with
long specifications (>20,000 tokens) divided into segments and processed independently.
The output is organized according to the format provided in the prompt examples. By
comparing the outputs of two large language models, it becomes easier to identify both
erroneous rules and omitted rules.

By extracting a subset of rule information from multiple highway bridge design
specifications, a total of 967 JSON-formatted data entries were compiled within a single
working day. This approach significantly reduced the time required compared with manual
rule encoding. Subsequent manual verification identified 198 irrelevant or incorrect entries,
yielding an accuracy rate of 79.5%. Most of the inaccuracies were attributable to semantic
misinterpretation and numerical inconsistencies.

To avoid excessive edge generation in the knowledge graph due to an overabundance
of nodes and to enhance query efficiency, a JSON-based data schema is employed to
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optimize the storage structure. This schema not only improves data processing readability
but also boosts subsequent query performance. Table 1 illustrates the structure of this
JSON schema.

Table 1. JSON schema for structured knowledge representation extracted from design specifications.

Field Name Meaning Purpose

Component Name of the structural component or entity Used to generate a component node

Property Constraint

– Property The design attribute is being constrained Attached to the relationship as the subject of
the constraint

– Comparator Comparison operator (e.g., ≥, =, ≤) Defines the logical condition in
the relationship

– Value The actual limit or required value Used to generate a Value node

The key information extracted by the LLM is then aggregated into a structured JSON
file, which serves as input for the next phase of knowledge graph construction.

3. Knowledge Graph Construction Methods
3.1. Knowledge Graph Technology

A knowledge graph is a semantic representation technique that models entities and
their interrelationships through a graph structure. Its primary purpose is to achieve
both the structural organization and computational usability of knowledge, enabling
semantic reasoning and querying. Since the introduction of the Google Knowledge Graph
in 2012 [21], this approach has become a foundational infrastructure in fields such as
artificial intelligence, natural language processing, and complex systems modeling.

Structurally, a knowledge graph is formalized as a directed graph, consisting of nodes
and edges: nodes represent entities or concepts, and edges denote semantic relationships be-
tween them. Common representation models include the Resource Description Framework
(RDF) and the Labeled Property Graph (LPG), each offering different levels of granularity
and data management strategies [22].

The fundamental unit of a knowledge graph is the triple, expressed as (subject, predi-
cate, object), which captures the attribute relationships or semantic links between entities.
Due to the directional nature of entity relations, a knowledge graph is inherently a directed
graph. As illustrated in Figure 7, a head entity points to a tail entity through a specified re-
lationship, forming a semantically constrained network of knowledge representations [23].

Graph databases store nodes and relationships as fundamental modeling units, mak-
ing them particularly suitable for representing complex structures involving multiple
hierarchical levels and diverse relationship types. Unlike traditional relational databases,
which use foreign keys to maintain table connections, graph databases eliminate the need
for predefined join paths. Instead, they store associations directly between entities, signifi-
cantly enhancing semantic connectivity and query efficiency. Neo4j is a widely used graph
database that employs a specialized query language called Cypher.
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Figure 7. An example of a knowledge graph. In this graph, (e1, r1, e2) is a triplet that indicates that
e1 and e2 are connected by relation r1 [23].

3.2. Knowledge Graph Construction Workflow

Building upon the prior discussion, knowledge graph technology not only facilitates
intelligent querying and solution recommendation but also enables semantic rule checking
by integrating domain codes with component-level semantic information. This functionality
is crucial for the automated checking of BIM models. As illustrated in Figure 8, this
study proposes a technical workflow for knowledge graph construction using structured
specification data as input. The overall process consists of three stages: (1) data preparation,
(2) ontology modeling, (3) graph construction.

 
Figure 8. Technical workflow for knowledge graph construction.

4. Automated Checking of Highway Bridge BIM Models Based on Large
Language Models
4.1. Research Methods and Technical Framework

Based on the previous analysis of the application of natural language processing, LLMs,
and KGs in highway bridge design, this paper proposes an automated checking method for
highway bridge BIM models based on large language models. The method leverages the
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strengths of LLMs in semantic understanding, rule extraction, and knowledge generation,
converting large amounts of unstructured text from bridge design specifications into
structured rules that can be processed by machines. A queryable knowledge graph system
is constructed using the Neo4j graph database, supporting subsequent model checking.

To achieve information matching between design specifications and engineering
models, this study selects IFC as the data format for highway bridge BIM models. IFC is an
open and semantically rich BIM standard with a comprehensive entity system, covering
components such as IfcColumn, IfcBeam, and IfcSlab, as illustrated in Figure 9. This format
is well-suited for integration with the knowledge graph and effectively supports automated
model checking.

Figure 9. Partial examples of IfcBridge entities.

The overall technical framework, as illustrated in Figure 10, includes three
core processes.

 

Figure 10. Technical workflow for automated checking of highway bridge BIM models based
on LLMs.

1. Information Extraction: Extract structured rules from bridge design specifications
and construct the knowledge graph, while extracting target components and their
attribute data from the BIM model.

2. Information Matching: Match the actual model data with the design requirements in
the graph database.

3. Inspection Result Generation: Output the inspection results and provide feedback
and design adjustment recommendations as necessary.
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4.2. Scope of Model Checking

Within the framework proposed in this study, the automated checking of highway
bridge BIM models focuses on two main aspects: structural completeness checking and
regulatory compliance checking.

4.2.1. Structural Completeness Checking

Structural completeness checking is used to verify whether all necessary structural
components are present in the model. For example, a bridge pier must include a pier body,
pier cap, and foundation element. As illustrated in Figure 11a, the system first reads the list
of properties associated with each physical component and checks for their presence. It
then retrieves the relevant attribute templates from the knowledge graph and performs
matching and verification. This method effectively identifies missing components and
helps to detect issues such as incomplete structural hierarchies or missing model elements.

  
(a) (b) 

Figure 11. Model checking workflow diagrams: (a) structural completeness checking; (b) regulatory
compliance checking.

4.2.2. Regulatory Compliance Checking

Regulatory compliance checking is used to verify whether the attributes of structural
components conform to the relevant design standards. The checking process consists of
two levels:

1. Single-Component Attribute Compliance: Determines whether the attribute values of
each component (e.g., diameter, height, or concrete strength grade) comply with the
specifications defined in the knowledge graph.

2. Inter-Component Relational Compliance: Evaluates whether the logical relation-
ships between multiple components (e.g., the spacing between adjacent piers
or the elevation difference between the abutment and road surface) satisfy the
design requirements.

As illustrated in Figure 11b, this process begins by parsing the IFC model to identify
various bridge component types. The system then extracts the relevant attribute constraint
rules from the knowledge graph and compares them with the extracted model data. Based
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on the comparison results, the system outputs inspection feedback and provides design
adjustment recommendations when necessary.

5. Case Study and Model Validation
5.1. LLM-Based Structuring of Highway Bridge Specifications

To validate the effectiveness of the proposed method, this study selected representative
clauses from multiple highway bridge design specifications and processed them using
the LLM-based framework. Through text preprocessing, structured prompt design, and
knowledge extraction, these unstructured clauses were successfully transformed into a
structured JSON dataset.

5.2. Knowledge Graph Database Construction

In this study, Neo4j is selected as the platform for visual representation of the knowl-
edge graph related to highway bridge BIM models. The structured JSON dataset is imported
into the Neo4j graph database using the py2neo library in a Python 3.10 environment. By
establishing a connection between Python and the Neo4j database, the previously extracted
structured data is parsed and stored, enabling the creation of a knowledge graph that
includes entities, their relationships, and associated attribute constraints.

The design of the knowledge graph model revolves around three core components:
subject, attribute, and constraint. The corresponding data structure is summarized in
Table 2. Each attribute constraint results in the creation of a value node (which can be reused)
and a HAS_CONSTRAINT relationship from the component node to the value node.

Table 2. Node and relationship design in the knowledge graph.

Type Description Unique Attribute

Component Node representing a structural
component entity Name

Value Node representing a constraint value Value

Relation: HAS_CONSTRAINT Edge from component to value, indicating that
the value is a constraint on a certain attribute

Carries two properties:
attribute, comparator

Based on the previously extracted structured JSON data, the knowledge graph for the
highway bridge 3D model is constructed. The key steps involved in the implementation
process are briefly introduced below:

1. Import the necessary libraries, such as py2neo and JSON.
2. Connect to the local Neo4j database and configure the connection parameters.
3. Load and parse the JSON file, which includes components and their

attribute constraints.
4. Iterate through the data to create component nodes, value nodes, and

HAS_CONSTRAINT relationships.

Through this process, a complete knowledge graph containing various components
of the highway bridge, their relationships, and associated attribute constraints can be
generated. Figure 12 shows an example of a constructed knowledge graph.
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Figure 12. Partial knowledge graph of highway bridge BIM models.

5.3. Model Checking Based on the Graph Database
5.3.1. Component Localization and Attribute Extraction Based on the IFC Model

As an example, the BIM model of a highway bridge alignment is selected for demon-
stration. The open-source library, Ifcopenshell, is utilized to parse IFC model data and
extract structured component information in two main stages:

• Component Localization: The process begins by identifying pier-related components
in the IFC model using the IfcColumn type. In the IFC standard, IfcColumn represents
vertical load-bearing components, suitable for modeling solid or hollow pier columns.
Each the IfcColumn entity is further filtered based on key properties defined in its
IfcPropertySet. This ensures accurate identification of hollow pier columns even when
naming conventions vary. The updated component localization logic is illustrated
in Figure 13.

Figure 13. Python—identification of hollow pier columns based on IFC classification and
property sets.

• Attribute Extraction: For each identified component, key structural and material prop-
erties are extracted. In IFC, component attributes are typically stored in IfcPropertySet
entities, which are linked to components via IfcRelDefinesByProperties. This study
focuses on attributes such as diameter, concrete strength grade, and wall thickness.
The extracted results for each component are ultimately organized into a structured
dictionary format as illustrated in Table 3.

Table 3. Structured attribute dictionary of a hollow pier column.

Field Value

Component Name Hollow Pier Column-1
Attributes
– Diameter 0.9 m

– Concrete Strength Grade C50
– Wall Thickness 150 mm
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5.3.2. Validation of Model Attributes Against Knowledge Graph Rules

After extracting component attributes, the system compares the results with the corre-
sponding design specifications stored in the knowledge graph for rule-based validation.
Figure 14 shows the Cypher query used to retrieve constraint rules from the graph database.

Figure 14. Cypher query—retrieval of constraint rules from the knowledge graph.

After retrieving the model attributes and the corresponding constraint rules from the
knowledge graph, the system performs a logical comparison. The comparison function first
removes units and converts values into numerical form. Then, it evaluates the compliance
based on the comparison operator and the target value defined in the graph. If the actual
value satisfies the specified design constraint, it is marked as “compliant”; otherwise, it is
labeled as “non-compliant”.

For example, Clause 6.2.1 of the Technical Specifications for Design of Prefabricated
Concrete Highway Bridges (JTGT 3365-05—2022) [24] states: “For hollow piers fabricated
using centrifugal methods, reinforced concrete structures are recommended. The concrete
strength grade should not be lower than C50, the diameter should not be less than 1 m, and
the wall thickness should not be less than 150 mm.” In addition, according to Clause 6.2.1 of
the Highway Bridge Foundation and Substructure Design Code (JTG 3363-2019) [25], the
spacing between piles should not be less than 2.4 m (calculated as 2 * 1.2 m). Further-
more, for the cap, its thickness must not be less than 1.5 m. For the railing, according to
Clause 3.6.7 of the General Specifications for Highway Bridges (JTGD60—2015) [26], the
height should be no less than 1.1 m.

The batch inspection of bridge piers in the highway bridge alignment BIM model was
conducted, and the results are shown in Table 4.

Table 4. Compliance checking results for bridge pier, cap, and railing.

No. Component Name Attribute Actual Value Constraint

1. Hollow Pier Column-1 Diameter 0.98 m ≥1 m
2. Hollow Pier Column-8 Diameter 0.90 m ≥1 m
3. Hollow Pier Column-4 Concrete Strength Grade C25 ≥C50
4. Hollow Pier Column-7 Concrete Strength Grade C30 ≥C50
5. Cap-5 Cap Thickness 1.0 m ≥1.5 m
6. Cap-10 Cap Thickness 1.2 m ≥1.5 m
7. Railing-1 Height 1.0 m ≥1.1 m
8. Hollow Pier Pile Spacing 1.8 m ≥2.4 m

After performing structural completeness checking on the highway bridge BIM model,
we evaluated the performance of rule extraction based on LLMs. The total sample size
was 112, with 65 rules correctly identified as compliant (true positive, TP), 8 rules correctly
identified as non-compliant (true negative, TN), 12 rules incorrectly marked as compliant
(false positive, FP), and 27 rules of compliant rules not identified (false negative, FN). Based
on these data, four key performance metrics were calculated, as shown in Table 5.
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Table 5. Performance metrics of structural completeness checking.

Metric Formula Value

Accuracy (TP + TN)/(TP + TN + FP + FN) 65.20%
Precision TP/(TP + FP) 84.40%

Recall TP/(TP + FN) 70.70%
F1 Score 2 * (Precision * Recall)/(Precision + Recall) 76.90%

Overall, the method demonstrates good performance in terms of precision and
F1 score, while the recall is relatively lower, indicating room for improvement in capturing
all compliant rules.

In addition, a structural integrity check is performed on the model attributes extracted
from the knowledge graph, as shown in Table 6.

Table 6. Structural completeness check results of highway bridge BIM models.

Parameter Name IFC Type Check Result

Deck IfcSlab Correct
Bridge Beams IfcBeam Correct

Bridge Slab IfcSlab Correct
Pier IfcColumn Correct

Bearing IfcBearing Correct
Abutments IfcBridgeElement Correct
Foundation IfcFoundation Correct

Cap Slab IfcSlab Correct
Piles IfcPile Correct

Transition Section IfcBridgeElement Absent
Expansion Joints IfcBridgeElement Absent

6. Discussion
6.1. Innovation and Effectiveness of the Method

This study proposes an automated checking framework for highway bridge BIM
models based on large language models (LLMs). The framework is innovative in its
approach to semantic parsing and structuring of design specifications. The structured
data extracted by LLMs is stored in a knowledge graph and compared with BIM model
data using Cypher queries in the Neo4j graph database. This method achieves an efficient
and scalable automated checking process. Compared to traditional manual methods, this
framework reduces reliance on human experts, increases checking efficiency, and enhances
the automation and accuracy of compliance checks for highway bridge BIM models.

6.2. Practical Significance

As BIM technology becomes more widely adopted in highway bridge design, the
complexity of design models and specifications increases and traditional manual checking
methods can no longer meet current demands. The proposed framework leverages LLMs
for efficient semantic parsing and knowledge graphs for storing rules. It accelerates the
parsing and comparison of design specifications, significantly improving the efficiency and
accuracy of the checking process. This framework has broad application potential, not only
in highway bridge design but also in other infrastructure fields such as tunnels, roads, and
buildings, driving the digital transformation of engineering projects.

6.3. System Optimization, Limitations, and Future Work

Although the framework has shown strong performance, several limitations remain.
Future research can focus on the following areas:
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• Accuracy of Semantic Parsing by LLMs: The accuracy of LLMs in parsing design
specifications depends heavily on prompt formulation. Performance can vary across
engineering domains and specification formats. Future work should focus on refining
prompt design and expanding training data to improve the model’s understanding
of complex design rules. In practice, LLMs may produce outputs that do not match
the specifications or generate inconsistent numerical values. To address this, we
decomposed the specifications into individual clauses, clarified the reasoning steps
and requirements, and provided structured examples. Prompts and outputs were
iteratively refined to improve accuracy and consistency. The choice of LLM and
parameter settings also affects the results. For example, in specification information
extraction, ChatGPT-4.1 showed slightly higher speed and accuracy than DeepSeek-V3,
but it produced more hallucinations.

• Domain-Specific Fine-Tuning: To further improve LLM performance in parsing bridge
engineering specifications, future work could explore domain-specific fine-tuning.
This involves retraining the model on bridge design specifications and historical
BIM datasets. Such fine-tuning helps the model to better understand engineering
terminology, numerical constraints, and structural rules, reducing errors in seman-
tic parsing and improving reliability. For example, Kasimir Forth [27] proposed a
method that uses semantic textual similarity (STS) and fine-tuned multilingual LLMs
to automatically enrich missing information in BIM. Their study demonstrates that
domain-specific fine-tuning can significantly enhance model performance in engineer-
ing BIM tasks, providing a solid reference for bridge specification parsing. In addition,
recent AI applications in infrastructure engineering include deep learning for struc-
tural health monitoring, reinforcement learning for construction process optimization,
and generative AI for design proposal generation [28]. These approaches illustrate
the increasing integration of AI technologies into digital construction workflows. Al-
though this study focuses on LLM-based automated checking, these examples provide
context for potential future extensions.

• Knowledge Graph Storage and Query Efficiency: The knowledge graph effectively
stores design specification rules but may face challenges in handling large-scale, cross-
disciplinary specifications. Future research should address improving the scalability
and query performance of knowledge graphs in multi-disciplinary applications.

• BIM Model Data Quality: BIM model data in real-world applications often suffer from
incompleteness or inconsistency, requiring additional preprocessing. Future work
should explore methods to enhance the robustness of the system by optimizing BIM
model data preprocessing.

• Integration with BIM Workflows and Computational Considerations: The framework
extracts IFC data using Python and the Ifcopenshell library. Key components, in-
cluding piers, caps, beams, and slabs, are identified, and attributes such as diameter,
concrete strength, wall thickness, and pile spacing are retrieved. These attributes are
compared with design rules stored in the knowledge graph, and checking results are
presented in tables and visual alerts. Users can import IFC data for batch checking
and obtain structured outputs. Current interaction features are basic and not fully
integrated into BIM workflows. Regarding computational cost, the current imple-
mentation is lightweight and can process medium-sized bridge models on standard
workstations. Future work will focus on optimizing performance and implementing
parallel processing to handle larger models efficiently. Additionally, BIM plugins or
standalone applications will be developed to allow engineers and inspectors to access
automated checking directly within common BIM environments, improving usability,
streamlining workflows, and promoting practical adoption.
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7. Conclusions
This study proposes an automated checking framework for highway bridge BIM

models based on large language models. By converting design specifications into
structured rules and storing them in a knowledge graph, the framework provides a
practical and promising approach for automated rule extraction, with the potential to
substantially improve the efficiency and accuracy of compliance checking in practical
engineering applications.
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