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Abstract

The optimization model of intelligent identification for bridge cracks based on dual-
parameter error indexes’ feedback mechanism is studied here. An interdisciplinary evalua-
tion system of geometric morphology and fracture mechanics is proposed and established.
The weighted average of two parameters is proposed as the index to evaluate the crack infor-
mation model. The two parameters are as follows: (1) effective crack width index (ECWI),
which reflects the geometric error of crack information vector graphics; (2) the tip curvature
radius error (TCRE), which reflects the stress concentration degree of structural cracks.
The aforementioned dual-parameter error evaluation indexes are processed by weighted
averaging with reference to current specifications, and the recognition errors of cracks
identified by the lightweight semantic segmentation model MobileNetV2-DeepLabv3+ are
comprehensively evaluated. The above errors are fed back to the model training code, and
parameters such as crack training hyperparameters and data augmentation parameters are
adjusted for retraining. After iterative optimization from Version 1 to Version 5, the model’s
prediction accuracy is improved: the Dice coefficient is increased by 3.5~32.4%, IoU by
5.3~56.5%, and PA by 0.42~1.33%, finally iterating to an optimized crack recognition model.
This combined evaluation system of geometric morphology and fracture mechanics can op-
timize the information model through error feedback. Meanwhile, by virtue of this method,
the disease photos from bridge inspections during the maintenance phase can be identi-
fied and converted into an information model of bridge diseases, which holds significant
theoretical significance and engineering value for promoting digital maintenance.

Keywords: bridge crack recognition; MobileNetV2-DeepLabv3+; dual-parameter error
evaluation; effective crack width index; crack tip curvature radius error index

1. Introduction

With the rapid development of artificial intelligence and big data technologies, the reg-
ular inspection and maintenance of bridges are gradually moving towards informatization
and automation [1-3]. This will significantly improve the efficiency of bridge inspection,
while also posing challenges to the intelligent identification of bridge defects. Currently,
the application of artificial intelligence technology in the field of structural engineering
has provided feasible ideas for bridge defect identification. For instance, Sarfarazi et al. [4]
conducted structural performance analysis using a hybrid explainable machine learning
framework; their exploration into the mining of influence mechanisms of key features and
the adaptation to engineering applications provides strong support for the optimization
of semantic segmentation models for bridge defects (improving recognition accuracy and
enhancing result interpretability).
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Against this backdrop, with the penetration of deep learning in the field of com-
puter vision, data identification and processing methods for bridge defects based on
non-destructive testing have gradually become a research hotspot [5], and deep learning
models for bridge defects based on neural networks are emerging in an endless stream. For
example, the ResUNet4T model studied by Thang Le-Xuan et al. [6] is used to identify the
stiffness of long-span bridges under overload and corrosion damage conditions; Minshui
Huang et al. [7] developed a deep learning regression model combining LSTM and CNN
for the issue of bearing displacement caused by temperature. In terms of crack defect
identification, most of the current accuracy evaluation systems for CNN-based seman-
tic segmentation models are based on geometric morphological parameters [8-10]. The
involved evaluation metrics (such as the Dice coefficient, pixel accuracy, etc.) all focus
on the “geometric parameters” of cracks (e.g., morphology, position). Few studies have
evaluated the “structural errors” of cracks from a mechanical perspective. That is, existing
research can only reflect the accuracy of the information model in terms of geometric
similarity but cannot directly demonstrate the actual impact of model recognition errors
on structural safety performance. This leads to inaccurate assessment of crack severity in
practical engineering, which in turn affects the scientificity of bridge maintenance decisions
and increases structural safety risks.

In view of this, this paper innovatively proposes to establish a new evaluation system,
which evaluates the segmentation accuracy of semantic segmentation models in the task
of identifying structural cracks in bridges during their service life from two dimensions.
The first dimension is the geometric parameter evaluation index, namely, the effective
crack width index (hereinafter referred to as ECWI for short). The second dimension is
the stress concentration factor in fracture mechanics [11], and it is necessary to adopt the
tip curvature radius error (hereinafter referred to TCRE for short) at the crack tip. It is
important to combine the above two error evaluation parameters and construct a new
comprehensive assessment system through weighted averaging, which is used to measure
the simulation accuracy of semantic segmentation models. The specific process is shown
in Figure 1. The improvement realizes an evaluation leap from “pixel-level accuracy” to
“mechanical hazard potential,” such that the model evaluation results are directly linked to
the stress concentration risk of the bridge. In addition, The CNN (Convolutional Neural
Network) architecture can still effectively extract complex spatial features from data even
under the interference of complex environmental factors [12], which is highly compatible
with the requirements of bridge inspection and defect identification. Therefore, this paper
conducts in-depth research on the semantic segmentation model MobileNetV2-DeepLabv3+
(referred to as Mobile-D), which is improved based on the lightweight CNN architecture
model MobileNetV2. The newly proposed dual-parameter evaluation system is applied to
conduct comparative analysis on the model, and further adjustments and optimizations are
made to iteratively develop a high-performance crack semantic segmentation model. This
model not only features excellent accuracy and robustness but also can recognize bridge
inspection photos during the management and maintenance phase into parameterized
information of bridge defects, thereby establishing an information model for defects. It
has theoretical significance and engineering value for promoting digital management
and maintenance and exhibits good compatibility with future bridge inspection project
management systems [13].
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Figure 1. Flowchart of dual-parameter error evaluation system for bridge concrete crack segmentation.

2. Dual-Parameter Evaluation Error System
2.1. Effective Crack Width Index (ECWI)

According to the provisions of Articles 6.3.1, 6.1.5, and 6.1.6 in the Specifications
for “Code for Durability Design of Concrete Structures in Highway Engineering” (JTG/T
3310-2019) issued by the Ministry of Transport of China [14], the maximum crack width
calculated for reinforced concrete components of bridges and culverts shall not exceed
the specified limit. Defects and harmful cracks in bridge and culvert concrete must be
repaired in a timely manner to resist erosion by rainwater and other harmful substances.
In Table 3.8.2 of “Specifications for Maintenance of Highway Bridges and Culverts” (JTG
5120-2021) [15], clear limits are set for the width of structural stress cracks in the technical
condition rating of classes 1-5, indicating that crack width is an important consideration
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in the technical condition rating of bridges. In addition, Article 4.2.2 of “Specification
for Inspection and Evaluation of Load-bearing Capacity of Highway Bridges” (JTG/T
J21-2011) [16] states that the defect condition assessment scales corresponding to technical
condition classes 1, 2, 3, 4, and 5 for bridge deck systems, superstructures, and substructures
are 1, 2, 3, 4, and 5, respectively. It is evident from this that structural crack width is also a
key indicator for evaluating the defect condition of bridges.

Based on the importance of crack width in the aforementioned specifications, the ratio
of the normal width to the actual width pixel-by-pixel along the crack skeleton is defined
as the effective crack width index (ECWI) as a geometric morphology indicator. The model
prediction file in .txt format output by ECWI calculations details information such as the
X-coordinate, Y-coordinate, predicted width (px), actual width (px), and crack width error
ECWI (%) along the central skeleton of cracks, as shown in Table 1 below. These detailed
3D crack data provide a data foundation for visual modeling of damaged models.

Table 1. Detailed data of cracks (part).

Serial Number  X-Coordinate  Y-Coordinate Predicted Width (px) Actual Width (px)

1 83 18 4.00 5.66
2 84 18 2.83 5.66
3 85 18 2.00 4.47
4 86 19 4.00 5.66
5 87 19 4.00 5.66
6 88 20 447 5.66
7 89 20 5.66 6.32

The calculation principle of ECWI is illustrated in Figure 1. First, based on the medial
axis transformation principle, the bwskel function is used to extract the crack skeletons
from both the manually annotated image (ground truth) and the model-predicted image.
Subsequently, the normal width is calculated along each pixel of the skeleton to obtain
the manually annotated crack width and the model-predicted crack width. To accurately
compare these two sets of width data, a “point-to-point” matching operation is required.
Since the predicted skeleton and the actual skeleton may differ in shape, a direct sequential
comparison would lead to misalignment. The specific matching principle is shown in
Figure 2:

(®  Extract coordinates: Use the “find” function to extract the coordinates of the predicted
and actual skeletons.

@ Nearest neighbor matching: For each predicted skeleton point, find the nearest actual
skeleton point in spatial position and use the width of this actual point as the com-
parison baseline. This coordinate-based nearest neighbor matching ensures that the
compared width data correspond to the same spatial locations.

® Calculate ECWI: Compute the error percentage between the two sets of width data
using Error Formula (1) to obtain the ECWI value.

As one of the key indicators for evaluating the prediction accuracy of this model,
ECWI effectively measures the deviation between the model’s prediction results and the

ground truth.
ECW, — ECW;

ECWI = ECW,

x 100% (1)

where

ECW,;: Model-predicted value of concrete crack width
ECW;: Ground truth value of concrete crack width.
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Figure 2. Schematic diagram of skeleton point matching principle.

2.2. Crack Tip Curvature Radius Error Index (TCRE)

In the field of concrete structure research, the occurrence and propagation of cracks
reflect structural safety issues [17,18], while the significant stress concentration at crack
tips [19] is a key focus of research attention. Therefore, quantifying and evaluating the
identification errors of crack information through the stress concentration effect at crack
endpoints holds practical engineering significance. According to fracture mechanics theory,
there is a clear negative correlation between the curvature radius of a crack tip and its stress
concentration degree: the smaller the curvature radius (i.e., the sharper the tip), the denser
the distribution of stress lines in the tip region, and the higher the stress concentration
degree; conversely, the larger the curvature radius, the flatter the distribution of stress lines,
and the lower the stress concentration degree. This law has been widely verified in studies
on quasi-brittle materials such as concrete [20-22].

Meanwhile, the double “K” fracture theory further reveals that a smaller curvature
radius at the crack tip results in more pronounced stress concentration, which accelerates
the crack propagation process [23]. To quantify the difference between the predicted and
actual values of the crack tip curvature radius, the tip curvature radius error (TCRE) is
introduced. This indicator can more authentically reflect the actual stress distribution
characteristics at the crack tip. Figure 3 presents a schematic illustration of the predicted
curvature circle results.

The main calculation steps of TCRE in this study are illustrated in Figure 1.

(®  Extraction of crack skeleton endpoints.

First, in the MATLAB environment, the “bwmorph” function is used to extract the
crack skeleton, and then the “endpoints” operator of this function is employed to accu-
rately extract the endpoints of the crack skeleton. Subsequently, the “find” function is
utilized to obtain the coordinate information of these endpoints, laying the foundation for
subsequent calculations.
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Figure 3. Curvature circle prediction result diagram.

@  Selection of ROI (Region of Interest).

Considering issues such as high computational complexity, insufficient targeting, and
waste of computing resources when directly calculating the curvature radius for the entire
image, this study adopts an ROI definition strategy to focus on the local features of crack
skeleton endpoints. When extracting the ROI, the coordinate range is strictly limited,
following the principle of covering the key area of the endpoints without exceeding the
image boundaries. This not only improves computational accuracy but also significantly
reduces the computational load.

® Quadratic polynomial fitting and curvature calculation.

For calculating the local curvature at the crack tip, this study selects a five-parameter
quadratic polynomial model and uses the nonlinear least squares method to fit the prepro-
cessed ROI data. By minimizing the sum of squared errors between data points and the
fitted surface, this method constructs a surface model that can accurately reflect the geomet-
ric morphology of the endpoints. The specific MATLAB code is provided in Supplementary
Materials (Code A2).

After obtaining the fitting model, a Hessian matrix is constructed based on the fitting
results. The eigenvalues of the Hessian matrix are closely related to the principal curvatures
of the surface at that point [24]. Principal curvatures reflect the degree of curvature of
the surface in different directions, where the eigenvalue with the largest absolute value
corresponds to the maximum curvature of the surface and is taken as the curvature at
that point. To avoid excessively small curvature values (approaching zero) when the crack
tends to be straight, this study sets the lower limit of curvature to 0.00001 (corresponding
to a maximum curvature radius of 100,000 pixels). This threshold is determined based
on the pixel size and the actual range of crack sizes to ensure the physical rationality
and numerical stability of the calculation results. Finally, combined with the pixel size
(pixel_size), using Formula (5), the calculated curvature “K” is converted into the actual

7N

curvature radius “p”, and the TCR value with physical meaning is obtained.

Z(x,y) = ax* +bxy +cy* +dx +ey + f )
H=|% % 3)
dxdy  Jy?

1
K:§~\/\1+)\2| (4)
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TCR(i) = Ki S (5)

In the above formula, H denotes the Hessian matrix, A; and A; are the eigenvalues of

the Hessian matrix, K represents the calculated curvature, and S stands for the pixel size.

2.3. Dual-Parameter Error Evaluation Index Weight Setting

The dual-parameter evaluation index proposed in this paper weights the two error
indicators (ECWI and TCRE) through weight assignment. The weight values are deter-
mined with reference to the relevant provisions on sub-item check coefficients in Article
7.7 of the “Standards for Technical Condition Evaluation of Highway Bridges” (JTG/T
H21-2011) [25]. In the existing evaluation system, the formula for the evaluation scale “D”
of the bearing capacity check coefficient for masonry and reinforced concrete bridges is
shown in Formula (6):

where a; is the weight value of a certain detection index and satisfies il aj = 1. Djis the
evaluation scale of a certain detection index of a structure or compénent. The specific
weights of each detection index are as follows: 0.4 for defect condition, 0.3 for material
strength, and 0.3 for natural vibration frequency. Drawing on this weight system, when
weighted-averaging ECWI and TCRE, the weight of the defect condition is assigned to
ECWI with a value of 0.4; the mechanical index TCRE, referencing the combined weight
of “material strength” and “natural vibration frequency”, is assigned a weight of 0.6. This
design ensures that the evaluation results are compatible with the existing specification
system, while filling the gap in the precise quantification of evaluation index D; in the
specifications, making the evaluation system more comprehensive, scientific, and operable.

3. Model Network Structure and Framework
3.1. MobileNetV2-DeepLabv3+ Model

In this paper, an improved MobileNetV2-DeepLabv3+ model (abbreviated as Mobile-
D) is proposed. MobileNetV2 is an efficient neural network architecture that reduces the
resource consumption during model operation, while DeepLabv3+ ensures segmentation
accuracy. The combination of the two endows the model with significant advantages in
deployment on mobile devices and embedded systems [26].

In the early stage of model training, due to reasons such as the insufficient number of
parameters in MobileNetV2, the trained Mobile-D suffered from severe overfitting and had
inadequate ability to capture the details of concrete cracks. To address this, regularization
hyperparameters were configured in the training hyperparameters (see Supplementary
Materials (Data B1 for details)): the L2 regularization parameter “L2Regularization” and a
piecewise learning rate scheduling strategy that combines “LearnRateSchedule”, “piece-
wise”, “LearnRateDropFactor”, and “LearnRateDropPeriod”. During the training process,
the learning rate is reduced by a specific factor at fixed time intervals to alleviate the
overfitting phenomenon.

Subsequently, to further tackle overfitting, accurately identify concrete cracks, retain
key parameter information such as the initial crack edges and orientations, and avoid
the loss of crack details caused by excessive abstraction due to multiple convolution and
pooling operations, a connection is added between the expanded convolution activation
layer of the inverted residual module in the MobileNetV2 encoder and the decoder.

In order to integrate more original details, priority was given to the inverted residual
blocks at the front positions. Since the first and second blocks contained too much noise and
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the spatial information was significantly lost after the fourth block (with reduced output
resolution), while the third inverted residual block had a higher feature map resolution
(1/4 of the input size), retained crack edge details, and had a smaller receptive field, which
could complement deep features; the third inverted residual block was selected to connect
with the decoder for cropping and fusion, as shown in the dashed area in Figure 4. Finally,
the input was connected to the decoder and cropped and fused with the feature map output
by the up-sample. The newly added connections mentioned above are shown as the red
connecting lines in the detailed network structure diagram of Figure 4.

Inverted Inverted
Residual Residual
Block 2 Block 4

f i

Inverted Inverted Inverted
(Input)—» Conv [—»| Residual @ Residual Ajd _ Residual

Block 3

Block 1 Block 16

Decoder

ASPP

Softmax—out

Encoder

— :New connections

\7771 . . . .

| J:Ver51on50 Missing Layers and Connections
:Decoder

:Encoder
Figure 4. Network structure diagram of the Mobile-D Model.

The newly added connection between the expanded convolution activation layer of
the third inverted residual block and the concat2 layer of the decoder enables the features
extracted by the encoder at this stage to directly participate in feature fusion at a specific
stage of the decoder. For concrete crack recognition, the characteristic of this block’s
expanded convolution activation layer in increasing feature dimensions and enriching
feature representations helps capture the unique feature information of cracks, such as
texture and morphology. Introducing these features into the concat2 layer allows the
decoder to obtain more comprehensive crack feature information. The enhanced feature
integration enables the model to outline the contours of concrete cracks more accurately and
improve the accuracy of crack segmentation. To verify the effectiveness of the newly added
connection between the extended convolution activation layer of the third inverted residual
block and the decoder, an ablation experiment was conducted. The results show that
compared with Version5o (without the new connection), Version5 with the new connection
generally achieves an improvement in the Dice coefficient by 4.03-26.73%, and the ECWI
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error index generally decreases by 2.81-6.38%, which verifies the effectiveness of the
connection. For detailed comparison of model performance data in the ablation experiment,
see Supplementary Materials (Data B2).

Meanwhile, the connection between the input and the cropping layer of the decoder
enables low-level detail information such as the color and grayscale of concrete cracks in
the original image to directly participate in the decoder for scale matching and fusion with
the sampled feature maps. The cropping layer crops the up-sampled feature maps and the
original input image to ensure their scales are consistent. This operation effectively adjusts
the correlations among features at different scales, assisting the decoder in integrating
multi-level information. Consequently, even under complex backgrounds, the model can
more accurately identify and segment subtle cracks.

3.2. Training Dataset and Parameter Settings
3.2.1. Training Environment and Dataset

To ensure the validity and comparability of the research, standardized hardware and
software environments are used in this study for experiments. An Intel i5-12490F processor,
16 GB running memory, and an NVIDIA RTX 4060 8 GB graphics card (NVIDIA, Santa
Clara, CA, USA) are used as the hardware configuration, while model training is completed
based on the MATLAB R2022a platform. In terms of data selection, this study selectively
adopts the measured crack dataset from the Jiangluo Expressway Project (a sponsored
project of this paper) and the open-source dataset Bridge Crack Library 2.0 [27]. All
images selected from the Jiangluo Project were collected from the regular bridge inspection
reports of the Jiangluo Project bridges in Guangdong Province, China, including Ducun
Simply-Supported Hollow Slab Viaduct, National Highway G325 Monolithic Cast-in-Place
Continuous Beam Overpass, Shuijing Interchange T-Beam Main Line Bridge, etc. These
images cover crack scenarios under the service conditions of bridges, as shown in Figure 5.
The dataset consists of approximately 3700 RGB images with a resolution of 256 x 256 pixels,
each equipped with accurate binary mask labels; cracks are marked in black (pixel value 0)
and the background in white (pixel value 255), facilitating efficient feature recognition by
the model. The images are stored in PNG format before cropping, with an average file size
of about 5 MB, balancing image clarity and data transmission efficiency. The dataset is
divided into a training set, a validation set, and a test set in a ratio of 7:2:1. The test set is
applied in the “4 Bridge case” section of this paper.

To optimize the Mobile-D model, comparative numerical experiments were conducted
under the new evaluation system through a positive feedback optimization mechanism.
By adjusting training parameters, optimizing preprocessing, new versions of the model
are developed through training iterations, sorted by iteration time and named Mobile-
D-Versionl, Mobile-D-Version2. . . until Mobile-D-Version5. Through the comparison of
index results, we explore the optimal training scheme that adapts to the new indexes while
achieving high performance.

3.2.2. Training Model Dynamic Weight Setting

Due to the huge gap in the number of pixels between cracks and the background,
appropriate weights should be assigned to both during training to enable the model to
capture more crack details. For this reason, dynamic class weight calculation is specially
set in the model training, and its calculation principle formula is as follows:

Ci

W~ =
! min(cl, Co -+ 'Cn)

(7)

1

:fi+£ ®

Ci
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where W; represents the normalized class weight, c; denotes the class weight, and f; refers
to the pixel frequency of the i-th class. ¢ is an infinitesimal quantity, which defaults to
2.22 x 1071¢ in MATLAB to prevent division-by-zero errors.

Abutment cracks of G325
National Highway overpass
in Jiangluo Project

One of bridge crack

I
I
One of bridge crack I Crack image dataset Diaphrz‘ngm cr‘flcks ,Of
. . Fenshui'ao Bridge in
| for training N .
| Jiangluo Project
I
I
| I
| I
o060 | I o000
| I
Bridge crack library 2.0 | : Cracks of JiangLuo Project
____________ 4 - 1

Figure 5. Composition of training data.

For the prediction accuracy of models trained with dynamic weights, current exper-
iments have achieved accuracy comparable to that of fixed weights (1:10) with a Dice
difference of <11% and to that of fixed weights (1:20) with a Dice difference of <4%.
Meanwhile, it eliminates the cost of manually searching for the optimal weights. The
relevant experimental data are shown in Table 2 below, and detailed data can be found in
Supplementary Materials Data B3.

3.2.3. Training Hyperparameter Settings

In the iteration from Version 1 to Version 5, training hyperparameters were adjusted
from Version 1 to Version 2. Since the ECWI index of Version 1 was generally high (e.g.,
110.03% for No. 1 and 105.91% for No. 3), it indicated insufficient accuracy in the model’s
localization of crack boundaries. This phenomenon was directly related to the relatively
high initial learning rate (InitialLearnRate 0.001) and excessively fast decay rate (Learn-
RateDropFactor 0.1) of Version 1. A higher initial learning rate might cause the model
to be sensitive to noise in the early stages of training, resulting in excessive parameter
update amplitudes and difficulty in stably capturing fine-grained features such as cracks.
Moreover, the excessively fast decay of the learning rate caused the learning process to
stagnate prematurely before the model had fully learned complex cracks, making it im-
possible to further optimize feature extraction capabilities. Therefore, in Version 2, the
InitialLearnRate was reduced from 0.001 to 0.0003 to decrease the initial update intensity
and reduce noise interference. Meanwhile, the LearnRateDropFactor was increased from
0.1 to 0.8 to slow down the decay rate, allowing the model sufficient time for iterative
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optimization on complex samples where Version 1 performed poorly (e.g., images with
high ECWI values in No. 1 samples).

Table 2. Weight experiment comparison table.

Crack Image Weight Dice IoU PA ECWI
1:10 0.7562 0.6080 0.9924 34.05%

No. 1 1:20 0.7269 0.5710 0.9919 32.14%
Dynamic weight 0.7159 0.5575 0.9908 40.38%

1:10 0.8652 0.7625 0.9953 17.47%

No. 2 1:20 0.8497 0.7386 0.9951 18.34%
Dynamic weight 0.8498 0.7388 0.9946 26.37%

1:10 0.7725 0.6293 0.9861 48.87%

No. 3 1:20 0.7638 0.6179 0.9865 36.24%
Dynamic weight 0.7492 0.5989 0.9850 47.58%

1:10 0.8251 0.7023 0.9964 20.70%

No. 4 1:20 0.7966 0.6620 0.9959 20.45%
Dynamic weight 0.7941 0.6586 0.9957 28.38%

1:10 0.7593 0.6120 0.9932 25.91%

No. 5 1:20 0.7087 0.5488 0.9921 24.37%
Dynamic weight 0.6866 0.5227 0.9925 24.50%

The L2Regularization was reduced from 0.0001 to 0.00001, mainly to address the
underfitting issue of coarse crack segmentation in Version 1. Reducing the regulariza-
tion intensity can reduce restrictions on model complexity, enhance the model’s fitting
ability to the training set, and enable it to capture more crack details, thereby reducing
training loss and improving segmentation accuracy. The GradientThreshold was adjusted
from 0.05 to 1 to relax the gradient clipping intensity, releasing the learning potential
of the Version 1 model and accelerating model convergence. Finally, the training inten-
sity parameters were appropriately adjusted based on the hardware performance of the
training environment.

The comparison of indicators such as ECWI, Dice, and IoU between the two versions
is shown in Table 3 below. The overall improvement of indicators including Dice and IoU
in the table (except for individual samples) verifies the effectiveness and rationality of the
adjustment strategy. For the training hyperparameter settings of Versions 1-5, please refer
to Supplementary Materials (Data B1).

3.2.4. Preprocessing and Post-Processing Settings
Preprocessing Settings

To enhance the model’s robustness against geometric deformations, this study performed
augmentation on the original data and introduced a new data augmentation function (Cus-
tomAugmentation). This function primarily employs two data processing methods: color
jittering and elastic deformation [28], achieving multi-modal data augmentation.

(1) Regarding the settings of color jitter parameters ‘Brightness’, ‘Contrast’, ‘Saturation’,
and ‘Hue’, considering that there are no extreme conditions such as excessive light in
the dataset, and to improve the model’s robustness against texture interference, we
refer to the idea of controlling color jitter intensity in the research on image robustness
enhancement by Xu et al. (CVPR 2022 Workshop) [29] and set ‘Brightness’, ‘Contrast’,
and ‘Saturation’ to the conservative range [0.8, 1.0]; meanwhile, since the hue of
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concrete images is stable (without abrupt change characteristics), the ‘Hue’ parameter

is set to 0.

Table 3. Comparison table of performance indicators (Versions 1-2).

Crack Image Version Dice IoU PA ECWI
Version 1 0.6419 0.4727 0.9838 110.03%
No-1 Version 2 0.7020 0.5408 0.9879 88.69%
Version 1 0.6415 0.4722 0.9815 47.59%
No-2 Version 2 0.6665 0.4998 0.9835 44.69%
Version 1 0.7053 0.5447 0.9783 105.91%
No-3 Version 2 0.7125 0.5534 0.9792 96.33%
Version 1 0.6725 0.5066 0.9902 79.05%
No-4 Version 2 0.7024 0.5413 0.9916 68.07%
Version 1 0.6635 0.4964 0.9883 68.31%
No-3 Version 2 0.5942 0.4227 0.9835 65.15%

(2) Regarding elastic deformation, the set parameters include the maximum displacement

‘alpha’” and smoothness ‘sigma’. The adjustment of these two parameters during the

iterations is shown in Table 4 below.

Table 4. Table of elastic deformation parameter adjustments (Versions 1-5).

Version Alpha Sigma
Version 1 10 5
Version 2 10 5
Version 3 5
Version 4 5
Version 5 3

The specific adjustment approach is based on the model’s predicted result images

and the experimental ECWI values and Dice coefficients corresponding to each model

version (see Supplementary Materials (Data B1) for the summary table of key performance

indicators of Versions 1-5). For instance, in Versions 1 and 2, the predicted cracks were

relatively thick, with larger ECWIs and smaller Dice coefficients. Therefore, it was necessary

to appropriately reduce the maximum displacement parameter ‘Alpha’ to prevent over-

distorted backgrounds caused by an excessively large Alpha from being misjudged as

cracks and also appropriately lower the smoothness parameter ‘Sigma’ to alleviate such

overfitting and improve generalization ability. The elastic deformation parameters were

mainly adjusted from Version 2 to Version 3 and from Version 4 to Version 5.

(3) Regarding the crack width enhancement part, the width enhancement parameter was

introduced starting from Version 4. Since it was observed that the actual crack width

varies with shooting distance and lighting conditions (e.g., cracks appear wider in

close-up shots), this enhancement was introduced to simulate such physical changes

through random scaling. This was to prevent the model from overfitting to cracks

of fixed widths and enable it to adapt to cracks of different scales. The dataset was

initially set to have a random variation of 0.8-1.2 times (£20%), and this parameter

remained unchanged in subsequent version improvements. The data supporting the

effectiveness of crack width enhancement is shown in Table 5 below (selected from

the summary table in Supplementary Materials Data B1).
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Table 5. Comparison table of performance indicators (Versions 3—4).

Crack Image Version Dice IoU PA ECWI
Version 3 0.6520 0.4836 0.9846 48.4%

No-1 Version 4 0.7362 0.5826 0.9911 21.13%
Version 3 0.7537 0.6048 0.9891 48.21%

No-2 Version 4 0.8480 0.7361 0.9944 27.37%

Version 3 0.6939 0.5313 0.9769 108.94%

No-3 Version 4 0.7435 0.5917 0.9848 45.34%
Version 3 0.7582 0.6106 0.9935 60.51%

No-4 Version 4 0.8037 0.6718 0.9958 29.90%
Version 3 0.7076 0.5475 0.9907 50.59%

No-5 Version 4 0.6736 0.5078 0.9923 26.12%

Given the randomness and geometric complexity of the branching behavior of concrete
cracks, and to address the issue of insufficient branching samples in actual datasets while
enhancing the model’s ability to recognize complex crack morphologies, a crack branching
simulation function is added prior to training. This simulation strategy draws on the
lesion synthesis idea of LesionMix [30]. It enhances the diversity of training data through a
random growth algorithm. Additionally, Shorten and Khoshgoftaar [31] have also proposed
the effectiveness of synthetic data augmentation in handling complex structures. Regarding
the application in bridge structure damage, Minshui Huang et al. [32] adopted the method
of expanding a small number of samples with data augmentation to train a steel bridge
damage recognition model, which not only enriched the features of training samples but
also improved the robustness of the model. It not only effectively alleviates overfitting
but also enhances data diversity by simulating structural changes when training data is
insufficient in the early stage, thereby compensating for data scarcity. The MATLAB code
written by the authors is provided in Supplementary Materials (Code Al).

Post-Processing Settings

It is a significant step to post-process the model’s prediction results for improving
segmentation quality, which not only reduces noise interference but also provides a more
concise and intuitive comparison for subsequent accuracy evaluation. For the two label
categories in the prediction results, “Edge” (crack contours) and “Background”, the post-
processing workflow enhances segmentation quality through the following steps:

(@ Binarize the prediction mask: Pixels labeled as “Edge” are set to true, while the rest
are set to false.

@ Optimize the binary mask using morphological operations: First, an opening oper-
ation is applied to remove isolated noise and small regions; subsequently, a closing
operation is used to connect fragmented target areas, forming more complete edge
structures. Finally, connected noise regions with areas smaller than a threshold pa-
rameter are further filtered out [33].

®  Convert the processed binary mask to classification format: Map false and true values
to the “Background” and “Edge” categories, respectively. This results in a more precise
and distinct segmentation, effectively improving the reliability of model predictions.
The detailed post-processing workflow is illustrated in Figure 6.
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Figure 6. Post-processing flowchart.

3.2.5. Selection of Loss Functions

The loss function is the “core feedback tool” in the training of recognition models
(such as image classification, semantic segmentation, etc.). Its core role is to measure the
gap between the model’s prediction results and the real situation and then timely correct
the model parameters through backpropagation during the training process so that the
model can be optimized towards convergence. The weighted cross-entropy hybrid loss
function adopted in this paper is a classic method for addressing class imbalance issues in
the field of semantic segmentation and is particularly suitable for the detection of slender
targets such as cracks. For example, Chen, C. et al. [34] mixed the Dice Loss function with
the original cross-entropy loss function and conducted experiments on road crack datasets.
The results showed that the mIoU of the model using only the original cross-entropy
loss function could only reach 66.43%, while the combination of cross-entropy, DiceLoss
and FocalLoss achieved 68.15%. It can be seen that the combination of cross-entropy and
Dice Loss plays the most significant role in improving the recognition effect of the model,
verifying the effectiveness of the weighted cross-entropy loss. Fan Haokun, Liu Xiangyang
et al. [35] proposed ST-UNet for the low-brightness characteristics of concrete cracks, which
adopted Focal+Dice hybrid loss, leading to a 22% increase in IoU and a 17% increase in
Dice. Hong Jun, Liu Xiaonan et al. [36] combined cross-entropy loss function and Dice loss
function to solve the problem of target class imbalance in street scenes. On the street scene
datasets Cityscapes and CamVid, the mean intersection over union (mloU) of the model
was increased by 3.9% and 3.0% respectively compared with the traditional U-Net network.

The hybrid loss function employed in this paper incorporates an edge-aware weight-
ing mechanism. Specifically, the Sobel operator is used to extract edge information for
generating edge masks, with the loss weights of edge regions enhanced accordingly. In
addition to edge weighting, the loss function also integrates the crack weights described
in Section 3.2.2 to address the class imbalance issue. The overall loss is calculated as
the average cross-entropy loss over the entire batch. Figure 7 presents the flowchart of
the loss function processing system. The detailed implementation code is provided in
Supplementary Materials (Code A3).

Crack and
background
weights

A 4

A

Weight . .
Sobel edge €lg Weighted cross-entropy Processing
Input . » enhancement > .
detection calculation results

for edge regions

Figure 7. Flowchart of loss function processing.
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4. Bridge Case
4.1. ECWI Experimental Results

The data of the test set in this experiment is derived from the test set divided in
Section 3.2.1 of this paper, from which five samples were selected for verification and
comparison. The results are presented in the form of black-and-white binary images (see
Table 6), combined with 3D heatmaps (Table 7) and histogram analyses (Figures 8-12).

Table 6. Comparison chart of model prediction results.

Image Label Mobile-D-Versionl = Mobile-D-Version2 = Mobile-D-Version5
. = 1 F. ;
" :
e “..-'
S T

b3

Loy
S S
NN
(g

/
/

From the 3D heatmap (Table 7), the spatial distribution of predicted crack error magni-
tudes across different crack locations can be observed. Among these, the model prediction
results where error points exhibit a “sinking” distribution pattern are considered superior.

In the debugging and optimization of the Mobile-D model, significant improvements
were achieved in the ECWI detection of the same validation sample by adjusting the
elastic deformation parameters of the crack branching simulation function, the geometric
constraint conditions of the post-processing function, the width control parameters, and
the edge weight parameters of the classification layer.
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Table 7. Thermal comparison diagram of model prediction results.

Label

Mobile-D-Versionl

Mobile-D-Version2

Mobile-D-Version5
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8 8
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200

— e o
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Through a comparison of overall prediction results across version iterations, compared
with Mobile-D-Versionl, the error distribution in the medium-error region of Mobile-
D-Version2 has been optimized, with most prediction points falling into the low-error

region. For example, in Figure 10, the bar for Mobile-D-Version2 (green) in the error
range [150%, 200%] is lower than that of Mobile-D-Version1 (red). The ECWI of Mobile-
D-Version5 has significantly decreased. As observed in Tables 7 and 8, for the same
validation sample, the proportion of prediction points in the medium-error region is below

3%; even for samples No. 2 and No. 5, there are no prediction points in the medium-

error region, with 99% of prediction points concentrated in the low-error region (blue).
Analysis of the histogram further shows that over 40% of ECWI values fall within the
[0, 25%] range. Additionally, statistical data in Table 8 indicates that the average ECWI of
Mobile-D-Version5 has dropped to less than 50% of that of Mobile-D-Version1.
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Figure 8. Histogram of error comparison for prediction results of crack No. 1.
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Figure 9. Histogram of error comparison for prediction results of crack No. 2.
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Figure 10. Histogram of error comparison for prediction results of crack No. 3.
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Figure 11. Histogram of error comparison for prediction results of crack No. 4.
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Figure 12. Histogram of error comparison for prediction results of crack No. 5.

4.2. TCRE Experimental Results

The current version has been optimized through training up to the fifth iteration,
namely, Mobile-D-Version5. Among them, the prediction results of the Mobile-D-Versionl,
Mobile-D-Version2, and Mobile-D-Version5 models on the same validation sample are
shown in Table 9. The samples cover diverse crack tip morphologies: the curvature radii
range from 0.10 mm to 1.24 mm (including 0.10 mm, 0.26 mm, 0.27 mm, 0.49 mm, 1.24 mm,
etc.), encompassing both sharp tips (small curvature) and blunt tips (medium curvature),
thus covering typical crack tip scenarios commonly seen in engineering. Samples No. 2
and No. 3 are temporarily excluded from the experimental results because their crack
labels have no obvious endpoints. The percentage errors in the table are calculated before
rounding, which may differ from the rounded values presented in the table. The values in
parentheses represent the calculated curvature radius, with the unit being millimeters (mm).

Based on the statistical analysis results of TCRE, among the three valid samples
(samples No. 2 and No. 3 were not included in the curvature radius analysis due to missing
crack endpoint labeling data), the predicted curvature radius values of the Mobile-D model
generally tend to be smaller. According to the inference mentioned in Section 3.2 of this
paper—that a decrease in curvature radius will lead to an increase in the structural stress
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concentration degree—this prediction characteristic exhibits a certain degree of rationality
from the perspective of engineering safety redundancy [37,38].

Table 8. Error density distribution table.

Low-Error Region Medium-Error Region High-Error Region

[1, 150] (%) [150, 400] (%) [400, 400+] (%) Average ECWL (%)
Mobile-D-Version1 67.17% 32.83% 0.00% 110.03%
1 Mobile-D-Version2 82.31% 17.69% 0.00% 88.69%
Mobile-D-Version5 98.83% 1.17% 0.00% 40.38%
Mobile-D-Version1 98.64% 1.36% 0.00% 47.59%
2 Mobile-D-Version2 98.83% 1.17% 0.00% 44.69%
Mobile-D-Version5 100.00% 0.00% 0.00% 26.37%
Mobile-D-Version1 70.78% 28.92% 0.00% 105.91%
3 Mobile-D-Version2 73.84% 26.16% 0.00% 96.33%
Mobile-D-Version5 96.68% 3.32% 0.00% 47.58%
Mobile-D-Version1 83.17% 16.83% 0.00% 79.05%
4 Mobile-D-Version2 86.15% 13.85% 0.00% 68.07%
Mobile-D-Version5 99.43% 0.57% 0.00% 28.38%
Mobile-D-Version1 89.01% 10.99% 0.00% 68.31%
5 Mobile-D-Version2 90.87% 9.13% 0.00% 65.15%
Mobile-D-Version5 100.00% 0.00% 0.00% 24.50%

Table 9. Statistical table of TCRE calculation results.

13?::11;1; Pixel Image of Sample Tip Curvature Radius Mobile-D-Version1 Mobile-D-Version2 Mobile-D-Version5
(0.93) (0.70) (0.43)
! (053) 74.3% 30.3% 20.4%
(0.19) 0.17) (0.16)
4 (023) 14.8% 26.7% 28.7%
5 (0.36) (0.35) 0.25) (0.42)

1.5% 30.9% 17.0%
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As indicated in Table 9 of TCRE prediction results, in terms of evaluating the predic-
tion stability of the models, when comparing Mobile-D-Version1 and Mobile-D-Version2,
the former exhibits greater volatility in TCRE prediction, with poorer stability of prediction
errors than the latter. The Mobile-D-Versionl model exhibits obvious sample dependence:
when processing simple crack morphologies (e.g., sample No. 5), the prediction error
can be as low as 1.5%; however, when faced with complex crack endpoint features (e.g.,
sample No. 1), the error rises sharply to 74.3%; even samples No. 6 and No. 8 reach
309.8%. This shows that the initial version of the model has insufficient sensitivity and
generalization ability to complex geometric features. By appropriately adjusting the train-
ing hyperparameters, Mobile-D-Version2 has stably controlled the fluctuation range of
prediction errors for most samples within 30%. The TCRE stability of Mobile-D-Version5
has been further improved compared with Mobile-D-Version2.

4.3. Weighted Comprehensive Comparison

Against the background of emphasizing the hazards of stress concentration, a weighted
comprehensive evaluation of the two indicators (ECWI and TCRE) is conducted using a
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weight ratio of 4:6, with specific results shown in Table 10. This evaluation method fully
reflects the key role of weight allocation in the comprehensive assessment of the model.

As shown in Table 10, when the crack recognition model identifies samples No. 1 to
No. 5, the corresponding ECWI values decrease with the upgrade of the model version. This
indicates a significant reduction in geometric recognition errors, reflecting the optimization
of the intelligent recognition model’s ability to identify crack geometric shape parameters.
Combined with Table 9, although the TCRE values of each sample did not show a significant
downward trend with the training optimization of versions, the cohesion and stability of
TCRE values have improved significantly as the version number of the recognition model
has increased. This suggests that the performance of the recognition model tends to be
stable with training optimization, and its robustness has been significantly enhanced. In the
comprehensive weighted evaluation, from Version 1 to Version 5, the recognition error of
sample No. 1 decreased from 88.59% to 28.39%, that of sample No. 4 decreased from 40.50%
to 28.57%, and that of sample No. 5 decreased from 28.22% to 20.00%. The overall error
shows a downward trend, reflecting the optimization of the model in capturing details of
structural cracks.

Table 10. ECWI, TCRE evaluation table.

Sample Number Model Version ECWI TCRE Weighted Comprehensive Evaluation Error (4:6)
Mobile-D-Version1 110.03% 74.3% 88.59%
Mobile-D-Version2 88.69% 30.3% 53.66%

1 Mobile-D-Version3 48.4% 41.8% 44.44%
Mobile-D-Version4 21.13% 48.5% 37.55%
Mobile-D-Version5 40.38% 20.4% 28.39%
Mobile-D-Version1 47.59%

Mobile-D-Version2 44.69%
2 Mobile-D-Version3 48.21%
Mobile-D-Version4 27.37%
Mobile-D-Version5 26.37%
Mobile-D-Version1 105.91%
Mobile-D-Version2 96.33%
3 Mobile-D-Version3 108.94%
Mobile-D-Version4 45.34%
Mobile-D-Version5 47.58%
Mobile-D-Version1 79.05% 14.8% 40.50%
Mobile-D-Version2 68.07% 26.7% 43.25%

4 Mobile-D-Version3 60.51% 12.8% 31.88%
Mobile-D-Version4 29.90% 34.0% 32.36%
Mobile-D-Version5 28.38% 28.7% 28.57%
Mobile-D-Version1 68.31% 1.5% 28.22%
Mobile-D-Version2 65.15% 30.9% 44.60%

5 Mobile-D-Version3 50.59% 20.5% 32.54%
Mobile-D-Version4 26.12% 47.7% 39.07%
Mobile-D-Version5 24.50% 17.0% 20.00%

Note: For the crack samples No. 2 and No. 3 in the table, the tip could not be detected to calculate TCRE because
there were no crack endpoints or the crack endpoints had not been fully collected.

4.4. Experiments on SDNET2018 Datasets

To test the robustness and universality of the model, the open-source dataset SD-
NET2018 [39] was selected for verification. Ten images were extracted from the dataset
based on features such as crack orientation and distribution location and verified using
the Version 5 model. The core accuracy index data of the verification are shown in the
following Table 11.
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Table 11. SDNET2018 prediction results table.
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ECWI 35.47% 28.44% 11.48% 12.95% 33.63%

As can be seen from the data in Table 11 above, the average Dice coefficient is 0.7893,
with the minimum Dice coefficient being 0.6307, and most of them are 0.7 or even 0.8. The
average ECWIis 23.856%, with the minimum being 11.48% and the maximum being 35.47%.
It can be concluded that the model exhibits good cross-dataset recognition ability, high

recognition similarity, strong capability in capturing detailed features of cracks, as well as
favorable universality and robustness.

5. Conclusions

(1) In terms of model optimization, an efficient error positive feedback optimization
mechanism is established, which is applicable not only to the Mobile-D model but
also to other semantic segmentation models. Through the dual-parameter compre-
hensive evaluation system, in-depth analysis and feedback on the detection results
are conducted. Based on the analysis results, the training parameters, preprocess-
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ing function parameters, etc. are dynamically adjusted to carry out a new round of
iterative training. By continuously optimizing model parameters, this mechanism
effectively improves the prediction accuracy and generalization ability of the model,
ensuring that the model can still maintain excellent performance in complex detection
scenarios. Furthermore, when the model is applied to other datasets, its robustness
and universality still perform excellently.

A creative geometric-mechanical dual-parameter evaluation method for crack recog-
nition errors is proposed. Through qualitative analysis of TCRE on the key influencing
factors of stress concentration errors at crack tips, the cross-disciplinary evaluation
index is constructed by weighted averaging of ECWI and TCRE to assess the pre-
diction accuracy of crack semantic segmentation models. This evaluation method
complements traditional performance accuracy metrics (such as the Dice coefficient
and IoU intersection ratio), enabling it to provide experimenters with a comprehensive
evaluation from multiple professional perspectives. The evaluation of ECWI and
TCRE can provide error references for the assessment of items related to crack defects
in the bearing capacity deterioration coefficient mentioned in Article 7.7.4 [16] of the
“Specification for Inspection and Evaluation of Load-bearing Capacity of Highway
Bridges” (JTG/T J21-2011) in bridge inspection work. By quantifying errors generated
in the detection process, it effectively reduces interference from human judgment and
improves the objectivity and accuracy of bridge inspection work.

In terms of algorithm research, this study conducted an in-depth exploration of the im-
plementation and optimization processes of the TCRE algorithm and ECWI algorithm.
Not only was the automation of the calculation process initially realized, but through
code function development, the function of outputting visualized comparison results
of indicators was integrated into the algorithm code, achieving a high level of overall
code integration.

Based on the above analysis, the current model system still has issues such as high dis-
persion in prediction results and poor adaptability to complex samples. In subsequent
research, consideration will be given to introducing an attention mechanism module
to enhance the model’s ability to perceive the curvature radius characteristics of crack
endpoints, optimize the trend-capturing capability of the prediction algorithm, and
thereby improve the model’s prediction accuracy and stability. Regarding model train-
ing, the optimal training configurations, such as the parameters for color jitter and
elastic deformation in data augmentation, crack training weights, and training hyper-
parameters, still need to be further optimized and improved. For the dual-parameter
evaluation system, its weighted weight values are selected in accordance with ex-
isting standards, which have certain engineering statistical significance and strong
applicability. However, from the perspective of academic research, combined with
model characteristics and practical applications, there is still room for optimization of
this weight. In addition, the current application of TCRE only serves as a preliminary
assessment of the safety of crack prediction models, and the specific mathematical
relationship between TCRE and the stress field requires further in-depth research.
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