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Abstract

Since statistics show a growing trend in blindness and visual impairment, the development
of navigation systems supporting Blind and Visually Impaired People (BVIP) must be
urgently addressed. Guiding BVIP to a desired destination across indoor and outdoor
settings without relying on a pre-installed infrastructure is an open challenge. While nu-
merous solutions have been proposed by researchers in recent decades, a comprehensive
navigation system that can support BVIP mobility in mixed and unprepared environments
is still missing. This study proposes a novel navigation system that enables BVIP to request
directions and be guided to a desired destination across heterogeneous and unprepared
settings. To achieve this, the system applies Computer Vision (CV)—namely an integrated
Structure from Motion (SfM) pipeline—for tracking the user and exploits Building Informa-
tion Modelling (BIM) semantics for planning the reference path to reach the destination.
Audio Augmented Reality (AAR) technology is adopted for directional guidance delivery
due to its intuitive and non-intrusive nature, which allows seamless integration with tradi-
tional mobility aids (e.g., white canes or guide dogs). The developed system was tested on
a university campus to assess its performance during both path planning and navigation
tasks, the latter involving users in both blindfolded and sighted conditions. Quantitative
results indicate that the system computed paths in about 10 milliseconds and effectively
guided blindfolded users to their destination, achieving performance comparable to that of
sighted users. Remarkably, users in blindfolded conditions completed navigation tests with
an average deviation from the reference path within the 0.60-meter shoulder width thresh-
old in 100% of the trials, compared to 75% of the tests conducted by sighted users. These
findings demonstrate the system’s accuracy in maintaining navigational alighment within
acceptable human spatial tolerances. The proposed approach contributes to the advance-
ment of BVIP assistive technologies by enabling scalable, infrastructure-free navigation
across heterogeneous environments.

Keywords: Audio Augmented Reality; navigation system; Blind and Visually Impaired
People; location service sensors; Computer Vision; Building Information Modeling

1. Introduction

According to the World Health Organization (WHO), approximately 2.2 billion indi-
viduals globally suffer from visual impairment or low vision, a figure that increases by
about 2 million every decade. Of these, at least 1 billion experience visual impairment,
while the remaining 1.2 billion live with low vision [1]. Vision is widely regarded as
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one of the most critical human senses, as it plays a fundamental role in spatial percep-
tion and environmental understanding. It enables individuals to interpret the layout of
an environment and locate specific destinations.

While Blind and Visually Impaired People (BVIP) may develop orientation strategies
for familiar places, navigating unknown environments becomes considerably more diffi-
cult, especially when environments are mixed, involving both indoor and outdoor spaces.
Transitions between such settings introduce abrupt changes in spatial structure, sensory
cues, and technological reliability. For instance, the shift from outdoor to indoor settings
is often accompanied by a loss of GNSS (Global Navigation Satellite System) coverage,
significant variations in acoustic environments, and the absence of standardized wayfind-
ing infrastructure. These challenges become even more critical in complex environments,
where the lack of adaptive, context-aware systems significantly increases the risk of disori-
entation. Examples are shopping malls, train stations, and airports, where frequent layout
changes and environmental distractions further increase cognitive load and the likelihood
of disorientation [2].

Moreover, many of the environments BVIP need to navigate are unprepared since they
lack dedicated infrastructures required by conventional assistive navigation systems [3,4].
Preparing an environment for navigation purposes is labor-intensive and costly, involving
extensive measurement, calibration, and maintenance. Furthermore, many users may not
have the means, authority, or technical skills to customize public or shared environments
to meet their needs. As a result, systems that depend on prior environmental setup present
major barriers to widespread adoption.

In light of these challenges, ensuring reliable navigation across mixed and unprepared
environments emerges as a fundamental requirement for navigation systems intended for
BVIP [2]. However, to the best of the authors” knowledge, no existing solution currently
meets both the requirements simultaneously, leaving a significant portion of the BVIP
population underserved. To address them, Hypotheses (Hs) and Research Questions (RQs)
have been formulated to guide the development of a novel navigation system for BVIP.

H.1. While seamless transitions between heterogeneous environments are common, current
navigation systems for BVIP are typically specialized for either indoor or outdoor environments [2].
This underpins the following RQ.1:

RQ.1. How can BVIP be effectively guided to a desired destination while seamlessly navigating
across heterogeneous mixed environments?

H.2. Installing the infrastructure that current navigation systems rely on is time-consuming, costly,
and frequently unfeasible, thereby reducing the scalability and inclusivity of these systems [3,4].
This underpins the following RQ.2:

RQ.2. What strategies can enable reliable navigation for BVIP in unprepared environments while
avoiding the need to install a dedicated infrastructure?

H.3. Assuming the feasibility of a navigation system for BVIP capable of operating in mixed and
unprepared environments, its reliability in supporting users in reaching a target destination should
be quantitatively evaluated and benchmarked against the performance of sighted individuals. This
underpins the following RQ.3:

RQ.3. What is the effectiveness of a navigation system that meets the requirements defined by the
previous RQs?

This paper, extending the work presented at the 24th International Conference on
Construction Applications of Virtual Reality (CONVR 2024), answers the RQs by proposing
a novel navigation system for BVIP. The system is specifically designed to work both
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indoors and outdoors, enable seamless transitions across heterogeneous spatial contexts,
and function independently of pre-installed infrastructure, thus supporting navigation in
unprepared environments. To achieve these objectives, the proposed system integrates
multiple enabling technologies to provide core functionalities, such as user pose tracking,
reference path planning, and directional guidance delivery. Accurate user localization in
mixed and unprepared environments is enabled by registration engines based on Computer
Vision (CV). The reference path to the target destination is computed, on demand, by
an engine leveraging semantics encoded in BIM models. Finally, Audio Augmented
Reality (AAR) technology is employed to convey navigation instructions through intuitive
spatialized audio cues. Experiments conducted on a university campus yielded highly
promising results. The remainder of this paper is structured as follows. In Section 2,
the scientific background is presented. Section 3 presents the methodology, describing
the system architecture, while Section 4 focuses on system implementation. In Section 5,
experiments and result discussions are reported, and Section 6 is devoted to conclusions.
Finally, Appendix A reports the complete set of experimental results, including figures
omitted from the main text.

2. Scientific Background

White canes are traditional and widely used navigation aids for BVIP. They allow users
to directly sense the ground through tactile feedback, improve sensory awareness, and as-
sist with obstacle detection, echolocation, and shore lining, helping users better understand
their surroundings [2,5]. While cost-effective, reliable, and easy to use, white canes have
some limitations. For instance, they cannot provide orientation in complex or unfamiliar
environments, do not detect obstacles at head, trunk, or overhead levels, and require physi-
cal contact to identify obstacles. To address these limitations and improve BVIP mobility,
several assistive solutions have been proposed over the years. Existing navigation systems
can be grouped into two categories, namely Electronic Travel Aids (ETAs) and Electronic
Orientation Aids (EOAs), supporting mobility and orientation respectively [3,6]. Mobility
is the ability to travel from one place to another safely and efficiently, while orientation
refers to the ability to recognize one’s current location and intended destination [5]. ETAs
aid users in safely exploring their surroundings by providing obstacle detection support.
EOAs, on the other hand, help users by identifying a route and delivering navigational
instructions. Since this study focuses on enhancing BVIP mobility, current EOAs-based
navigation systems will be analyzed in the following subsections with a focus on their key
functionalities, such as user tracking, reference path planning, and directional guidance
delivery [7].

2.1. User Tracking

Tracking user position and orientation is a preliminary task necessary to support BVIP
mobility. Considering the wide range of sensing technologies applied for this purpose,
existing EOAs navigation systems can be classified into vision-based and non-vision-based
approaches [1,6]. Non-vision-based systems rely on various sensors to guide users along
a safe path. Smartphone-based systems, for example, utilize technologies such as Near-Field
Communication (NFC) [8], Infrared (IR) [9], Radio-Frequency Identification (RFID) [10],
Ultra-Wideband (UWB) [11], Wireless Fidelity (Wi-Fi) [12], and Bluetooth Low-Energy
(BLE) [13]. NFC-based systems provide contextual object and location information via
smartphone apps and environmental tags [8]. They offer high accuracy but suffer from
very short range (limited to centimeters), making tag detection challenging for BVIP. Other
technologies, such as IR, RFID, UWB, Wi-Fi, and BLE, offer longer operating distances,
ranging from several meters to dozens of meters. IR solutions detect nearby obstacles
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and guide users through auditory feedback [9]. RFID systems combine wearable or AR
devices with passive tags to enable indoor localization and guidance [10]. However, IR-
and RFID-based systems often incur high installation costs. BLE-based systems, while
they can provide turn-by-turn navigation through beacon-based localization, suffer from
significant localization errors, often spanning several meters, and require pre-installed
beacons [13]. Wi-Fi-based methods enable user localization using existing infrastructure
and signal processing techniques [12]. They are low-cost but not accurate and are sensitive
to environmental changes. UWB, on the other hand, offers centimeter-level accuracy for
real-time indoor positioning and can effectively penetrate obstacles such as walls, making it
a strong option for positioning and orientation [11]. Still, their adoption is limited by the
need for environment pre-configuration and specific infrastructure. Despite some advan-
tages, non-vision-based systems are less frequently adopted, likely due to the requirement
to pre-configure the environment by setting up specific infrastructure [6].

Vision-based systems, by contrast, rely on cameras and CV to interpret visual data [1,6].
An example is an indoor navigation system using ceiling-mounted IP cameras to track
the user and send navigational instructions via a mobile device [14]. IP cameras require
prior environmental preparation and are associated with high installation costs. Another
solution is the wearable navigation system that applies visual SLAM based on RGB-D
cameras [15]. Visual-SLAM (Simultaneous Localization and Mapping) integrated with
RGB-D cameras shows great potential for localization and mapping, but it is prone to
accumulating errors over time and distance, limiting its application to short-range scenar-
ios. Some vision-based systems employ monocular cameras and focus on specific tasks.
For example, RGB camera-based visual marker detection is applied as a line-following
method for path guidance [16]. These systems, despite their applicability in both indoor
and outdoor scenarios, require environmental preparation and manual route input. Ex-
ceptions to this are Structure-from-Motion-based (SfM) navigation assistants [17], which
can operate in unprepared environments as they do not require special infrastructure. StM
is a CV technique that reconstructs a three-dimensional structure of a scene from a set of
two-dimensional images. While classical SfM reconstruction approaches have been em-
ployed thus far in BVIP navigation assistants [17], recent advancements have introduced
more robust SfM pipelines. In fact, recent developments propose deep-learning-based SfM
approaches, notably employing Convolutional Neural Networks (CNNs) to extract and
match, across provided images, feature points to be included in the 3D reconstructed model.
This model, created once for each explored area, serves as the localization reference and
is georeferenced by defining the geographic coordinates of at least three key feature/shot
points [18]. Recent developments have demonstrated the applicability of this solution, even
in low-light conditions, with only limited reductions in performance [19,20]. However,
SfM requires image datasets for 3D reconstruction; while this may limit scalability, it does
not involve significant efforts or technical skills for environment preparation. Despite
their potential, the application of these techniques within assistive navigation systems
for BVIP remains largely unexplored. ARCore-based navigation systems, originally re-
liant on visual-inertial SLAM techniques for user tracking, are known to experience drift
over extended trajectories [21]. More recently, the introduction of the ARCore Geospatial
API—a SfM-based solution powered by Google’s Visual Positioning System (VPS)—has
shown promise in mitigating such drift issues. VPS leverages CV techniques to determine
a device’s location based on visual data from Google Maps’ Street View images for local-
ization [22]. VPS builds its localization model by using Deep Neural Networks (DNNs) to
extract key visual features— such as the outlines of buildings or bridges—from Street View
images, creating a highly scalable and rapidly searchable index. Although its performance
may be affected, this solution is still applicable in low-light conditions. When the device
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attempts to localize itself, VPS compares the extracted features from the current view with
those in the reference model. By leveraging Street View data from over 93 countries, the
system has access to trillions of visual reference points, allowing for triangulation that sig-
nificantly improves positional accuracy [23]. As already noted for the most advanced deep
learning-based SfM approaches, ARCore Geospatial API presents strong potential for de-
veloping navigation systems for BVIP in areas where VPS coverage is available, although,
to date, no academic studies have reported practical applications of Google’s VPS for
BVIP navigation.

To conclude, both state-of-the-art deep learning-based Structure-from-Motion (SfM)
approaches and the ARCore Geospatial API enable applicability in unprepared environ-
ments, meaning they do not require any preliminary infrastructure installation. However,
when considered individually, neither guarantees the development of a navigation assistant
that operates seamlessly across both indoor and outdoor settings. Specifically, while deep
learning-based SfM can function in both indoor and outdoor contexts, its scalability in
large-scale outdoor environments is limited due to the burden placed on the user to collect
image data. Conversely, the ARCore Geospatial API depends on the availability of the
Visual Positioning System (VPS), which is primarily accessible in outdoor environments.
For this reason, as further detailed in the methodology section, the integration of these
two technologies emerges as a promising solution to achieve robust user tracking in mixed
and unprepared environments.

2.2. Reference Path Planning

Planning the reference path is crucial to support BVIP mobility towards a given
destination. Path planning for EOAs-based navigation systems is based on the definition
of optimization factors, procedures, algorithmic approaches, and spatial information [7].
The most common optimization factor is traveling distance, which leads to calculating
the route with the shortest distance to travel [7]. Among procedures and algorithmic
approaches, the A* is the most popular graph traversal and pathfinding algorithm in the
existing literature [6,7,11,15,21,24].

Path planning is strongly coupled with the way spatial information is represented [7].
Among existing studies, some navigation systems rely on ready-made routes, whereas
others ensure real-time path planning. In the first group, all possible routes connecting
rooms within a building are defined in advance. These systems require a preliminary
training phase [14] or, in the case of vision-based approaches, the installation of markers on
the ground to help identify the reference path [16]. These approaches, despite their ease of
use, suffer from the need to pre-configure the targeted environment and manually input all
the possible routes. In addition, a limited path adaptability to contextual changes requires
manual adaptation for each scenario variation. Studies in the second group apply different
technologies for describing space and computing routes in real-time. Spatial information is
provided by a dedicated infrastructure installed across the facility based on UWB [11] and
BLE [13] technologies. These solutions, even if they overcome the need to manually input
all the possible routes into the system, suffer from the need to preinstall infrastructure
in the environment. This limitation is overcome by using the spatial mapping generated
through SLAM [10]. This spatial mapping is provided as an input to a local route search
module. Alternatively, a 2D probabilistic grid map is computed based on RGB-D data
for dynamic path planning [25]. Similarly, a virtual guide path is generated using visual
SLAM and a stereo camera [15,24]. These solutions are impractical, since BVIP are often
asked to use heavy wearable configurations that include cameras and processing units.
These issues are overcome by retrieving the route model from collected images processed
using SfM [17] or 2D CAD models [21]. A limitation affecting these approaches is the
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lack of spatial semantics to support destination queries based on user intent. In addition,
while 2D CAD conveys planimetric layouts, they lack explicit representation of height and
volumetric features. To enable assistive navigation of BVIP, it is crucial to compute paths
toward the intended destination without relying on predefined routes, the installation of
dedicated infrastructure, or the need for users to wear bulky or obtrusive equipment, while
still ensuring access to the full semantic understanding of 3D environments. A solution
that meets the aforementioned requirements is retrieving spatial information from existing
BIM models. Providing semantic, topological, and geometrical information together, they
are particularly well-suited for supporting advanced navigation tasks [7]. BIM models are
commonly shared using the Industry Foundation Classes (IFC), an open and international
ISO standard specifically developed to enable interoperability and standardized exchange
of building information [26,27].

2.3. Directional Guidance Delivery

Once the user pose and the reference path are determined, directions must be commu-
nicated to the user. Current navigation systems deliver information to BVIP through audio
signals [11,14,15], haptic feedback [9,16], or a combination of both [21]. Haptic feedback
can help mitigate distractions caused by environmental noise, yet it may also confuse
users or slow them down as they interpret vibration patterns in real time. Audio feedback
offers a richer communication channel but can overwhelm users if too much information is
delivered, or it may mask important environmental sounds [3]. In this field, a promising
solution is AAR technology, which has been gaining increasing attention in recent research
due to the possibility of providing intuitive and non-intrusive guidance [28]. AAR is intu-
itive because it allows users to “follow the sound” toward their destination, reducing the
cognitive load associated with exclusively interpreting verbal instructions. This is possible
since AAR enhances the user’s real-world auditory environment by spatializing virtual
sounds to simulate realistic cues for direction and distance. Such guidance is enabled
by spatial sound synthesis that leverages head-related transfer functions (HRTFs) [28].
HRTF is typically formulated as a function of the sound source position and its spectral
distribution. More specifically, an HRTF describes how a sound emitted from a location in
space will reach the eardrum after the sound waves interact with the listener’s anatomical
structure, such as head and torso. In addition, AAR ensures non-intrusive delivery of
information via audio, allowing users to keep their hands free and maintain the use of
traditional mobility aids like white canes or guide dogs. Hence, AAR-based guidance
does not interfere with existing navigation methods. Integrating AAR with technologies
discussed in the previous subsections has the potential to improve situational awareness
and assist BVIP in navigation tasks [28].

3. Methodology

This paper proposes a novel AAR navigation system (hereinafter referred to as the
“system”) designed to assist BVIP in navigating heterogeneous and unprepared envi-
ronments following spatial audio directions towards the desired destination. It delivers
real-time directional guidance through spatialized audio cues aligned with the planned
route, allowing users to maintain orientation and make informed navigation decisions.
The proposed system contributes to the body of knowledge by enabling seamless transi-
tions across heterogeneous spatial contexts and operating independently of pre-installed
infrastructure. To achieve these objectives and enable key functionalities, such as user pose
tracking, reference path planning, and directional guidance delivery, the system integrates
multiple technologies. As discussed in Section 2.1, user pose tracking can be achieved
in mixed and unprepared environments through the application of CV technologies. To
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this purpose, an integrated SfM pipeline enables the reconstruction of custom 3D models
based on user-provided images. In addition, ARCore Geospatial API is applied to exploit
VPS capabilities, ensuring scalability across large-scale environments when Street View
image data is available. Both methods rely solely on visual input, requiring no pre-installed
infrastructure. Their integration enables seamless operation across mixed environments.
While both perform best under well-lit conditions, they remain applicable in low-light
environments, albeit with a reduction in accuracy and performance. This drawback is
mitigated by the growing availability of low-cost compact cameras that perform well even
in low-light conditions. As outlined in Section 2.2, BIM models can be utilized to support
reference path planning and, offering rich semantic, topological, and geometric data, do
not require any infrastructure. Finally, as discussed from Section 2.3, AAR can serve as the
interface for directional guidance delivery due to its intuitive and non-intrusive nature,
making it especially effective for BVIP navigation and compatible with traditional mobility
tools (e.g., white canes or guide dogs).

Given this premise, a system architecture has been defined to describe the integration
of the aforementioned technologies (Figure 1). It is built upon three core components:
(i) a custom cloud platform, and (ii) the Google Cloud Platform, both interfaced with
(iif) the proposed AAR navigation assistant (hereinafter also referred to as the “assistant”).
The custom and Google Cloud platforms, which respectively host image-based and ARCore-
based registration engines, enable seamless user tracking in mixed environments through
the application of CV technologies. The ARCore-based registration engine—hosted on
Google Cloud—utilizes ARCore based on Google’s outdoor Street View imagery. The
image-based registration engine—hosted on the custom cloud platform—applies SfM to
image datasets collected by users and stored within the same platform. This allows the
system to extend tracking capabilities beyond areas covered by Google services, including
indoor spaces. The result is a seamless registration service that functions in both indoor
and outdoor environments, hence answering RQ.1. The adoption of CV technologies in the
form of SfM and ARCore ensures the application of the proposed system also in unprepared
environments. In addition, the custom cloud platform hosts a BIM-based path planning
engine for computing on demand the reference path to the target destination without the
need to install any infrastructure. This answers RQ.2. Finally, the assistant, based on the
aforementioned engines for user pose tracking and reference path planning, supports BVIP
during navigation through spatial audio cues provided by the AAR interface.

The proposed methodology is compatible with any portable device that has internet
access and is equipped with basic hardware such as a camera, location service sensors,
a microphone, and speakers. The camera captures visual information, condensed into
images, which are used by CV engines for registration purposes. Location service sensors,
including GNSS, Wi-Fi, Bluetooth, and cellular network data, help devices determine their
raw location. The combination of multiple localization technologies makes the system more
robust; as not all of them are always available, others can still contribute to an approximate
location estimate. This is useful for verifying the availability of geolocated resources—such
as nearby image dataset and 3D models—that can serve as reference during registration
procedures. Finally, the microphone and speakers form the communication interface with
BVIP. This paper focuses on a smartphone-based implementation of the system. The
choice is made possible by the proposed system architecture (Figure 1), which delegates
most of the computationally intensive tasks to cloud-based services. Consequently, the
computational load and battery consumption are comparable to those of a smartphone
collecting photos and delivering them to cloud-based services. The following subsections
describe each component of the system architecture, providing an overview of the proposed
methodology. The actual system implementation is detailed in Section 4.
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Figure 1. System architecture of the proposed AAR navigation system including the custom cloud
platform (light blue), the Google Cloud Platform (light orange), and the AAR navigation assistant
(light yellow).

3.1. Custom Cloud Platform Component

The custom cloud platform acts as a decentralized hub for data processing, storage, and
distribution, utilizing a RESTful API as its core communication interface. This API enables
seamless interaction with multiple navigation assistant clients over the internet. The custom
platform supports two essential system functionalities: user pose tracking and reference
path planning. These are facilitated by (i) the image-based registration engine, and (ii) the
path planning engine, both supported by (iii) a data storage (Figure 1). The data storage
component is responsible for hosting and managing geolocated resources applied by the
two engines. These resources, including both unstructured data (e.g., images, point clouds)
and structured data (e.g., BIM models), provide the necessary contextual information
(Figure 1). A key feature of the platform is its ability to geolocate and align images,
point clouds, and BIM models within a shared geospatial framework (WGS-84 standard),
allowing precise mapping of virtual assets to real-world coordinates and supporting the
integration of virtual and physical environments. Additionally, a graph database serves as
the system’s backbone, ensuring robust data management. It enables efficient storage and
powerful querying of interconnected heterogeneous data elements. Unstructured data are
organized in a dedicated data lake and linked to structured information within the graph
database to allow easy access and retrieval.

The image-based registration engine leverages CV algorithms to achieve accurate
positioning in environments with limited access to the device location services, such as
indoor areas or urban canyons, further addressing RQ.1. This engine applies StM techniques
and operates through two main phases supported by the 3D reconstructor and pose
estimator modules (Figure 1). The 3D reconstructor, given a dataset of reference images,
employs CNNSs to extract feature points and generate a 3D model of the environment in
the form of a point cloud. The pose estimator performs a 6-DoF localization of a single
frame captured from the user’s current view (query image). Like the 3D reconstructor,
it applies CNN-based feature extraction on the query image and matches these features
against those from the 3D reconstruction. Notably, this approach does not require any
preparatory infrastructure and relies solely on the acquisition of reference images. As such,
it is suitable for deployment in unprepared environments, thereby addressing RQ.2.
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The path planning engine consists of a headless simulation environment that can
compute the shortest path connecting the user and the destination. To make this possible,
two modules have been included: the space modeler and the pathfinder (Figure 1). The
space modeler gets spatial information from georeferenced BIM models hosted by the data
storage. The BIM model of the target environment can be queried based on the user position,
which is continuously tracked based on a combination of device location services and CV
technologies. Given the scenario made available by the space modeler, the pathfinder
computes the reference path to the desired destination by applying a pathfinding algorithm.
The A* algorithm, being one of the most popular in literature, has been assumed in this
study as a reference for the implementation of the path planning engine. The possibility of
retrieving the path to the desired destination in real-time enables the applicability of the
system in unprepared environments. In fact, there is no need to predefine routes or install
physical markers, answering RQ.2.

3.2. Google Cloud Platform Component

The ARCore-based registration engine, hosted on the Google Cloud Platform, com-
plements the custom cloud platform by enhancing user tracking capabilities, particularly
in outdoor environments where it improves upon device location services. Specifically,
it refines the estimation of user poses beyond what device location services can offer, ad-
dressing RQ.1. For example, in dense urban areas, where tall structures obstruct the sky
and signals reflect off surfaces, the accuracy of device location services often degrades.
Another inherent limitation of device location services is their inability to determine device
orientation [23]. Although the image-based registration engine could technically function
outdoors, collecting large-scale reference image datasets presents significant challenges.

To overcome these limitations, the Google Cloud Platform offers a global localization
service that operates without the need for prior environmental setup, thus contributing
to RQ.2. By combining several advanced techniques, it enables accurate estimation of
the smartphone camera pose. Communication between this engine and the rest of the
system occurs through the ARCore Geospatial API (Figure 1). During a localization request,
data from the device location services and a real-time image (query image) captured by
the smartphone are transmitted to the Google Cloud Platform. Upon receiving the data,
CV algorithms within the ARCore-based registration engine analyze the query image to
detect and match distinct environmental features against Google’s extensive Street View
image repository. This process is enabled by the VPS localization model. Ultimately, the
CV algorithms determine both the 6-DoF position and orientation of the device.

3.3. AAR Navigation Assistant Component

The proposed assistant, as outlined earlier in this section, is implemented as
a smartphone-based application. As shown in Figure 1, the assistant relies on a com-
bination of hardware components (yellow boxes) and software modules (white boxes).
Standard hardware found in commercially available smartphones—such as the camera,
location service sensors (i.e., GNSS, Wi-Fi, Bluetooth, and cellular network data), mi-
crophone, speakers, and internet connectivity—is sufficient for system operation. The
camera captures visual data for CV-based registration performed by the two cloud plat-
forms, while device location sensors provide raw positioning to verify geolocated re-
sources. The microphone and speakers enable communication with BVIP. On the software
side, the assistant integrates four key modules: (i) an Al speech-to-intent/text converter,
(ii) a registration manager, (iii) a path follower, and (iv) an AAR synthesizer. Once the
assistant is launched, it starts listening to the user through the smartphone microphone.
The Al speech-to-intent/text module oversees decoding the user speech and identifying
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the intent to navigate, and, if this is the case, converting the audio request for directions
into a textual request. The latter is delivered to the registration manager.

To generate spatial guidance, user pose and reference path must be determined. The
registration manager is responsible for retrieving this information, also by involving other
components. The registration manager collects camera frames and raw location from
the location service sensors of the smartphone. Based on this raw location, the manager
continuously queries the custom cloud platform to retrieve any available image datasets or
3D reconstructed models located near the user position. The same module decides which
cloud platform—custom or Google—will handle the pose estimation, relying either on the
image-based registration engine (centimeter-level accuracy [29,30]) or the ARCore-based
registration engine (meter-level accuracy [22]). The registration manager prioritizes the
more accurate image-based system when available. In practice, if available, the custom
platform is engaged to compute the user pose via the image-based engine. If no dataset
is found nearby, the Google Cloud Platform and the ARCore-based engine take over.
This further addresses RQ.1. The reference path must also be determined. To do so, the
registration manager delivers the textual request, received from the Al speech-to-intent/text
converter and including information about the destination, to the custom cloud platform.
The latter returns the reference path computed by the path planning engine. At this point,
the registration manager ensures both the user pose and the reference path are aligned
within a consistent coordinate system. While the user’s position is continuously updated,
the reference path is computed only when explicitly requested by the user.

The path follower module then utilizes the pose and path to calculate corrective angles
that guide the user along the reference path toward the target destination. By adjusting
the heading based on these corrections, the user progressively reduces both the distance
to the path and the angular deviation from it [31]. To this end, an adapted form of the
Line-Of-Sight (LOS) path following algorithm has been considered [31]. The geometric
illustration of the LOS method adapted from [31] is reported in Figure 2. Given a path
from the user current position to the set destination, discretized as a sequence of n points
(i.e., from P; to P;), the path follower module logic can be described as a path-follower-
controller procedure repeated for every discrete time k. In addition, the realistic situation
in which the user may diverge from the reference path while navigation is considered.
The path-follower-controller procedure computes the minimum distance, named the cross-
tracking error y1 (t), between the user current position and the reference path trajectory to
find the reference point P, along the trajectory. Assuming Py as the successor of Py,
along the trajectory, the look-ahead distance Ah connecting Py, and Pjeys can be retrieved.
The correction angle ¢, formed by the linear velocity vector v and the direction connecting
the user position to Py, can be computed as follows:

‘/)c—1/7las—1/)—lpp+5_lp—¢P+arCtan(_Z(;?)_’l’ 1)

where y1(t) — 0 as t — co. It must be noted that, with respect to the z axis, ¥, is the
angle formed by the direction connecting the user position to Pj,, ¢ is the angle formed
by the linear velocity vector v, and 1, is the angle formed by the tangent line r, that is
approximated by the straight line for two successive points P, and Pjext.

Finally, the computed correction angle is passed to the AAR synthesizer, which de-
livers directional audio cues based on HRTFs. These cues follow an internal policy that
links specific steering angles, falling within predefined ranges, to spatial audio directions
(Table 1). This approach places virtual sound sources directly along the intended trajectory,
ensuring that audio cues are consistently aligned with the user’s direction of travel, thereby
reducing cognitive load and minimizing distractions from environmental noise.
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Figure 2. Geometric illustration of the LOS method, adapted from [31], with blue dots representing
the discretized path as a sequence of n points, from P; to P;.

Table 1. Relationship between correction angle ranges and turn-by-turn directional audio cues.

Correction Angle Ranges Directions
—180° < ¢, < —90° Turn left
—90° < ¢ < —15° Turn slightly left
—15° < . < +15° Go ahead
+15° < ¢ < +90° Turn slightly right
+90° < ¢ < +180° Turn right

4. System Implementation

In this section, the implementation of the system architecture is described with a focus
on the key components directly developed by the authors. These are the main components
hosted by the custom cloud platform and the AAR navigation assistant. Figure 3 depicts the
information model that regulates their functioning and guides the system implementation.
The Google Cloud Platform is not considered in this section since it is based on services
made available by Google. For further details, please refer to the “GeospatialMode” method
in the official documentation [32].

4.1. Custom Cloud Platform Implementation

The custom cloud platform has been implemented as a set of micro-services deployed
using state-of-the-art containerization technologies, namely Docker [33]. At the core there
is a backend web-service exposing a RESTful API that allows managing structured and
unstructured data and running micro-services, such as the image based-registration engine
and the path planning engine. The RESTful API has been implemented to enable com-
munication between the custom cloud platform and its components (i.e., the image-based
registration engine, the data storage, and the path planning engine) with the assistant, and
the Google Cloud Platform. In addition, the backend web service stores permanent infor-
mation using volumes provided by a Network-Attached Storage (NAS): while source files
(e.g., images and BIM models) are stored in their original format, processed information
(e.g., feature points and 3D point clouds) are stored using one database for each project.
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Figure 3. Information model of the developed AAR navigation system including the custom cloud
platform (light blue), the Google Cloud Platform (light orange), and the AAR navigation assistant
(light yellow).

The image-based registration engine has been developed as a micro-service including
the 3D reconstructor and the pose estimator. The 3D reconstructor has been developed by
implementing a SfM pipeline based on COLMAP [18] and Hierarchical Feature Network
(HF-Net) [34] libraries (Figure 3). COLMAP, combined with learned local and global
features provided by HF-Net, enables robust 3D reconstruction in the form of a sparse
point cloud to be used as a reference during the following pose estimation. The pose
estimator, instead, applies the same HF-Net combined with the Perspective-n-Point (PnP)
algorithm [35] to retrieve the device’s pose by solving correspondence between 2D image
points and 3D reconstruction points, enabling accurate camera localization within the
pre-built 3D reconstruction.

The image-based registration engine performs user tracking supported by the data
storage. It is assumed that 3D reconstructed models have been previously generated by
the 3D reconstructor and stored within the data storage as PLY files. Each pose estimation
call to the image-based registration engine provides a query image as a JPEG and location
service sensors data as a JSON document (Figure 3). The location service sensors data are
used to query the data storage for the closest 3D reconstructed model to the user (i.e., point
cloud) to be used as a reference. Once identified, the 3D reconstructed model is delivered
to the 3D reconstructor and made available to the pose estimator. The query image, which
contains visual information, is processed by the pose estimator that returns the pose of the
user as a JSON document.

The path planning engine, on the other hand, has been developed using the Unity3D
game engine (version 2022.3) as a headless micro-service (Figure 3). When the assistant
is launched, an executable Unity3D instance is initialized on a server. Unity3D has been
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selected because it embeds a physics engine that enables realistic path computation [36].
The path planning engine includes a space modeler and a pathfinder. The first one has
been implemented using the gltFast library [37] that enables space modeling based on
GLB models. GLB is the de facto standard for importing large scenes, like the ones related
to BIM models, within Unity3D game engine. The second one, instead, implements the
A* algorithm provided by the A* Pathfinding Project Pro library [38].

The path planning engine computes the reference path supported by the data storage.
Path planning calls are triggered by the registration manager of the assistant. Each call to
the path planning engine provides location service sensors data and the textual request for
direction as a JSON document (Figure 3). Location service sensors data are used to query
the data storage for the closest BIM model to the user to be used for path planning. Data
storage is responsible not only for storing BIM models as IFC files, but also for extracting
and returning the corresponding GLB files, which are more compact in size and therefore
more portable on mobile devices. Hence, the selected BIM model is provided to the path
planning engine. In particular, the space modeler oversees defining the spatial context
according to the BIM models. Also, the textual request for directions is delivered to the
space modeler to retrieve the destination. This is possible in two steps. First, the space
modeler queries the data storage for the list of all IfcSpace entities with their associated
names and GUIDs (globally unique identifiers) included in the selected BIM model. Second,
the space modeler, implementing OpenAl-Unity library for Unity3D [39], enables the search
of the destination’s GUID whose name matches the textual request for directions. At this
point, the GUID of the identified IfcSpace can be used to retrieve the destination space.
The geometric center corresponding to the filtered destination space is returned to the
pathfinder. The latter, by using A*, can compute the shortest path connecting the user
position and the destination and returns it to the registration manager of the assistant as
a list of points in JSON format. During the navigation task, this will be used as the reference
path by the path follower module included within the assistant.

4.2. AAR Navigation Assistant Implementation

The development of the proposed assistant requires a platform that supports Extended
Reality (XR). The AAR navigation assistant has been developed in Unity3D (version 2022.3)
and built as an Android application. Unity3D has been chosen for the first release to
facilitate debugging and rapid development, taking advantage of its integrated spatial
audio tools and efficient testing environment. Nevertheless, other platforms supporting XR
development (e.g., Android Native XR) will be considered for future versions to achieve
higher performance, reduced resource consumption, deeper system integration, and a more
optimized, scalable application.

Once the application is launched, the assistant is initialized, and the microphone
starts listening to the vocal request. The audio request is then delivered to the Al
speech-to-intent/text module, developed using the speech-to-text and OpenAl libraries for
Unity3D [39,40]. The vocal request is processed and, if a navigation intent is recognized,
a textual request for directions is returned to the registration manager as a JSON document.
Future studies will assess the performance of the Al speech-to-intent/text module. How-
ever, any potential latency due to the integration of OpenAl with Unity3D does not limit
the system applicability. This is because the latency occurs only at the beginning of each
vocal request for directions and does not affect navigation, as the module operates before
navigation starts.

The registration manager, once it receives a textual request for directions, starts collect-
ing images from the smartphone camera as JPEG files and location service sensor data as
a JSON document. The latter is used to query the custom cloud platform and the Google
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Cloud Platform about the existence, in the vicinity of the user location, of any 3D recon-
structed model based on custom image dataset or VPS model respectively. In the first
case, collected data is delivered to the image-based registration engine, whereas in the
second one to the ARCore-based registration engine. If both are available, the image-based
registration engine has priority. At the same time the textual request is delivered to the
custom cloud platform for path planning purposes. The registration manager receives
from the custom cloud platform a JSON document including the user pose and the refer-
ence path. The manager checks for the consistency of received data with respect to the
coordinate reference system of the assistant developed within Unity3D. The user pose,
referring to a point cloud aligned with the BIM model, is expressed in the GLB coordinate
reference system and must be converted into the Unity3D coordinate reference system. The
reference path, on the other hand, originating from a Unity3D scene is already consistent
with the assistant environment. Both the converted user pose and the reference path are
delivered to the path follower module. This module has been developed in Unity3D by
implementing using C# an adapted form of the LOS path following algorithm. Table 2
reports the pseudocode of the developed scripts and the related description. The “Main()”
function initializes the path follower by loading the reference path, welcoming the user, and
triggering the computation of the correction angle. The last action calls another function,
namely “UpdateNavigationAssistant()”, that, once it verifies that the user is being tracked,
starts and updates the computation of the correction angle. Also, this function informs the
user about a successful or failed localization and, in the first case, provides directions. The
last action calls another function, namely “GetDirections(correctionAngle)”, that provides
the user with navigation directions, given the correction angle and after a frequency check
is performed.

Table 2. Pseudocode of the path follower module along with the related description.

Pseudocode Description
Main() Initialize the path follower
{

LoadRoute() Load the reference path

PlayMessageInFrontOfCamera(“welcome to the navigation = Play a welcome message (1-m-away in front of the camera)

assistant”)

UpdateNavigationAssistant()
)

Start/update the computation of the correction angle

UpdateNavigationAssistant()
{
if (userTracked)
PlayMessageInFrontOfCamera(“localization achieved”)
correctionAngle = ComputeCorrectionAngle()
GetDirections(correctionAngle)
else
PlayMessageInFrontOfCamera(“user localization failed,
please turn around to improve”)

)

Start/update the computation of the correction angle

Check if the user is tracked

Play a success message (1-m-away in front of the camera)
Compute the correction angle

Get directions from the correction angle

Otherwise

Play a warning message (1-m-away in front of the camera)

GetDirections(correctionAngle)
{
assistantMessage = ConvertAngleToText(correctionAngle)
if (assistantMessageChanged &&
elapsedTime > messagePersistance | |
elapsedTime > repetitionInterval)
PlayMessageFromPLOS(assistantMessage)

Provide navigation directions
Convert correction angle to text
Check if the navigation message is changed and/or it is elapsed

enough time from last play

Play navigation message in tracking mode
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The AAR synthesizer, once received the correction angle ., compares it with the
angles ranges reported in Table 1 to identify the corresponding audio direction. For this
study, HRTFs have been implemented in the AAR synthesizer using the Unity Audio
Spatializer SDK [41]. This enables a spatial contextualization of turn-by-turn instructions
with cues emitted by speakers so that they appear to come from the same direction of the
followed trajectory.

5. Experiment and Result Discussions
5.1. Experiment Design

The developed assistant was tested on the university campus of Polo Monte Dago
at Universita Politecnica delle Marche in Ancona, Italy, which was used as a case study
(Figure 4a). The Polo Monte Dago campus hosts the faculties of Engineering, Agriculture,
and Sciences, distributed across several buildings comprising classrooms, offices, and
laboratories. The main building, which houses the Faculty of Engineering, labels its floors
according to their elevation above sea level: the lowest floor is called elevation 140 (140 m
above sea level), while the highest floor, located at the top of the tower, is elevation 195.
Each floor has a height of 5 m, with the faculty extending across eleven levels.

Ray-Ban
Meta
Wayfarer

(b)

Figure 4. (a) View of the university campus used as a case study, and (b) the experimental set up

including the Xiaomi 13 Pro and the Ray-Ban Meta Glasses.

The overall experiment aims to test the effectiveness of the proposed navigation
system in computing the reference path according to an audio request of the user (path
planning tests) and guiding the user accessing the main building following turn-by-turn
audio instructions (navigation tests). The experiments setup includes the smartphone
Xiaomi 13 Pro and the Ray-Ban Meta Glasses (Figure 4b). The developed assistant built as
an Android application has been installed on the selected smartphone. The Ray-Ban Meta
Glasses with embedded speakers have been connected via Bluetooth with the smartphone
for audio cues reproduction. The experiment design is based on the following assumptions:

- The proposed system aligns with the category of EOAs, whose primary function
is to support users in path planning and directional guidance, rather than obstacle
avoidance or detection. This distinguishes it from ETAs, which are designed to assist
users in safely exploring their surroundings by detecting obstacles.

- The reference path is computed prior to the start of the navigation and the envi-
ronment remains static throughout the traversal, with no new obstacles appearing
during navigation.

- The starting point is the same for all the path planning tests, since the user launches
the assistant in the same position outdoors.

- The destination point, on the other hand, corresponding to the geometric center of the
classroom assumed as a destination, varies according to it. As a result, the shortest
path connecting the user and the destinations is returned and applied as reference
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paths by the assistant to provide turn-by-turn audio instructions to the user during
navigation tasks.

- The existence of at least a path connecting the starting and the destination points is
a prerequisite for the execution of both the path planning and the navigation tests.
Hence, the existence of no paths is considered as a failure of the system.

Given these assumptions, the following sequence of tasks defines the procedure for
executing the tests:

1.  Reach the defined starting point.

2. Launch the developed navigation assistant application by a manual tap or vocally
using the Google assistant (e.g., “Hey Google, open the AAR navigation assistant”).

3. Provide an audio request for path planning (e.g., “Please, provide the directions to
reach (name of the room)”).

4. Frame the surroundings area with the smartphone camera.

5. Start the navigation following turn-by-turn audio instructions provided by the as-
sistant until reaching the destination. The application collects user positions during
navigation and measures time elapsed to reach the destination.

The first part of the experiment consists in executing path planning tests. The effective-
ness of the proposed navigation system in computing the reference path according to an
audio request of the user was evaluated. To this purpose, task no. 1-4 have been executed
for the following classrooms at elevation 140 selected as destinations: “Classroom 140/1”,
“Classroom 140/2”, “Classroom 140/3”, “Classroom 140/D3”, and “Classroom 140/4”.
Results of these tests have been reported and discussed in Section 5.3.1.

The second part of the experiment consists of executing navigation tests. The effec-
tiveness of the proposed system in guiding the user accessing the main building following
turn-by-turn audio instructions was evaluated. To this purpose, tasks no. 1-5 have been
executed with respect to just one destination, namely “Classroom 140/3”. Tests have
been executed by 20 users (10 male and 10 female) ranged in age from 24 to 64 includ-
ing undergraduate, graduate, and PhD students, researchers, and professors. Owing to
their academic roles, all participants were familiar with the testing environment. Each
user performed the test twice, both times using the proposed AAR navigation system:
first under blindfolded conditions, and then under sighted conditions to provide a bench-
mark. The blindfolded condition has been considered to assess system performance and
identify potential shortcomings before extending its applicability to BVIP. The sighted
condition, on the other hand, has been considered to provide a baseline. Results of these
tests have been reported and discussed in Section 5.3.2.

5.2. Evaluation Metrics

To assess the effectiveness of the proposed assistant, this study aims to measure its
performance by quantifying how a user, under its guidance, diverges from a reference
path. Computing trajectory similarity is a fundamental operation in movement analytics,
required for search, clustering, and classification of trajectories [42]. Among a broad range
of applications, a plethora of methods for measuring trajectory similarity has emerged.
Three key characteristics are especially useful in classifying these similarity measures: their
metric properties, trajectory granularity, and spatial and temporal reference frames [42]. Lit-
erature reports the most important and commonly used similarity measures: Dynamic Time
Warping (DTW), Edit Distance on Real sequences (EDR), Longest Common Subsequence
(LCSS), Discrete Fréchet Distance (DFD), and Continuous Fréchet Distance (CFD) [42]. For
this study, the Fréchet Distance in its continuous variant (i.e., CFD) is preferred over the
others. It has been selected to compute the maximum distance between two trajectories.
First, it is a metric that ensures high flexibility, as it evaluates spatial similarity while
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ignoring time shifts. Since this study considers human trajectories recorded at different
times and speeds, flexibility is a key requirement. Furthermore, the continuous variant
(i.e., CFD) is preferable to the discrete one (i.e., DFD) because the latter only aligns the
measured locations, which can lead to issues with non-uniform sampling. In contrast, CFD
considers continuous alignments between all points in both trajectories by interpolating
them. In this study, CFD has been computed using the Curvesimilarities Python library
(version v0.4.0a4) [43].

To carry out a detailed and informative analysis beyond the maximum divergence
provided by the CFD, it is useful to also consider average and local deviations. For this
purpose, the CFD has been complemented with the Average Continuous Fréchet Distance
(ACFD)—already established in the literature [42]—which measures the mean deviation
between two trajectories. ACFD was computed as the arithmetic mean of the minimum
perpendicular distances from each point on the user trajectory to the closest line segment
of the reference trajectory. This metric provides a robust quantification of the mean lateral
deviation between the user and reference paths over their entire spatial extent.

Finally, by applying the CFD to moving windows along the two trajectories, it becomes
possible to estimate local deviations between them. In this study, and for consistency with
the previously introduced metrics, this localized measure is referred to as the Local Contin-
uous Fréchet Distance (LCFD). Specifically, within each window, the LCFD is computed as
the minimum perpendicular distance from each point on the user trajectory to the nearest
line segment of the reference trajectory.

To gain deeper insight into the behavior of the LCFD, potential relationships between
LCFD values and the local curvature of the user trajectory were investigated. Curvature, in
this context, provides a measure of how sharply the path changes direction, which may
influence deviations from the reference trajectory. Rather than employing the classical
geometric definition of curvature based on the radius of the osculating circle—typically com-
puted from the unique circumcircle passing through three consecutive points—curvature
has been estimated using a discrete, time-aware formulation tailored to sampled trajectory
data with possibly irregular temporal resolution [44]. This choice is motivated by the
need for robustness and computational efficiency in the presence of noisy or discretely
sampled motion data, where classical differential estimators may become unstable or ill-
defined. Specifically, for each triplet of consecutive trajectory points, the angle between the
two adjacent displacement vectors was calculated, capturing the instantaneous turning
behavior of the trajectory at that location. To incorporate the temporal dimension and reflect
how quickly the direction changes, the angular difference between consecutive triplets was
divided by the corresponding time interval. This yields a measure of the temporal rate
of change of direction, which serves as a practical proxy for local curvature dynamics in
the trajectory.

Providing the aforementioned metrics to measure the effectiveness of the developed
navigation system, a methodology to answer RQ.3 is established.

5.3. Result Discussion

In this section, the results of both experiments are reported and discussed. In particular,
the results of the path planning tests are presented in Section 5.3.1, whereas the results of
the navigation tests are presented in Section 5.3.2.

5.3.1. Path Planning Tests

This section discusses the results of the path planning tests, aimed at assessing the ef-
fectiveness of the proposed navigation system in computing the reference path. A summary
of the path planning tests towards the five destinations is reported in Table 3, and Figure 5
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depicts the shortest path connecting the starting point and the destination “Classroom
140/3”, assumed as the reference path during navigation tests (Section 5.3.2). The remain-
ing reference paths to destinations “Classroom 140/1”, “Classroom 140/2”, “Classroom
140/D3”, and “Classroom 140/4” have been reported in Figure A1 (Appendix A.1). The
five classrooms can be accessed through more than one door, highlighted in orange for
each classroom (Figures 5 and Al). It must be noted that, for each pathfinding task, the
computed path crosses the door that ensures the shortest path. In the path planning tests
no. 1 and 2, the computed reference paths cross a classroom (Figure Ala,b). This may
represent a limitation in case the classroom cannot be crossed (e.g., is locked or occupied).
Future studies will try to overcome this limitation by leveraging BIM semantics to prioritize
routes along dedicated pathways. Overall, a path planning engine exploiting standard
building representations provided by BIM models avoids the need to carry out preliminary
surveys to manually define available paths, preparing the environment and wearing heavy
technological configurations to scan the environment and process collected data during
navigation tasks. Technical solutions adopted in this study make it possible by integrating
such a path planning engine with the assistant for BVIP. In addition, since reference paths
can be computed according to the building topology in real-time, any BIM model update
can be considered by the path planning engine with minimal effort. This is enabled by the
choice of modelling the space within a Unity3D headless instance based on BIM models.
This answers RQ.2. Real-time pathfinding is achieved by delegating the computation to
a path planning engine embedded within the custom cloud platform, rather than running
this computation locally within the smartphone-based assistant. The custom cloud platform
processes the request and returns a simple list of vectors. The efficiency of such a technical
solution is confirmed by computing times for the five path planning tests in the order of
tens of milliseconds (Table 3). The performance will be even higher on field applications,
since the graphic rendering, required for the experimental and debug purposes of the study,
will be disabled. This answers RQ.3.

r—

lassroom 140/3

Figure 5. Example of reference path to destination “Classroom 140/3” obtained during the path
planning test no. 1.
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Table 3. Result overview for the path planning tests.
Path Planning Test No. Destination String Path Length [m] Computing Time [ms]
1 Classroom 140/1 138.16 11
2 Classroom 140/2 126.02 11
3 Classroom 140/3 123.00 12
4 Classroom 140/D3 108.20 12
5 Classroom 140/4 131.87 14

5.3.2. Navigation Tests

Results of the navigation tests, aimed at assessing the effectiveness of the proposed
navigation system in guiding users to access the main building by following turn-by-turn
audio instructions, are reported and discussed in this section.

Tables 4 and 5 provide an overview of navigation test results conducted in blindfolded
and sighted conditions, respectively, with the latter serving as a benchmark. CFD and
ACEFD, both computed by comparing the user trajectory with the reference path, as well as
the user trajectory length and the duration of the navigation are reported. Figures 6a and 7a
refer to navigation test no. 1 in blindfolded and sighted conditions, respectively, and show
a comparison between the clockwise user trajectory (blue line with dots) and the reference
trajectory to destination “Classroom 140/3” (dashed orange line). The point on the user
trajectory where the CFD is registered is indicated (red dot). The indoor—outdoor bound-
ary, indicating the transition point between indoor and outdoor areas, is also reported
(black X). The remaining trajectory comparison charts for navigation tests no. 2-20 in
blindfolded and sighted conditions are presented in Figures A2 and A3, respectively,
(Appendix A.2). On one hand, a qualitative comparison of the trajectories in the out-
door area (above the black X) and in the indoor area (below the black X) shows that
the user’s trajectory does not exhibit noticeable patterns or discontinuities near the
boundary point (black X). This indicates that the behavior of the navigation assistant
remains stable and consistent across both indoor and outdoor environments. On the
other hand, a qualitative comparison of the trajectories in both blindfolded and sighted
conditions, compared with each other and with the reference path, does not reveal any
significant differences or patterns that can be directly attributed to one condition or
the other. In addition, a quantitative comparison of navigation performance between
blindfolded and sighted conditions was conducted using the Wilcoxon Signed-Rank
test (Table 6). The resulting p-values for CFD, ACFD, user path length, and duration
were 14.29%, 16.50%, 20.24%, and 12.31%, respectively. In all cases, the p-values ex-
ceed the commonly adopted significance threshold of 5%, indicating that no statistically
significant differences were observed between the two conditions across the evaluated
metrics. These results suggest that blindfolded users, supported by the proposed nav-
igation assistant, achieved performance comparable to sighted users, highlighting the
effectiveness of the developed system. Figures 6b and 7b, referring to navigation test
no. 1 in blindfolded and sighted conditions, respectively, present trajectory analysis based
on the curvature of the user trajectory (blue line with dots), the CFD (red point), the ACFD
(dotted green line), the LCFD (green line with crosses), and the shoulder width threshold
(dashed green line). The remaining trajectory analysis charts for navigation tests no. 2-20
in blindfolded and sighted conditions are reported in Figures A4 and A5 (Appendix A.3).
Generally, an increase in curvature is associated with a corresponding increase in LCFD.
This pattern is also observable across all the tests, suggesting a general trend that applies
to both sighted and blindfolded navigation conditions. Therefore, users in blindfolded
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conditions do not exhibit poorer performance compared to sighted users. This behav-
ior can thus be considered independent of the presence or absence of visual feedback.
It can be explained by the difficulty, sometimes encountered by users, in decoding the
difference between qualitative audio directions such as “turn slightly left/right” versus
“turn left/right”. Future studies will focus on providing audio cues that better represent
correction angles. Figures 8 and 9 present data from navigation tests in blindfolded and
sighted conditions, respectively, the results of a descriptive statistical analysis in the form
of extended boxplots including the Interquartile Range (IQR) (light blue boxplot with grey
line), whiskers (black line), median (blue line), mean (red triangle), 95% confidence inter-
vals (red dashed line), standard deviation (red dotted line), and the distribution of values
(green dots) of (a) CFD, (b) ACFD, (c) user path length, and (d) duration. Overall, the
proximity between mean and median values suggests that the distribution of the values is
approximately symmetric, with no strong skewness or outlier influence (Figures 8 and 9).
This reinforces the representativeness of the mean as a central descriptor and supports the
reliability of the reported statistical summary. Additionally, the relatively narrow boxplots
suggest that the IQR encompasses data points with limited variability, indicating that
most observations are clustered closely around the median. Additionally, the relatively
small values of both the standard deviation and the confidence interval further support
the conclusion that the dataset exhibits low overall variability. This also implies that
the estimate of the mean is both precise and reliable, reinforcing the robustness of the
observed central tendency. In blindfolded conditions, mean CFD values over 20 tests were
equal to 1.46 m, with mean ACFD equal to 0.43 m (Figure 8a,b). This finding indicates
that, except for sporadic deviations averaging 1.46 m, blindfolded users typically deviate
from the reference path by approximately 0.43 m on average, a value that remains well
within the shoulder width threshold of 0.60 m. In sighted conditions, the values are higher,
suggesting that sighted users tend to navigate more independently and approximate
the reference trajectory more loosely. As a consequence, while in blindfolded conditions
(Table 4) the ACFD values consistently remained below the shoulder width threshold in
100% of the tests; in sighted conditions (Table 5) the threshold is met in 15 out of 20 tests
(75%), indicating greater variability in user adherence to the reference path. Specifically, the
mean CFD and ACFD are 1.57 m and 0.52 m, respectively, which are approximately 0.10 m
higher than the corresponding values observed under blindfolded conditions (Figure 9a,b).
This observation is further supported by the notably shorter navigation times recorded un-
der sighted conditions compared to blindfolded ones, despite the path being of comparable
length. These results indicate that blindfolded users, who must devote greater cognitive
effort to interpret AAR messages, tend to move more slowly than sighted users when
covering the same distance. Indeed, in blindfolded conditions, a mean user path length of
125.99 m is covered in an average duration of 164.55 s (Figure 8c,d). Conversely, under
sighted conditions, a very similar mean path length of 125.51 m is completed in just
151.30 s on average—over 10 s less (Figure 9¢,d). This further highlights the impact of the
additional cognitive load required to interpret AAR messages on navigation speed in blind-
folded users. Nevertheless, and most importantly, this condition ultimately results in lower
average CFD and ACFD values compared to the sighted condition. Therefore, despite
a slower navigation pace, users under blindfolded conditions exhibit greater conformity
to the reference path compared to those navigating under sighted conditions. The results
obtained demonstrate that the effectiveness of the developed assistant remains consistent
across different tests and users. Specifically, given a reference path, multiple users followed
the turn-by-turn audio instructions provided by the proposed system with comparable
levels of divergence, path length, and navigation duration. This answers RQ.3.



Buildings 2025, 15, 3252 21 of 39

Table 4. Result overview of the navigation tests in blindfolded conditions.

Navigation Tests in Blindfolded Conditions

Test No. CFD [m] ACFD [m] User Path Length [m] Duration [s]
1 1.54 0.39 127.18 151.00
2 1.57 0.59 126.46 213.00
3 1.61 0.40 126.63 164.00
4 1.65 0.55 126.69 159.00
5 1.35 0.32 125.14 214.00
6 1.28 0.41 123.79 140.00
7 1.50 0.57 126.42 142.00
8 1.75 0.52 124.86 147.00
9 1.45 0.48 123.91 143.00
10 1.13 0.43 124.57 146.00
11 1.50 0.35 124.57 135.00
12 1.34 0.35 124.77 136.00
13 1.14 0.43 123.14 130.00
14 1.02 0.37 124.74 134.00
15 1.72 0.53 127.62 202.00
16 1.71 0.52 129.51 202.00
17 1.41 0.35 128.03 189.00
18 1.62 0.29 128.26 178.00
19 1.61 0.56 127.39 182.00
20 1.23 0.29 126.12 184.00

Table 5. Result overview of the navigation tests in sighted conditions.

Navigation Tests in Sighted Conditions

Test No. CFD [m] ACFD [m] User Path Length [m] Duration [s]
1 1.56 0.47 125.60 154.00
2 1.81 0.51 125.44 140.00
3 2.02 0.71 126.85 133.00
4 1.47 0.43 125.48 156.00
5 2.09 0.66 127.83 144.00
6 1.64 0.79 126.12 144.00
7 1.45 0.47 126.51 152.00
8 0.96 0.37 122.67 142.00
9 1.70 0.47 122.96 154.00
10 1.02 0.41 12391 147.00
11 1.75 0.55 124.10 152.00
12 1.67 0.44 123.12 158.00
13 1.65 0.51 125.74 146.00
14 1.14 0.42 124.58 154.00
15 1.05 0.38 125.74 156.00
16 1.04 0.37 125.17 155.00
17 1.74 0.59 126.33 164.00
18 2.03 0.72 127.14 160.00
19 212 0.63 128.07 164.00
20 1.45 0.42 126.76 151.00

Table 6. Comparison of navigation test results using the Wilcoxon Signed-Rank test.

Navigation Tests in Blindfolded vs. Sighted Conditions
CFD ACFD User Path Length Duration

Statistic (W) 66.00 66.50 70.00 62.50
p-value [%] 14.29 16.50 20.24 12.31
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Figure 6. Error analysis of navigation test no. 1 in blindfolded conditions. (a) Comparison between
the user trajectory (blue line with dots) and the reference trajectory to destination “Classroom 140/3”
(dashed orange line). The CFD point (red dot) and the indoor—outdoor boundary (black X) are also
indicated. (b) Trajectory analysis based on the curvature of the user trajectory (blue line with dots),
highlighting the CFD (red dot), the ACFD (dotted green line), the LCFD (green line with crosses),
and the shoulder width threshold (dashed green line).
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Figure 7. Error analysis of navigation test no. 1 in sighted conditions. (a) Comparison between the
user trajectory (blue line with dots) and the reference trajectory to destination “Classroom 140/3”
(dashed orange line). The CFD point (red dot) and the indoor—outdoor boundary (black X) are also
indicated. (b) Trajectory analysis based on the curvature of the user trajectory (blue line with dots),
highlighting the CFD (red dot), the ACFD (dotted green line), the LCFD (green line with crosses),
and the shoulder width threshold (dashed green line).
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Figure 8. Statistical analysis of navigation tests in blindfolded conditions: extended boxplots in-
cluding the IQR, whiskers, median, mean, 95% confidence intervals, standard deviation, and the
distribution of values for (a) CFD, (b) ACFD, (c) user path length, and (d) duration.
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Figure 9. Statistical analysis of navigation tests in sighted conditions: extended boxplots including
the IQR, whiskers, median, mean, 95% confidence intervals, standard deviation, and the distribution
of values for (a) CFD, (b) ACFD, (c) user path length, and (d) duration.

6. Conclusions

The evolution of navigation tools for BVIP reflects a transition from traditional me-
chanical aids (e.g., white canes) to sophisticated electronic systems that leverage sensing,
processing, and feedback technologies to improve mobility and orientation. Addressing
this gap—and the research questions outlined in Section 1—this paper introduces a novel
AAR navigation system for BVIP, expanding on work presented at the 24th International
Conference on Construction Applications of Virtual Reality (CONVR 2024). AAR tech-
nology is used to provide spatial audio guidance, seamlessly overlaying auditory cues
within the user’s real-world 3D environment to support intuitive navigation for BVIP.
This positions the proposed system not as a replacement, but as a complementary tool to
traditional mobility aids such as white canes and guide dogs. While these conventional
solutions provide localized obstacle detection and immediate tactile or behavioral feedback,
the proposed system enhances spatial awareness and extends navigational capabilities
by delivering high-level guidance toward both familiar and unfamiliar destinations. To
this end, the proposed AAR navigation system—which falls into the EOAs category—
integrates BIM and CV technologies, with the aid of device location services, to support
key functionalities: user pose tracking, reference path planning, and direction communica-
tion. Specifically, CV technologies are utilized to develop two complementary registration
engines—the image-based and ARCore-based engines—that together enable seamless user
tracking across both indoor and outdoor environments. This integration has the potential to
significantly enhance BVIP independence by eliminating the need for prior environmental
preparation, such as installing infrastructure or markers, which has traditionally been
a barrier to adoption. Notably, this preparation-free approach extends beyond user tracking
to include BIM-based path planning. In fact, the path planning engine leverages semantic
data embedded within BIM models, allowing for real-time generation of navigation paths
without requiring activities such as environmental scanning or predefined route mapping.
A basic BIM model is sufficient for this purpose, as the system does not rely on highly
detailed geometric modeling to perform path planning. Any updates to BIM models are
automatically detected and incorporated by the path planning engine to provide updated
paths. The availability of Google VPS data and BIM models no longer constitutes a limiting
factor in terms of environmental preparation. On the contrary, the growing digitalization
of the AEC sector and the built environment—through platforms such as Google VPS and
the increasing availability of BIM models for both existing and new structures—further
enhance the applicability and scalability of the system.

A limitation of the system lies in areas where neither custom image datasets nor
Street View images are available, resulting in reduced localization accuracy. However, this
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limitation is expected to diminish as global digitization progresses. Another limitation
concerns the reliability of employed CV technologies during light transitions. Although
they remain functional in low-light conditions, a drop in localization performance may
occur. Nevertheless, this is compensated by increasingly high-performing cameras avail-
able on the market at affordable prices. Finally, as the proposed solution falls within the
category of Electronic Orientation Aids (EOAs), its primary function is to support naviga-
tion by determining a path and delivering directional cues. As such, it does not address
obstacle detection, a functionality typically associated with Electronic Travel Aids (ETAs).
Therefore, to ensure comprehensive and safe navigation in real-world contexts, the system
would benefit from integration with obstacle detection technologies or complementary use
alongside traditional mobility aids—such as a white cane or guide dog—thereby enhancing
its overall applicability and safety for BVIP.

In future studies, the path planning engine will be enhanced by leveraging BIM seman-
tics to prioritize routes along dedicated indoor (e.g., hallways) and outdoor (e.g., sidewalks)
communication pathways, while avoiding unnecessary traversal through spaces like rooms
or roadways. In addition, the AAR assistant will be assessed and enhanced across various
facets and modules. First, potential latency related to the Al speech-to-intent/text module,
although it does not affect navigation as it runs prior to the process, will be assessed in
future studies. Second, the path follower module and the AAR synthesizer will be im-
proved to provide audio cues that better represent correction angles, thereby helping users
distinguish between qualitative audio directions. This would ensure a limited divergence
of navigation trajectories along curved sections. Third, future studies will focus on opti-
mizing the implementation of the AAR navigation assistant by analyzing computing times
and battery consumption. In line with this, other platforms supporting XR development
(e.g., Android Native XR) will be considered for future versions to achieve higher perfor-
mance, reduced resource consumption, deeper system integration, and a more optimized
and scalable application. Also, future studies will involve an expanded experimental
campaign encompassing a wider range of navigation scenarios, with particular attention
to indoor-outdoor transitions, to further assess the assistant’s robustness and continuity
across environmental changes. The possibility of making the system available to BVIP
will be explored in future studies to gather user feedback, support system scalability and
generalizability in real-world environments, and define appropriate fallback mechanisms.
Finally, future studies will also address data ethics considerations, particularly regarding
the collection, processing, and storage of visual and spatial data, to ensure compliance with
ethical standards and user privacy regulations.
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Appendix A.1

(©) (d)

Figure Al. Summary of the reference paths to destinations (a) “Classroom 140/1”, (b) “Classroom
140/2”, (c) “Classroom 140/D3”, and (d) “Classroom 140/4”, obtained during the path planning tests
no 2-5.
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“Classroom 140/3” (dashed orange line). The CFD point (red dot) and the indoor-outdoor boundary
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