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Abstract

This work presents a new insight into the buckling phenomenon to approach the calculation
of the compressed bar with the following firm supports: bi-pinned, bi-fixed, and fixed-
pinned. Buckling is redefined as the result of second-order deformations in the real bar by
gradually applying the compression load, thus dismissing Euler’s critical load. The analyti-
cal results are obtained from the differential equation of the directrix beam with sinusoidal
deformation associated with each type of support. The bending moment is generated only
by the compression load acting on the initial geometric imperfection. These analytical solu-
tions are associated with first-order effects, applying the entire compressive load, and with
second-order effects, applying the load gradually. The analytical solutions are continuous
functions. In this paper, the Finite Transfer Method was applied to obtain numerical results.
The bending moments, transverse displacements, and normal stresses are presented as
the results. Beams with different initial imperfections in the directrix are studied: with
sinusoidal deformation, with deformation produced by a specific transverse load, and
with deformation produced by a uniform transverse load. The results obtained through
the analytical expressions derived from the gradual application of the load are compared
with those results obtained numerically when calculating the beam under second-order
conditions. It is concluded that in structural practice, they are equivalent.

Keywords: buckling; beam; second-order analysis; analytical solution

1. Introduction

The combination of normal force and bending moment appears in most beams that
make up rigid structures, and even in pinned structures. This issue is inevitable in practice.
Compressed real beams are always subject to compound bending effects. The maximum
stress is obtained by adding the stresses due to the normal force and the bending moment.
In the structural calculation of compressed beams, the influence of the bending moment
depends on its relationship with the normal force. The way to measure the relative impor-
tance of both solicitations is to calculate their quotient or eccentricity. If it is very large, the
normal force is irrelevant, and if it is very small, the bending moment is not important.

A real beam necessarily presents an initial eccentricity that depends both on the
perfection of the construction and installation, and on the possibility of measuring it.
Execution can be made more precise as long as imperfections can be measured. What cannot
be verified cannot be demanded. Under traction load, the initial transverse displacement is
reduced. On the other hand, under compression load, the initial transverse displacement is
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amplified, and this implies an increase in stress and deformation. In structural analysis,
this bending deformation produced in the compressed beam is called buckling [1].

Currently, buckling is defined as a phenomenon of elastic instability that occurs in
a compressed beam and is manifested by the appearance of displacements transverse to
the direction of compression [2-5]. These displacements are not proportional to the loads
applied. Although these displacements are insignificant, an increase in stress occurs due to
the appearance of bending moments. The stresses generated by compression and bending
effects have been coupled [6,7].

Leonhard Euler, in 1744, while developing examples of differential equations, gave
a possible answer to the technical problem of buckling, where the bending moment was
generated by compression load acting on the transverse displacements [8].

The solution to the problem begins by imagining an ideal beam with a perfectly
centered force load. There is no difference in stress between an extended beam and a
compressed one, except in the sign. But if the beam is slightly separated from its perfect
shape, causing an initial eccentricity. In the extended beam, a bending moment appears
that tends to make the beam straight. The less rigid it is, the straighter it will become, the
lower the initial eccentricity, and the lower the resulting over stress. Hence, the advantage
of cables, as traction elements, is that by dividing the section, the rigidity is minimized,
making it easier for the stressed cable to be completely straight. On the contrary, when the
beam is compressed, the bending moment resulting from the initial eccentricity tends to
bend the beam with an additional transverse deformation [9].

In structural engineering, the question of stress increase in compression elements is
a matter of great practical importance and great complexity. The study of the unsteady
elastic behavior of compression beams has attracted the attention of numerous technicians
and researchers [10-22]. The work of Emam and Lacarbonara [23] reviews models and
solutions for buckling and post-buckling of beams available from the 1950s until practically
the present day. Even so, the problem of buckling in its initial approach has not changed
over time [24-30].

A beam is defined as a linear structural element with a straight guideline, manufac-
tured without geometric imperfections, heterogeneities, or initial stresses. When an ideal
beam is subjected solely to compression, longitudinal displacement occurs. The directrix
of a real beam is a curved line, and its manufacture contains heterogeneities and initial
stresses. In a real beam, the compression load generates both longitudinal and transverse
displacements. The addition of transverse displacements to the initial geometric imper-
fection is called second-order effects. As the compression load increases, the transverse
displacements increase more rapidly. Under this second-order effect, the superposition
principle is not valid. Elastic instability is generated [31-33].

In the work of Gimena et al. [34], the calculation of the compression of the real beam
was addressed under second-order effects by assimilating its directrix to a curved line. This
second-order incremental analysis consists of dividing the load into increments; applying
each load increment and obtaining the deformations and solicitations; modifying the shape
of the directrix by adding the obtained transverse and longitudinal displacements; and
recalculating the deformations and solicitations with the next load increment. It is an
iterative process applicable until the load increments are exhausted.

This calculation of the real beam was performed with the entire compression load
applied instantaneously, first-order analysis, and applying the compression load gradually,
second-order analysis. Numerical values were obtained by applying the numerical proce-
dure called the Finite Transfer Method [35-38]. The absence of elastic instability in a real
compressed beam was demonstrated.
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bi-pinned

An analytical formulation was also obtained from the differential equation of the
elastic sinusoidal deformation associated with the bi-pinned support, in which the bending
moment is generated only by the initial imperfection.

This new approach to buckling resulted in a final expression for the beam’s deforma-
tion using second-order analysis. The values obtained using the new analytical formulation
were compared with the numerical values.

In this paper, the calculation of the compressed beam with firm supports is addressed
under a first- and second-order analysis, both analytically and numerically. The following
firm supports are studied: bi-pinned, bi-fixed, fixed-pinned, and fixed-free. As a novelty,
to obtain analytical results, the elastic equation associated with each type of support is
used, where the bending moment is generated only by the initial sinusoidal imperfection.
To perform the second-order analysis, the iterative procedure presented in the work by
Gimena et al. [34] is used. The results are presented as bending moments, transverse
displacements, and normal stresses under second-order analysis. Beams with different
initial imperfections in the directrix are studied by the numerical procedure: with sinusoidal
deformation and with deformation produced by a transverse load. The results of the
compression beam calculations obtained using analytical expressions are compared with
those obtained numerically. It is concluded that in structural practice, these results are
equivalent, and that with this analysis, the buckling phenomenon is reproduced without
the need to use the Euler critical load.

2. Compressed Beams with Firm Support and Sinusoidal Directrix

The analysis of a beam, in terms of its shape, is carried out by means of the great
simplification of considering its curved directrix as straight. There is always a deviation
or geometric imperfection from the directrix of the beam. Determining the true structural
behavior of the beam would mean analyzing a piece with a curved directrix. In this section,
the beam is analyzed with its usual hypotheses, but considering its sinusoidal directrix
instead of a straight one [39].

2.1. Expressions of First-Order and Second-Order Effects

The sinusoidal shape of the beam’s directrix is associated with and adapted to the
support. As can be seen in Figure 1, for each firm support (bi-pinned, bi-fixed, fixed-pinned,
and fixed-free), the shape and equation of the beam’s directrix line are different.

I

[\

— bi-fixed

W

— fixed-pinned

AN

— fixed-free

-

Figure 1. Shape of the sinusoidal directrix of the beam associated with each firm support: (1) bi-
pinned, (2) bi-fixed, (3) fixed-pinned, and (4) fixed-free.
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The generic analytical notation of the initial sinusoidal directrix of the beam is as follows:

f(z) = nfmlsin(mz/l+12) + 132/1 + 14 1)

where 1, 111, 112, 113, 14 are the parameters dependent on the support conditions and f, is
the maximum initial imperfection or deformation.

Table 1 shows the values of the parameters of the generic sinusoidal equation of the
beam’s directrix associated with the four firm supports.

Table 1. Values of the parameters of the sinusoidal equation of the beam directrix associated with the
firm support.

n 1 n Ul n
bi-pinned -1 T T 0 0
bi-fixed —-0.5 27T /2 0 -1
—0.73264413 4.49340947 1.78977584 0.97611964 —0.97611964
fixed-pinned - ) .
n1/@2msin(y1)) n1 +tanm —11)=0 2w —n1  sin27w —179) sin(771)
fixed-free -1 /2 /2 0 -1

For the real beam, the effect of the deviation or geometric imperfection of the directrix
implies not considering its directrix as straight, even when the equilibrium and deformation
equations of the ideal beam are applicable.

The differential expression of transverse displacement of the compression beam under
a specific load at the end P can be noted as follows [34]:

d*oi(z) _ 1d*Mi(z) _ P df(z) P
dz*  EI dz2  EI dz2  EI

(11/1)1 fsin(mz/1 + 1) 2)

The analytical result of Equation (2) is proportional to the initial sinusoidal directrix of
the beam and represents the transverse displacement of the same. Its expression is as follows:

P P .
0(z) = p fz) = fkﬁfm[sm(ﬁlz/l +112) + 132/ 1+ 114] ®)
where P, = —EL ”22 is noted as the traditional Euler’s critical load.
(/)" 12

The displacement expressed in Equation (3) is continuous along the entire length of
the directrix of the beam. The critical load does not produce any type of discontinuity.

In the structural model of the beam, the rotation is the derivative of the displacement if no
indirect loads act and the deformation due to shear stress is not considered. In this case, and
by means of these simplifications, the rotation is determined by the following expression:

_ doi(z) _ Pm
dz Pkl

£(2) = 2Ty lcos(mz/1 + 12) + 17) @

he Bl

Once the transverse displacement is known, the bending moment can be determined,
whose equation is as follows:

My (z) = =P fusin(in1z/1 +12) (5)

The transverse displacement Equation (3), the rotation Equation (4), and the bending
moment Equation (5) are first-order effects, i.e., the load has been applied instantaneously.
To determine the second-order deformation (z) = d,(z), load P must be applied gradually.
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To do this, the load is divided into n equal parts, and the calculation is performed by
applying the first increment of the same. From this calculation, the deformation produced
is deduced, and a new directrix is generated. By repeating this calculation i times, the
deformation is as follows:

d(z); =

1

P i
(1 + ) — 1] N fmlsin(mz/1+12) +132/1 414 ©)
nPg

By applying the entire load gradually and taking this division to the limit, the
second-order deformation is obtained, whose expression is as follows:

52(2) = [e™ — 1]y fulsin(ipz/1 + 1) + 132/1 + 4] %

The first-order deformation Equation (3) and second-order Equation (7) represent
continuous functions.
The second-order bending moment can be noted as follows:

M;(z) = —Px [e% — 1 fmsin(mz/1+ 1) 8)

There is no discontinuity in the formulation of the bending moment, as noted in the
deformation equation under second-order analysis.

2.2. Numerical Example of a Compression Beam

The numerical analysis of the four beams presented above is performed under com-
pression loading and firm support using the Finite Transfer Method [38].

To perform the structural calculation under first-order analysis, a computer program
is used that applies the Finite Transfer Method to the initial sinusoidal directrix of the beam
with the full compression load.

To obtain values under a second-order analysis, the load is divided into 10,000 equal
parts. First, numerical design values are obtained on the initial geometry of the directrix
with the first portion of the load. With these values, the new shape of the beam’s directrix is
determined, and the numerical procedure is applied a second time. This process is iterated
until the full load is applied. Therefore, a second-order analysis is performed on the real
beam with a sinusoidal directrix.

A compressed steel beam with a hollow circular section ¢$200.8 was chosen for the
common analysis in construction (Figure 2).

Table 2 presents the shape and material characteristics of the type of beam studied.

In this structural analysis, the shear coefficients are considered to be zero. In addition
to the geometric imperfection of the directrix, it is considered that the beam has no initial
manufacturing stresses, that its material is homogeneous and isotropic, and that the section
is absolutely constant. The load involved in the calculation represents the maximum load
that this beam without imperfections, or an ideal beam, can support, and the calculation
is performed without using safety coefficients to determine the strength of the material.
The value of this load is Py = f,A = 1713kN (with the elastic exhaustion limit stress being
fy=355N/mm?) [39]. The four firm support beams described in Equation (1) are analyzed
with the values in the table. The initial maximum deformation f,; is 5 mm, which represents
an arrow-span ratio of //1000. It is a common building tolerance in steel construction [40].

Table 3 presents the results of the first-order and second-order bending moments
of these four firmly supported beams, obtained by the application of the Finite Transfer
Method numerical process.
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Figure 2. Type beam with bi-pinned sinusoidal directrix.
Table 2. Shape and material characteristics of the type beam.
1 fm E G
Beam (m) (mm) Steel  \N/mm?) (KN/mm2)
5 5 S355 210 81
Circular d, d; A w I=I,=1,
hollow sections (mm) (mm) (cm?) (cm?3) (cm?)
¢200.8 200 184 48.25 222.74 2227.44
Table 3. First- and second-order bending moments of the standard beam with firm support.
y Bi-Pinned Bi-Fixed Fixed-Pinned Fixed-Free
(kN-m)
z First Second First Second First Second First Second
(m) Order Order Order Order Order Order Order Order
0 0.00 0.00 4.28 4.82 6.13 7.75 8.57 92.05
0.625 —3.28 —5.40 3.03 3.41 4.46 5.64 8.40 90.28
1.25 —6.06 —9.98 0.00 0.00 1.42 1.80 791 85.04
1.875 —7.91 —13.04 —3.03 —3.41 —2.05 —2.60 7.12 76.54
2.5 —8.57 —14.11 —4.28 —4.82 —4.90 —6.19 6.06 65.09
3.125 —7.91 —13.04 —3.03 —3.41 —6.23 —7.89 4.76 51.14
3.25 —7.63 —12.57 —-2.52 —2.83 —6.28 —7.94 4.48 48.10
3.75 —6.06 —9.98 0.00 0.00 —5.66 -7.16 3.28 35.23
4.375 —3.28 —5.40 3.03 341 —3.34 —4.23 1.67 17.96
5 0.00 0.00 4.28 4.82 0.00 0.00 0.00 0.00

There is a variation between the values of the first- and second-order bending moments,
which are 64.77% in the bi-pinned beam, 12.54% in the bi-fixed beam, 26.53% in the fixed-
pinned beam, and 974.71% in the fixed-free beam. Table 4 shows the results of the first-order

and second-order transverse displacements of the four firmly supported beams, obtained

by applying the Finite Transfer Method.
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Table 4. First- and second-order transverse displacement of the type beam with firm support.

Bi-Pinned Bi-Fixed Fixed-Pinned Fixed-Free
(kN-m)
z First Second First Second First Second First Second
(m) Order Order Order Order Order Order Order Order

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.625 1.77 2.92 0.17 0.19 0.24 0.30 0.36 3.83
1.25 3.27 5.39 0.58 0.65 0.84 1.06 1.41 15.16
1.875 4.28 7.05 0.98 1.11 1.55 1.96 3.13 33.55
2.5 4.63 7.63 1.15 1.30 2.10 2.66 5.43 58.31
3.01 4.39 7.24 1.04 1.17 2.26 2.86 7.69 82.56
3.125 4.28 7.05 0.98 1.11 2.25 2.85 8.24 88.47
3.75 3.27 5.39 0.58 0.65 1.90 2.40 11.45 122.87
4.375 1.77 2.92 0.17 0.19 1.08 1.37 14.93 160.20
5 0.00 0.00 0.00 0.00 0.00 0.00 18.55 199.02

Pl

M
0’1(P) = — + 7' 1|max =—+ - 0’2(P)

A

The variation between the values of the first- and second-order transverse displace-
ments is practically equal to the variation in the values of the bending moments. Bi-fixed
support involves a smaller variation between first- and second-order effects than other
types of support. In contrast, in fixed-free support, this variation between effects is greater.

2.3. Maximum Normal Stress of First- and Second-Order Effects

The highest normal stress of the beam occurs at the section where the absolute value
of the bending moment is highest and at the furthest point from the centroid. Its value
obtained by the analytical formulation’s Equations (5) and (8) for first- and second-order
effects is as follows:

[Pl [Pkt fm] | P _ 1PL IMolae _ [PL [Pty 9)

14 A W K A W A+ 14

By analyzing the expressions in Equation (9), it is possible to detect the relationship

between the stress produced by the first- and second-order bending moments. This rela-
1P|
tionship indicates that the increase in stress due to second-order effects e’k — 1 is greater
|P|

than that due to first-order effects 5. It is the second-order analysis that will determine
the maximum load that a compressed beam can withstand until its elastic exhaustion.

It should be noted that the stress depends on the load, the initial geometric imper-
fection of the directrix, and the shape of the section. This stress must be less than that
allowed by the beam material. Therefore, the expressions in Equation (9) are applicable at
the structural design level.

Figure 3 shows the initial geometry of the sinusoidal directrix of the compressed
beam with firm support. The geometry acquired by the beam’s directrix under first- and
second-order effects is also shown, and the final geometry of the directrix associated with
the elastic exhaustion stress. The geometry of the directrix for second-order effects is
included in Figure 3, associated with a percentage of the maximum exhaustion load for the
ideal beam.

It can be observed in Figure 3 that although the maximum initial deformation of
the beam is the same for the four firm supports, the geometry associated with the elastic
exhaustion stress is totally different.

Under the load of elastic exhaustion, for the bi-pinned beam, the maximum initial

deformation of 5 mm reaches a final deformation of 11.082 mm.
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Initial geometry

Final geometry (First order)

Final geometry (Second order)

Intermediate geometries (Second order)

— —— Geometries for o= fy (Second order)

pinned-pinned fixed-fixed fixed-pinned
4 RS
> N fixed-free
3 D )
g ) J
N 7
2 7 /£
Z 7
1 =
0 , ‘ ‘
0 5 10 0 5 10 0 5 10 0 50 100 150 200
x (mm) x (mm) x (mm) x (mm)
Figure 3. Initial and final geometry of the sinusoidal directrix of the type beam with firm support.
For the bi-fixed beam, the maximum final deformation is 6.222 mm, and for the fixed-
pinned beam, it is 7.556 mm. In the fixed-free beam, the maximum final deformation occurs
at the free end, and its value is 60.895 mm.
2.4. Analysis of the Type Beam with Different Sag-to-Span Ratios
A study of the behavior of the type beam is carried out, with a sinusoidal directrix
and length I = 5 m, with different maximum initial deformations of 50 mm, 20 mm, 10 mm,
20/3 mm, and 5 mm or arrow-span ratios of I/100, /250, 1/500, 1 /750, and 1 /1000, respectively.
Table 5 shows the results obtained from the second-order effects, bending moment
Equation (8) and transverse displacement Equation (7), both when applying the analytical
expressions and the Finite Transfer Method, of the beams with firm support.
Table 5. Second-order effects of the type beam with firm support and different initial deformations.
Second-Order Bi-Pinned Bi-Fixed Fixed-Pinned Fixed-Free
M, Oy M, Ox M, Ox M, Ox
(kN.m) (mm) (kN.m) (mm) (kN.m) (mm) (kN.m) (mm)
17100 analytical ——141.14 76.43 —48.20 13.05 —79.40 28.69  —920.51 1993.91
numeric —141.11 76.22 —48.20 12.96 —79.40 28.58 898.78 1857.41
1/250 analytical —56.45 30.57 —19.28 5.22 —31.76 1148  —368.21 797.56
numeric —56.53 30.62 —19.28 5.18 -31.76 11.43 366.55 787.50
1/500 analytical —28.23 15.29 —9.64 2.61 —15.88 574 —184.10 398.78
numeric —28.23 15.26 —9.64 2.59 —15.88 5.72 183.80 397.17
1/750 analytical —18.82 10.19 —6.43 1.74 —10.59 3.83 —122.74 265.85
numeric —18.82 10.17 —6.43 1.73 —10.59 3.81 122.60 265.20
1/1000  analytical —14.11 7.64 —4.82 1.31 —7.94 2.87 —92.05 199.39
numeric —14.11 7.63 —4.82 1.30 —7.94 2.86 91.96 199.02

The values obtained by the analytical formulas are equivalent to the values obtained

by the numerical procedure. It can be observed in Table 5 that the resulting values of the
bending moments and the second-order transverse displacements are proportional to the
initial deformation.

Table 6 shows the values of the punctual loads, P, to reach the elastic exhaustion
limit in beams with firm support and with sinusoidal imperfection under different initial
deformations. The percentage of these punctual loads versus the elastic exhaustion load of
the beam without initial imperfection is also presented.
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Table 6. Elastic exhaustion loads P, of the type beam with firm support and different initial deformations.

Second Bi-Pinned Bi-Fixed Fixed-Pinned Fixed-Free
Order
P, P,/Py P, P,/Py P, P,/Py P, P,/Py
(kN) (%) (kN) (%) (kN) (%) (kN) (%)
1/100 735.07 42.91% 1081.97 63.16% 903.27 52.73% 553.74 32.32%
1/250 1078.42 62.95% 1383.44 80.76% 1244.95 72.67% 794.63 46.39%
1/500 1302.98 76.06% 1529.04 89.26% 1435.80 83.82% 979.12 57.16%
1/750 1408.05 82.20% 1585.35 92.55% 1515.72 88.48% 1083.19 63.23%
1/1000 1469.73 85.80% 1615.26 94.29% 1559.80 91.05% 1154.02 67.37%

It can be observed that the elastic exhaustion load depends on the initial deformation.
There is no load that produces instability in the beam. In the case of the beam with fixed-free
support with high slenderness, the exhaustion load, in the cases presented, is higher than
the traditional critical load.

Figure 4 shows the graphs of normalized stresses with respect to the exhaustion load,
in the ideal beam and in the beams with the arrow-span ratio of 1/250 and 1/1000.

— o, fin=1/1000 Opp fy=l/1000 —— Oy fin=l/1000 —— O fin=1/1000
——= O fu=l/250 O n=l250 === Oy fy=1/250 === Oy fu=1/250
500 7 - —
/ 4 e
/ 7
/ y/, ,/
/ / Ve
400 / = 7
£=355 N/mm? £ 7 7 /
//i A) //ﬂl =
~ 300 - ARy i) 1~
NE / | P ’d |
/ | LA T
£ 4 4 2
< Sl |
o) i / < | | |
200 i | | z
/ /// / | | <+
VR I | I S
s | | | «
L7 | | | =
100 - £4% : : } 1
252 ! | ! &
2% | | | I
£ | | | -
| | [ A
0 T T 'l T I L I ' T
0% 20% 40% 60% 80% 100%

%P,

Figure 4. Normalized stresses with respect to the exhaustion load in the ideal beam and other beam
types.

Figure 4 shows that the stress in the ideal beam with respect to the exhaustion load
is linear. In the case of the type beam, the stress depends on the initial imperfection and
the type of support, and it is easy to determine from the graph the percentage of the
exhaustion load.

3. Compressed Beams with Firm Support and Initial Deformation
Generated by Transverse Loads

As discussed in the previous section, the directrix of the real beam always has a
deviation or geometric imperfection. This initial deformation produced in the directrix
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can be due to different causes, such as imperfections in the construction or the influence
of transverse loads. In this section, the transverse load is analyzed in the geometric
imperfection of the straight directrix of the beam, and is compared with the analytical
results offered when the initial deformation is sinusoidal.

Figure 5 shows the initial deformation of the directrix due to punctual and uniform
transverse loads. These two cases are discussed in the following sections.

12
<
12

Z0

RN RN

I
Figure 5. Initial form of the directrix under punctual and uniform transverse loads.

3.1. Beams with Initial Deformation Produced by a Punctual Transverse Load

The second-order effects that occur in the type beam are analyzed, with an initial
deformation of the directrix due to a punctual transverse load Q. The maximum defor-
mation in the initial directrix, before gradually applying the punctual compression load
Py = 1713 kN, occurs at the point z( f;), and its value is 5 mm. Table 7 shows that the point
of application of the punctual transverse load Q does not have to coincide with the point of
maximum initial deformation z(f;).

In the isostatic case of the bi-pinned beam, for all the initial geometries due to a
transverse punctual load, there is very little variation in the value of the maximum bending
moment. For the fixed-free beam, the maximum bending moment always occurs at the
fixed point, and there are significant differences in the initial deformations. In the two cases
of hyperstatic beams, bi-fixed support and fixed-pined support, the initial shapes of the
directrix due to the transverse load are very different. This implies a large variation in the
value of the maximum bending moment.

Figure 6 shows three graphs similar to influence lines. The horizontal axis represents
the point of application of the punctual transverse load that generates the initial deforma-
tion of the directrix. This non-unitary load causes the maximum initial deformation to be
5 mm. The vertical axes represent the maximum bending moments in absolute value, the
maximum transverse displacements, and the maximum stresses. In each of the three graphs,
the four functions associated with each of the four firm supports are represented. Also, the
analytical functions associated with each type of support are represented.
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Table 7. Points of maximum initial deformation and second-order moments of the directrix type
beam generated by a punctual transverse load with firm support.

Bi-Pinned Bi-Fixed Fixed-Pinned Fixed-Free
z
(II?) z (fm) I MyMax [ Z (fm) I MyMax I z (fm) I MyMax [ Z (fm) I MyMax I
(m) (kN.m) (m) (kN.m) (m) (kN.m) (m) (kN.m)
0 2.113 14.07 1.667 8.20 2.113 10.24 5.000 76.39
0.25 2117 14.07 1.724 7.83 2.163 10.01 5.000 77.50
0.5 2.128 14.07 1.786 7.45 2.215 9.78 5.000 78.58
0.75 2.146 14.07 1.852 7.09 2.269 9.55 5.000 79.61
1 2172 14.06 1.923 6.73 2.327 9.32 5.000 80.61
1.25 2.205 14.06 2.000 6.38 2.389 9.09 5.000 81.57
1.5 2.246 14.05 2.083 6.04 2.454 8.87 5.000 82.49
1.75 2.296 14.05 2.174 5.71 2.524 8.65 5.000 83.37
2 2.354 14.04 2.273 5.40 2.598 8.44 5.000 84.20
2.25 2.422 14.04 2.381 5.10 2.678 8.25 5.000 85.00
2.5 2.500 14.04 2.500 4.81 2.764 8.07 5.000 85.75
2.75 2.578 14.04 2.619 5.10 2.857 791 5.000 86.45
3 2.646 14.04 2.727 5.40 2.958 7.80 5.000 87.11
3.25 2.704 14.05 2.826 5.71 3.008 7.98 5.000 87.73
3.5 2.754 14.05 2917 6.04 3.050 8.13 5.000 88.30
3.75 2.795 14.06 3.000 6.38 3.127 8.25 5.000 88.82
4 2.828 14.06 3.077 6.73 3.191 8.34 5.000 89.30
4.25 2.854 14.07 3.148 7.09 3.243 8.41 5.000 89.74
4.5 2.872 14.07 3.214 7.45 3.283 8.46 5.000 90.13
4.75 2.883 14.07 3.276 7.83 3.311 8.49 5.000 90.48
5 2.887 14.07 3.333 8.20 3.328 8.50 5.000 90.79
Punctual load. pinned-pinned Punctual load. fixed-fixed Punctual load. fixed-pinned Punctual load. fixed-free
— — — Analytical. pinned-pinned Analytical. fixed-fixed — — — Analytical. fixed-pinned — — — Analytical. fixed-free
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Figure 6. Influence lines of the maximum bending moments in absolute value, the maximum
transverse displacements, and the maximum stresses.

It can be observed that the values associated with the fixed-free support are much
higher than the values associated with other supports.

Analyzing Figure 6, it can be noted that it is in the compressed beam with bi-pinned
support where the influence lines are equivalent to those presented analytically for a
sinusoidal initial deformation.

3.2. Beam with Initial Deformation Produced by a Uniform and Constant Transverse Load

The second-order effects that occur in the type beam are analyzed, with an initial
deformation of the directrix due to a uniform and constant transverse load. The value of
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the maximum deformation in the initial directrix is 5 mm, before gradually applying the
punctual compression load Py = 1713 kNN.

Table 8 shows the highest transverse displacement values, the minimum and max-
imum bending moments, and the maximum stresses in the type beam with an initial
directrix generated by a punctual transverse load and by a uniform transverse load, and
with a sinusoidal initial directrix. These second-order values are presented for the four cases
of firm support. The position of the punctual transverse load is the one that makes the
point of maximum initial transverse deformation coincide with the point of maximum
sinusoidal deformation.

Table 8. Maximum transverse displacements, minimum and maximum bending moments, and
maximum stresses of the initial directrix type beam generated by a uniform, punctual transverse load,
and a sinusoidal directrix with firm support.

Initial Directrix Shape

Second Firm Punctual Transverse Uniform Sinusoidal Sinusoidal
Order Support Load zgsin) Transverse Load (Numerical) (Analytical)
bi-pinned 7.656 7.525 7.628 7.643
Ox bi-fixed 1.278 1.278 1.296 1.305
(mm) fixed-pinned 2.883 2.820 2.858 2.869
fixed-free 190.174 196.172 199.015 199.391
bi-pinned —14.13 —14.04 —14.11 —14.11
MyMin bi-fixed —4.52 —4.81 —4.82 —4.82
(kN-m) fixed-pinned —7.02 —7.90 —7.94 —7.94
fixed-free 0.00 0.00 0.00 0.00
bi-pinned 0.00 0.00 0.00 0.00
MyMax bi-fixed 5.11 4.81 4.82 4.82
(kN-m) fixed-pinned 8.49 7.71 7.75 7.75
fixed-free 88.30 90.79 91.96 92.05
bi-pinned 418.45 418.02 418.36 418.36
OMax bi-fixed 377.92 376.61 376.64 376.64
(N/mm?) fixed-pinned 393.135 390.459 390.645 390.646
fixed-free 751.401 762.573 767.87 768.26

It can be seen by analyzing the values in Table 8 that the results for each type of initial
directrix and type of support are practically equivalent.

To determine the second-order values of the transverse displacements, bending mo-
ments, and stresses in a real beam with firm support, the formulas noted in Equations (7)—(9)
can be applied. The application of the formulas facilitates the possibility of obtaining results
of second-order effects in real beams, knowing the value of the maximum initial deforma-
tion. It is verified that the initial geometry of the beam’s directrix can be approximated to
the sinusoidal line associated with the support as stated in the regulations [39,40].

Figure 7 shows four graphs of the beam’s directrix geometry associated with the firm
support conditions. Each graph represents the initial and final geometry of the real beam’s
directrix. This final geometry has been obtained by adding the second-order deformation
to the initial geometry. For each support, different directrix geometries are represented:
those generated by transverse, punctual, and uniform loads, and sinusoidal ones.

If we start from similar directrices for the real beam, we obtain in turn very similar
final geometries. Therefore, similar values of the bending moments and the maximum
admissible stress.
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— —— Initial geometry. Sine

— —— Final geometry. Sine
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Figure 7. Initial and final geometries of the directrix of the real beam with firm support.

In both cases of isostatic beams, the difference between the initial and final geometry
is greater. This difference is reduced in both cases of hyperstatic beams.

From the above, it is concluded that for the calculation of vertical structural elements
subjected to compression, a sinusoidal initial imperfection with a sag-to-span ratio of
1/1000 can be used.

4. Conclusions

From the differential expression of the transverse displacement of the real beam under
compression, Equation (2), under a punctual load, and with initial sinusoidal imperfection,
the analytical formulations of the transverse deformation Equation (7) and the bending
moment Equation (8) have been deduced. These two expressions are associated with
second-order effects and represent continuous functions at all their points. It is concluded
that the collapse of the structure does not occur under any specific critical load, but is due
to the exhaustion that originates in the beam due to the increase in the bending moments.
The second-order analysis, consisting of the gradual application of the load, is the one
that will determine the maximum point load that a compressed beam can withstand until
reaching the exhaustion stress, Equation (9).

From the differential expression of the elastica in the real compressed beam with an
initial sinusoidal imperfection, Equation (2), the analytical formulations associated with
the transverse deformation, Equation (7), and the bending moment, Equation (8), have
been deduced.

These two analytical expressions, obtained under second-order analysis, represent
functions without discontinuities. It is concluded that under no specific critical load does
the structure collapse. This collapse is due to the fatigue that originates in the beam due
to the increase in bending moments. The second-order analysis, consisting of the gradual
application of the load, will determine the maximum point load that a compressed beam
can withstand until reaching the fatigue stress expressed in Equation (9).

These real beams with firm support: bi-pinned, bi-fixed, fixed-pinned, and fixed-
free, under the first- and second-order analyses, have the same expressions to obtain the
transverse deformation, the bending moment, and the maximum normal stress.

It should be noted that the ratio of first- and second-order effects is ‘—l;l divided by
e% -1

Therefore, the second-order analysis is the one that will determine both the maximum
load that a compressed beam can withstand until its elastic exhaustion and the maximum
transverse deformation.

It should be noted that we need to know the initial imperfection of the real beam’s
directrix to determine the effects it has on it. The exhaustion load of a compressed beam
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depends on its shape, length, initial imperfection of the directrix, and its cross-section
and material.

To determine its value, the numerical procedure Finite Transfer Method can be used,
using the gradual application of the load developed in this work.

In structural practice, the results obtained for different initial geometries of the directrix
are equivalent: sinusoidal line and lines generated by transverse, punctual, and uniform
loads. This statement can be verified by analyzing the values in Table 8.

Also, as can be seen from Figure 7, if we start from similar initial directrices for the
real beam, we obtain very similar final geometries. Therefore, we obtain equivalent values
for the bending moments and the maximum admissible stress.

By applying the expression noted in Equation (9) associated with second-order effects,
the maximum punctual load of exhaustion of a real compressed beam can be determined
accurately enough.
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