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Abstract: To address the challenge of balancing static and dynamic strength in the engineer-
ing application of foam concrete, this study proposes a strategy to improve the static and
dynamic mechanical properties of foam concrete by synergistically adding rubber particles
and polypropylene fibers, and systematically analyzes the effects of rubber content, rubber
particle size, and fiber content on the material’s compressive strength, flexural strength,
and impact toughness. The results show that rubber enhances the dynamic strength of
foam concrete through high elastic deformation, with a maximum increase of up to 200%.
However, due to the obstruction of hydration reaction, the increase in rubber content
reduces the compressive and flexural strength of foam concrete. Meanwhile, the influence
of rubber particle size on static strength follows a parabolic trend, with the optimal overall
performance achieved at a particle size of 20-mesh, resulting in an approximately 50%
enhancement in compressive strength. The addition of fibers to form a three-dimensional
mesh structure connecting the cement matrix and rubber particles to inhibit the expansion
of cracks can effectively alleviate the deterioration of the static strength of foam concrete
caused by rubber particles. The optimal fiber content is 0.2%. In addition, the fiber can also
improve the dynamic strength of foam concrete. In addition, the mechanism behind the
synergistic improvement of static and dynamic strength by rubber and fiber was summa-
rized. Finally, the optimized proportion and the prediction formulas of static and dynamic
strength are established for the above three strength indexes, and the accuracy of the
prediction formulas can reach more than 90%.

Keywords: polypropylene fiber; rubber; foamed concrete; mechanical properties;
predictive model

1. Introduction
Foamed concrete (FC) is a typical low-impedance, lightweight porous material with

good mechanical properties [1,2]. Because of its lightness, high rigidity, energy absorp-
tion, and other excellent characteristics [3,4], it has been successfully used in civil engi-
neering, including roadbed backfill [5–7], bridge abutment backfill [8,9], tunnel seismic
isolation [10,11], etc. In the context of engineering applications, the mechanical properties
of foam concrete are of primary importance. In many cases, such as the roadbed backfill,
the unconfined compressive strength is a crucial factor [12–14]. A reference to China’s
standard [15] shows that the compressive strength of the foam–lightweight soil mixture
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utilized as a roadbed material must be no less than 0.8 MPa. In recent years, foamed
concretes have found promisingly applications in anti-impact situations [16], e.g., roadside
guardrails and downhill buffers. Under this condition, the dynamic mechanical properties
of foam concrete should also be focused on [17–19].

Achieving a balance in static and dynamic strength is a problem worth considering.
Many experiments found that the stiffness of traditional FC is relatively large, making
it prone to damage under impact loading [20–23]. To improve the dynamic strength of
foamed concretes, many scholars chose to add rubber to foamed concretes to improve the
damping ratio and impact properties [24]. Bayraktar et al. [25] investigated the effect of
cement and waste tire rubber as aggregates for FC. The results showed that the FC made
with rubbers has energy absorption and abrasion resistance, which reduces its strength
loss rate during load cycles. Eltayeb et al. [26] noticed that the relative sliding between
the rubber particles and the cement matrix helps to absorb some of the energy to reduce
the impact energy spreading and improve the impact resistance of the FC. In addition,
rubber can enhance the toughness and water resistance of conventional FC [27,28]. In
addition, the rubbers are usually recycled from scrap tires, realizing waste re-utilization [29].
Therefore, adding rubbers to foamed concrete is a good way to enhance the product’s
impact resistance. However, rubber reduces the static strength of FC, such as flexural and
compressive strength, because it decreases the cement content and hinders the bonding
between cementitious matrixes [30].

On the other hand, studies have shown that the addition of fibers to foam concrete can
effectively improve static strength. Examples include basalt fiber [31], polyamid fiber [32],
hybrid natural fiber [33], and polypropylene fiber [34]. Among the various types of fibers,
polypropylene fibers exhibited good performance in connecting the cemented matrix in
foamed concretes [34–36]. For example, increasing fiber content was found to be capable
of improving flexural toughness and controlling shrinkage cracking [37]. Polypropylene
fibers are commonly used additives in FC [38–40]. Cai et al. [41] found that the moderate
addition of polypropylene fiber increased the strength of foam concrete. The compressive
and flexural strengths of products with fibers increased by 60.7% and 71.2%, respectively,
compared to the FC without fibers. In addition, it was found that an optimum fiber content
exists for fiber–foam concrete in terms of strength [42].

In summary, rubbers can improve the impact resistance of FC but reduce the static
strength. The problem may be relieved slightly by adding fiber, which improves the
static strength of the FC and slows down the development of cracks in the FC. Therefore,
we hypothesize that the process of adding the polypropylene fiber and rubbers should
consider both the static and dynamic strength. However, few studies concentrate on the
strength characteristics of FC with the simultaneous addition of rubber particles and fibers.
Ma et al. [43] incorporated both rubber particles and fibers into foam concrete, but his
research focused on the dynamic elastic modulus of the material and failed to explain in
detail the interaction mechanism between rubber and fiber inside the specimen. More
importantly, there is a lack of a reasonable method for optimizing the rubber and fiber
contents with consideration of the requirement of static or dynamic strength.

In order to find a way to improve the static and dynamic mechanical properties of
foamed concrete simultaneously, based on the improvement effect of rubber and polypropy-
lene fiber on foam concrete obtained from existing studies, this paper proposed the simul-
taneous addition of rubber and fiber to improve the static and dynamic strength of foam
concrete. Based on the static and dynamic strength test and microscopic test, this paper
firstly analyzed the effect of rubber content, rubber particle size, and fiber content on foam
concrete, and then revealed the synergistic improvement mechanism of rubber and fiber
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on the static and dynamic strength; finally, this paper proposed the optimized proportion
design and strength prediction formula of different ingredients.

2. Materials and Methods
2.1. Materials

As a kind of porous lightweight concrete material, polypropylene fiber-modified
rubber foamed concrete (PFRFC) is composed of cement, water, rubber, fiber and foam.
These raw materials are introduced first.

Ordinary Portland cement, P.O 42.5, is used in the experiment. The rubbers used in
this experiment to prepare the specimens are recycled from the waste tires. The whole
tire was first crushed into 10-mesh (2 mm) rubber particles, and then ground into 20-mesh
(0.85 mm), 60-mesh (0.25 mm) and 100-mesh (0.15 mm) rubber powders, respectively, as
shown in Figure 1. This measure is adopted to investigate the influence of the rubber
particles size on the strength of PFRFC. The rubber particle size range was selected based
on the following consideration: 10–100-mesh is a common range for the industrial grinding
of tires, covering typical products from coarse particles to fine powders, which is in line
with the actual recycling process. Studies [30,44] found that 20–60-mesh particles are widely
used for modifying concrete to balance the interfacial effect with mechanical properties.
Fiber is a type of material, composed mainly of continuous or discontinuous filaments.
Polypropylene fibers with a length of around 6 mm are used in the experiment. The main
technical parameters for cement, rubber, and fiber are shown in Table 1. The preparation of
foam involves the dilution of the foam agent and water in a 1:40 ratio to obtain the diluted
liquid. Then, the diluted liquid is converted into stable foam using a foaming machine.
Finally, the foam with a density of 50 kg/m3 is acquired.
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Table 1. Main technical parameters and mechanical properties of materials.

Parameters Value

Cement
Density (kg/m3) 3100
Standard consistency (%) 28.5
3d Compressive strength (MPa) >17
28d Compressive strength (MPa) >42.5
3d Flexural strength (MPa) >3.5
28d Flexural strength (MPa) >6.5
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Table 1. Cont.

Parameters Value

Rubber
Density (kg/m3) 750
Heating loss (%) 0.62
Ash (%) 8.75
Fe (%) 0.029

Polypropylene fibers
Tensile strength (MPa) >486
Modulus of elasticity (GPa) >4.8
Fiber diameter (µm) 18–48
Fiber density (kg/m3) 9.1

2.2. Mix Design of the Experiment Specimen

The mixing design of PFRFC was carried out with reference to the Chinese Stan-
dard [43]. The calculation steps are as follows:

Firstly, Equations (1)–(4) can be employed to calculate the quantity of cement, rubber,
and water.

Mc =
1
ρc

+
b•1

(1 − α)•1000
+

α

ρr(1 − α)
(1)

Mr =
α

1 − α
•Mc (2)

Mw =
b•Mc

(1 − α)
(3)

RL = Mc + Mr + Mw (4)

where Mc, Mr, and Mw are the mass of cement, rubber, and water per admixture volume
of cement slurry, respectively; RL is the wet density of the cement slurry (kg/m3); b is
the water-to-solid ratio (the ratio of water mass to the mass of all solid material); α is the
percentage of rubber in the cement slurry relative to the mass of cement; ρc is the density of
cement; and ρr is the density of the rubber particle. To satisfy the demand of flow value
(160~190 mm), the b value in this paper was set as 0.45.

Thereafter, the amount of the foam was calculated using Equation (5). The raw material
requirement was recalculated for the single specimen after the addition of foam, and the
mass of the cement, rubber, and water in a single specimen after the addition of the foam
was calculated using Equation (6).

λ =
RL − R f w

RL − ρa
(5)

mi = Mi(1 − λ) (6)

where Rfw is the target wet density (kg/m3); λ is the bubble rate of the foamed concrete;
ρa is the density of the foam (kg/m3); mi represents mc, mr and mw respectively; and Mi

represents Mc, Mr and Mw respectively. Finally, the amount of fiber was calculated by
Equation (7); Daneti et al. [37] pointed out that fiber content greater than 0.3% leads to
agglomeration, which results in lower strength and affects casting density. Thus, a lower
content was chosen to balance dispersion and reinforcement. Therefore, polypropylene
fiber contents of 0.1%, 0.2%, and 0.3% were selected.

m f = µ•ρ f (7)
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where m f is the mass of fiber per admixture volume of cement slurry (kg/m3); µ is the
volumetric fiber content; and ρf is the density of the fiber (kg/m3).

The effect of sample density has been investigated by many studies [45–47]. In these,
the increase in density improved the strength of foamed concretes. Accordingly, the influ-
ence of density to the PFRFC is not detailed any more in this study. In this paper, a common
wet density value of 700 kg/m3 is selected as a representative sample. Correspondingly,
the mass of each material per admixture volume of cement slurry for different rubber and
fiber contents is shown in Table 2.

Table 2. Raw material compositions per volume of cement slurry (per m3).

Case
Rubber
Content

(%)

Rubber
(kg)

Cement
(kg)

Water
(kg)

Foam
(kg)

Fiber
Content

by Volume
(%)

1 0 0 460.545 207.245 32.210
0

0.1
0.2
0.3

2 5 22.441 438.303 207.990 29.810
3 10 46.220 415.980 207.990 29.810
4 15 69.455 393.577 208.364 28.603
5 20 92.773 371.094 208.740 27.393

2.3. Preparation of the Specimen

The process of specimen preparation is presented in Figure 2. First, molds with
different shapes are prepared according to different test types. In order to ensure the
integrity of the specimen, molds should be coated with engine oil. Secondly, the foam
agent and water are diluted at the volumetric ratio of 1:40, and only those foams with a
density error of less than 5% (665–735 kg/m3) can be used. Next, it is necessary to mix
the cement, water, rubber, and fiber together to obtain the basic paste. Then, the foamed
concrete slurry is produced by adding preformed foam to a basic paste. Once the slurry
has been obtained, it is necessary to determine its flow value. Only slurries with a flow
value between 160 mm and 190 mm can be poured into the molds. The molds poured
with the slurries are attached with cling wraps and put into the standard curing room for
7 days; the curing temperature is 20 ± 2 ◦C and relative humidity is more than 95%. Then,
the demolding process is conducted. Finally, the specimens are weighed and put into the
sealed bags in the standard curing room until 28 days from the start of the experiment.
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2.4. Test Methods

In this section, the specimens are customized according to the different test conditions.
Three variables are investigated in the experiment: rubber content (5%, 10%, 15%, 20%),
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rubber particle size (100-mesh, 60-mesh, 20-mesh, 1–3 mm), and fiber content (0%, 0.1%,
0.2%, 0.3%). The cases to be tested are depicted in Table 3, with a total of 4*4*4 = 64
experiments. At the same time, ordinary FC, prepared by mixing only cement, foam and
water, is set as the control group. The wet density of the control specimen is also 700 kg/m3.

Table 3. Experimental cases.

Case No. Rubber Content (%) Rubber Size Fiber Content (%)

1–4

5

100-mesh

0, 0.1, 0.2, 0.3
5–8 60-mesh

9–12 20-mesh
13–16 1–3 mm
17–20

10

100-mesh

0, 0.1, 0.2, 0.3
21–24 60-mesh
25–28 20-mesh
29–32 1–3 mm
33–36

15

100-mesh

0, 0.1, 0.2, 0.3
37–40 60-mesh
41–44 20-mesh
43–48 1–3 mm
49–52

20

100-mesh

0, 0.1, 0.2, 0.3
53–56 60-mesh
57–60 20-mesh
61–64 1–3 mm

2.5. Static and Dynamic Strength Tests

The static and dynamic strength tests include compressive strength tests, flexural
strength tests, and impact resistance tests, as shown in Figure 3.
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The compressive strength test is conducted according to the Chinese Standard [48].
In the test process, three specimens are selected for parallel tests with the size of
100 × 100 × 100. During each test, one specimen is placed under the metal plate of the
universal testing machine, which uniformly applies pressure to the specimen at a speed of
1.5 kN/s until the specimen exhibits failure. At the same time, the load corresponding to
the specimen failure is recorded and the compressive strength is measured by averaging
the three load values.

The flexural strength refers to the ultimate failure stress per unit area of a material
under a bending moment. The flexural strength test is conducted according to the Chinese
Standard [48]. In the test process, three prismatic specimens with flat surfaces are selected
for three tests and the size is set to 100 × 100 × 400 mm. The four-point bending test is
adopted, and the intervals of the upper and lower pivots are set to 300 mm and 100 mm,
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respectively. During each test, the universal testing machine is used to uniformly apply
pressure to the specimen at a speed of 1.5 kN/s until specimen failure. At the same time,
the load corresponding to the specimen failure is recorded and the flexural strength is
measured by averaging the three load values.

The impact resistance of foamed concretes can be measured by the number of dynamic
blows [49]. For this purpose, we designed customized equipment for examining impact
resistance to quantify the dynamic mechanical properties of PFRFC. The equipment consists
of a control panel, a magnetic suction device, a steel ball, and a protective shell. During the
test, a 2 kg steel ball is placed by a magnetic suction device at a height of 1 m above the
specimen and released by the control panel to fall freely onto the surface of the specimen.
The impact energy of the specimen can be calculated as 19.6 J according to Equation (8),
where E is the impact energy (J); m is the mass of the steel ball (kg); g is the acceleration
of gravity (m/s2); and h is the height of fall (m). The surface and bottom of the specimen
were checked for cracks after each fall. The number of times the first specimen cracked was
recorded, the number of falls was utilized to indicate the impact resistance of the specimen,
and three repetitions of the specimen were recorded to give an average result.

E = m · g · h (8)

2.6. Scanning Electron Microscope (SEM) Test

Moreover, the Scanning Electron Microscope (SEM) can be employed to ascertain
the air–void structure of PFRFC [50]. Subsequently, the specimens were reduced to a
10 mm × 10 mm × 10 mm cube and placed into a dispensing bottle containing anhydrous
ethanol. Five images of each specimen were captured from disparate positions using
an electron microscope, with the pores magnified 30–45 times. These images were then
processed using Image Pro Plus 6.0 to determine the average diameter. The software was
capable of calculating the pore size, area, and pore distribution of foamed concrete.

3. Results and Discussion
In this section, the effects of rubber content, rubber particle size, and fiber content

on the static and dynamic strength of PFRFC will be discussed separately. Then, the
mechanism of two additives is explained through a micro-level perspective.

3.1. Analysis of Static Strength
3.1.1. Effect of Rubber Content

Taking the rubber content as the variable, the compressive strength and the flexural
strength of PFRFC are shown in Figure 4. Compared with the control group, the strength of
PFRFC reduced a lot. The compressive strength exhibited a decreasing tendency in relation
to the rubber content. The decrease rate ranges from 4.6% to 29.1%, relating to the particle
size of rubbers. Similarly, flexural strength demonstrated a gradual decline with the rising
rubber content shown in Figure 4, including a decrease rate changing between 2.0% and
27.7%. Therefore, the incorporation of rubber particles resulted in a reduction in the static
strength of PFRFC, and the reduction rate also increased with the rubber content.
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After adding only rubber particles to the concrete, Wang et al. [30] and Ji et al. [51]
also observed a decrease in the compressive strength of the specimens with increasing
rubber content, which was similar to the decrease in the compressive strength of PFRFC.
This decrease can be attributed to the reduction in cement content. As concluded by
Liu et al. [23], the hydration of cement plays a primary role in determining the strength
of foamed concrete. However, when the rubber is used to replace a some cement, the
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strength of foamed concrete is inevitably reduced, particularly when the percentage of
rubber content is high. In addition, the rubber might slightly destabilize the foam [52], and
the gas-inducing attributes of the rubber particles enhance the porosity of the PFRFC [44,53],
which also causes a reduction in the overall compactness and strength of the specimen. A
comparison of existing studies [44,53] revealed that the strength of PFRFC is greater than
that of rubber-only FC, which is due to the fact that the dispersion of fibers helps the rubber
particles to be uniformly distributed in the matrix and avoids localized weakened regions
caused by the aggregation of rubber particles. Consequently, the results of the static tests
demonstrate that, in the field of PFRFC engineering, if the primary concern is the static
strength, the content of rubber particles should not exceed 15%.

Under the action of pressure, the top surface of the specimen shows a concave trend
and thus the bottom is stretched, as shown in Figure 5a. Because of the low tensile strength
of PFRFC, cracks mostly appear from the bottom and develop through the whole specimen.
At the same time, the rubber inside the specimen can produce large deformation to absorb
the upper load and thus yield shear failure of the cement matrix on both sides of the rubber,
resulting in oblique cracks, as shown in Figure 5b. The deformation of the rubber is greater
than the deformation of the cementitious matrix in the FC. Due to the inconsistency of the
deformations, the contact position between the rubber and the cementitious matrix in the
specimen is prone to turn into a fracture [54].
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3.1.2. Effect of Rubber Particles Size

The variations in compressive and flexural strength as a function of rubber particle
size are illustrated in Figure 6. The subplots in Figure 6 show that, in most cases, the
compressive and flexural strength firstly increase to the peak values and then decrease
with the increasing rubber particle size. The peak strength occurs with the 20-mesh rubber
particle size. The strength descends in order 20-mesh > 10-mesh > 60-mesh > 100-mesh
for most experiments. However, some special cases, as seen in Figure 6a, for example,
do not present the peak values. It is most likely that the experimental discreteness or the
range of rubber particle size (100- to 10-mesh) did not allow the sample with 5% rubber
content to reach peak strength. More evidence for the optimal rubber size 20-mesh is
found in Ma et al. [43], whose experiments also proved that the rubber particle size has an
optimal value.
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The additional rubber, although not directly involved in the hydration reaction, assists
in the formation of a solid skeleton, and larger particles are more likely to form a stable
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skeleton. Consequently, when the particles size is between 100- and 20-mesh, the strength
increases with growth in the size of particles [53]. However, the incorporation of exces-
sively large particles into the cementitious materials may result in a rubber-based polymer,
which could potentially impede the interconnection of the cementitious materials, thereby
reducing the overall strength of the material [54]. This leads to a decrease in compressive
and flexural strength. In addition to determining the optimal rubber particle size, this
study contrasted the compressive strength results from prior research [54] involving exclu-
sive rubber particle incorporation, in which the compressive strength of foamed concrete
containing 40-mesh rubber particles was measured at merely 1 MPa under a 10% rubber
content condition, which is 55–60% lower than that of 20-mesh PFRFC and 52–55% lower
than its 60-mesh counterpart. It shows that fibers can mitigate the strength decrease caused
by a large particle size, which is due to the fact that fibers improve matrix compactness
by filling the undesirable pores of large rubber particles due to their irregular shape and
enhancing the slurry fluidity.

3.1.3. Effect of Polypropylene Fiber Content

Figure 7 shows the variation in the static strength of PFRFC with different polypropy-
lene fiber contents. Compared to the samples with rubber but no fiber (fiber content 0%), the
addition of fiber achieved an improvement in the compressive and flexural strength. This
finding is consistent with the results of previous studies [34–36]. However, the compressive
and flexural strengths with the rubber and fiber are still lower than those of the control
group (both no rubber and fiber). Figure 7 shows that as the fiber content increases from
0% to 0.3%, the compressive strength of PFRFC shows a roughly parabolic trend, with the
maximum compressive and flexural strength obtained at 0.2% fiber content. More specifi-
cally, under the same conditions of rubber particle size and content, the compressive and
flexural strengths of PFRFC with 0.2% fiber content exhibit an increase of approximately
1.2% to 15% and 1.3% to 27.5%, respectively, in comparison to those with 0.1% and 0.3%
fiber content. Correspondingly, Figure 7 revealed that the 0.2% fiber content was optimal
in terms of static strength.

As can be seen in Figure 7, the compressive and flexural strength of PFRFC increased
when the fiber content increased from 0% to 0.2%, indicating that the fibers were added
to mitigate the static strength deterioration induced by the rubber. On the one hand, the
polypropylene fibers are capable of improving toughness and hindering the development
of cracks. On the other hand, the fibers show strong adsorption to the cement matrix [37,38],
which can improve the poor adhesion interface between the rubber and cement matrix.

However, when the fiber content continues to increase, it becomes difficult to uni-
formly disperse fibers during specimen preparation, and aggregated fibers may cause stress
concentrations when the specimen is subjected to stress. A study by Ren et al. [55] revealed
that the agglomeration of fibers resulting from poor dispersion can lead to a weakening of
the bond between the fibers and the hydration products. This caused a decrease in the com-
pressive strength of PFRFC with 0.3% fiber content in Figure 7, indicating that excessively
high fiber content will weaken the strength mitigation mechanism of polypropylene fibers
in terms of rubber. Therefore, the fiber content should be controlled at around 0.2%.

The failure form in flexural strength in products containing fibers is illustrated in
Figure 8. By comparing the cracks with those without fibers, it can be seen that only one
fine crack extends from the bottom to the top after fiber blending. This is due to the fact that
specimens containing fibers are effective in hindering the development of cracks. When
subjected to loading, cracks are created by disrupting the three-dimensional mesh structure
consisting of fibers and cement matrix. This structure has the ability to increase toughness
and retard cracking. Then, following the occurrence of cracking, the cement matrix at both
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ends of the cracks can still be connected by the fibers. Therefore, the development of the
cracks needs to overcome the friction between fibers and the cement matrix, as well as the
tensile resistance of the fibers themselves.
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3.2. Analysis of Dynamic Strength
3.2.1. Effect of Rubber Content

The experimental results of the impact resistance test with different rubber contents
are shown in Figure 9. As can be found, the impact resistance increases linearly with the
rubber content. Compared to the control FC specimens, when the rubber content increased
from 5% to 20%, the number of maximum ball drops increased by 85%, 121%, 164%, and
200%, respectively. This proves that the impact resistance of FC mixed with rubber particles
is obviously enhanced. Eltayeb et al. [26] also arrived at similar experimental results and
attributed the improvement in impact resistance to the ability of the rubber particles to
absorb impact energy due to their ductility. Moreover, when the specimens were subjected
to an impact load, the relative sliding between the rubber particles and the cement matrix
helped to absorb some of the energy, reducing the spread of impact energy and increasing
the impact resistance of the PFRFC.
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In addition, the experiments show that when the rubber content is small, the iron ball
will rebound to a certain height after falling onto the specimen. However, when the rubber
content is relatively large, the iron ball falling onto the specimen basically does not rebound.
This indicates that the addition of rubber particles improves the plasticity of PFRFC and
increases its deformation capacity. Therefore, PFRFC has significant energy absorption and
shock absorption effects.

3.2.2. Effect of Rubber Particles Size

Figure 10 presents the impact resistance of the specimen under different rubber particle
sizes. In general cases, PFRFC with 20-mesh rubber particle size achieves the best impact
resistance, followed by 1–3 mm, 60-mesh, and 100-mesh varieties, and the maximum
increase can be 1.75-fold. The unit allowable deformation capacity of 20-mesh rubber
particles is stronger, and the distribution is relatively more uniform. As the rubber particle
size increases, the non-uniform contact area rises further, and the frictional resistance
between the cement and the rubber increases [56,57]. This results in an increase in the
damping ratio of the PFRFC. However, when the particle size increases to 10-mesh, the
uneven contact area between rubber particles and cementitious materials is too large. The
rubber particles tend to separate from the cementitious material during impact loading,
and the reduction in friction between the cement and the rubber leads to a decrease in
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the damping ratio of the PFRFC. Consequently, the impact resistance of the specimen
is reduced.
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3.2.3. Effect of Polypropylene Fiber Content

Figure 11 shows the changes in the impact resistance of PFRFC specimen with different
fiber contents. It can be found that the impact resistance of PFRFC increases approximately
linearly with the increase in fiber content. The impact resistance of the fiber-containing
specimens is 1.1–2.7 times higher than that of the control group, which is consistent with
the findings of Niu et al. [58]. This illustrates that the addition of fiber could effectively
improve the impact resistance of PFRFC.



Buildings 2025, 15, 1663 16 of 26

Buildings 2025, 15, x FOR PEER REVIEW 16 of 26 

effect of the fibers. This outcome substantiates the assertion that fibers possess the capacity 
for enhanced toughness and delayed cracking. 

0.1 0.2 0.3

12

16

20

24

28

N
um

be
r 

of
 Im

pa
ct

 F
ai

lu
re

Fiber content (%)

10-mesh 20-mesh
60-mesh 100-mesh
Control Group

0.1 0.2 0.3
12

16

20

24

28

32

N
um

be
r 

of
 Im

pa
ct

 F
ai

lu
re

Fiber content (%)

10-mesh 20-mesh
60-mesh 100-mesh
Control Group

(a) 5% rubber content (b) 10% rubber content

0.1 0.2 0.3
12

16

20

24

28

32

36

40

N
um

be
r o

f I
m

pa
ct

 F
ai

lu
re

Fiber content (%)

10-mesh 20-mesh
60-mesh 100-mesh
Control Group

0.1 0.2 0.3
12

16

20

24

28

32

36

40

44
N

um
be

r 
of

 Im
pa

ct
 F

ai
lu

re

Fiber content (%)

 10-mesh 20-mesh
 60-mesh 100-mesh
 Control Group

(c) 15% rubber content (d) 20% rubber content

Figure 11. Changes in the impact resistance with different fiber contents.

0.1 0.2 0.3
0

5

10

15

20

N
um

be
r 

of
 in

te
rv

al
s

Fiber Content

 5% Rubber
 10% Rubber
 15% Rubber
 20% Rubber

Control Group: 0

0.1 0.2 0.3
0

5

10

15

20

N
um

be
r 

of
 in

te
rv

al
s

Fiber Content

 5% Rubber
 10% Rubber
 15% Rubber
 20% Rubber

Control Group: 0

(a) 100-mesh (b) 20-mesh

Figure 12. The number of dropped balls between the first crack and specimen failure. 

Figure 11. Changes in the impact resistance with different fiber contents.

The number of dropped balls between the first crack in the specimen and the speci-
men’s failure are presented in Figure 12 to further illustrate the role of fiber. This figure
demonstrates that the control specimen fractures immediately upon the emergence of a
crack, whereas the specimen containing fibers persists after cracking due to the connecting
effect of the fibers. This outcome substantiates the assertion that fibers possess the capacity
for enhanced toughness and delayed cracking.

Figure 13 shows that the specimens without fibers were easily fractured and had
large crack widths, while the PFRFC specimens containing 10% 20-mesh rubber and 0.3%
polypropylene fibers cracked only slightly or continuously after impact damage, indicating
that the toughness of the fibers played an important connecting role. The fibers exhibit
favorable tensile characteristics and are distributed in a three-dimensional mesh within the
PFRFC structure. This configuration enables the fibers to effectively absorb impact energy
and impede the propagation of cracks.
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Figure 11. Changes in the impact resistance with different fiber contents. 
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3.3. Micro-Structures

The SEM results are presented in Figures 14 and 15. As illustrated in Figure 14a,b,
pore structures are formed around the rubber particles, and the arrangement of these
pore structures is uniform as the rubber particle size increases. As the rubber particle size
increases from 60-mesh to 20-mesh, it can be postulated that the rubber particles form a
backbone structure, thereby enhancing the strength of the pore structure. Consequently,
the compressive and flexural strengths of the material also increase. However, when the
particle size increased to 10-mesh, shown in Figure 14c, the uniformity of the pore structure
diminished, and micro-cracks emerged around the larger rubber particles. This suggests
that at this stage, the bonding of the cement matrix was impeded by the substantial dimen-
sions of the rubber particles, which subsequently resulted in a decline in the compressive
and flexural strengths. Furthermore, micro-cracks at the bond interface between rubber
and cement are evident in Figure 14c. The presence of micro-cracks resulted in a reduction
in the static strength of the material. Conversely, an increase in rubber content resulted in
an enhancement of the dynamic strength of PFRFC due to its capacity to absorb energy.
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Figure 15 demonstrates the microscopic scan results of PFRFC with varying fiber
content. As the fiber content increased, the micropores surrounding the fibers grew in
number and size, and the distribution of the pore structure became irregular. This phe-
nomenon, known as the “agglomeration” of fiber, affects the pore structure and explains
the observed decrease in the static strength of PFRFC as the fiber content increased from
0.2% to 0.3%. This provides an explanation for the observed decrease in the static strength
of PFRFC when the fiber content is increased from 0.2% to 0.3%. Meanwhile, as observed
in Figure 15a, the fibers assume a three-dimensional mesh structure along the direction of
the blue dashed line. This structure enhances the integrity of the foam concrete material,
improves the damping ratio of the foam concrete material under dynamic loading, and acts
as a vibration damper, thereby increasing the impact resistance of PFRFC with increasing
fiber content.

3.4. Optimized Component Proportion Design

After investigating the effect of rubber content, rubber particle size, and fiber content,
this section aims to recommend an optimal mix design to provide references for various
practical conditions. First, the rubber particle size should be 20-mesh as it corresponds
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to the optimal compressive and flexural strength, as well as the best impact resistance.
Then, the fiber content should be 0.2% as it provides the best static strength. Continuously
increasing the fiber content may reduce the workability [59] and increase the cost, although
it can improve the impact resistance. Finally, the key point is the rubber content as it can
decrease static strength but increase impact resistance. Under this condition, we used the
“balance zone method” proposed by the authors [1] to satisfy various conditions. As shown
in Figure 16, we plot the compressive or flexural strength versus the impact resistance in one
figure. These strengths are divided into three ranges based on the rubber content: 5–12%
for static strength, 12–17% for balance, and 17–20% for impact resistance. The classification
is based on the intersection of the curves, from left to right, according to the amount of
rubber content.
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Figure 16. Rubber content–static strength–dynamic strength relationship.

When the rubber content is in the “static strength” range (5% to 12%), the 28d compres-
sive strength of PFRFC is greater than or equal to 2.25 MPa, while the 28d flexural strength
is greater than or equal to 0.7 MPa. If the engineering project has a requirement for static
strength but not for impact performance, it is recommended that the rubber content be
maintained within the strength range. When the rubber content is in the impact resistance
range, the static strength of PFRFC is slightly lower but the impact resistance performs very
well. A rubber content larger than 17% is recommended when the PFRFC is used in some
impact conditions like anti-collision guardrail.

In the case of a project that requires the 28d compressive strength of PFRFC to be
greater than or equal to 2 MPa and the 28d flexural strength of PFRFC to be greater
than or equal to 0.6 MPa, and where there are high requirements for vibration-damping
performance, it would be advisable to select the rubber mixing amount of PFRFC from the
balance range (12–17%).

3.5. Prediction of Static and Dynamic Strength

According to the experimental results, we can establish the prediction model of the
compressive and flexural strength, as well as the impact resistance. The prediction equations
for compressive strength, flexural strength, and impact resistance of PFRFC are established
as shown in Equations (9)–(11).

fc = −4.981xr + 7.0677
( xs

100

)2
− 5.1779

( xs

100

)
− 5.36522(100 · x f )

2

+2.10194
(

100 · x f

)
+ 2.6235

(9)
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fct = −1.134xr − 9.0511
( xs

100

)2
+ 0.356

( xs

100

)
− 2.2264(1000 · x f )

2

+0.94493
(

100 · x f

)
+ 0.66515

(10)

NPFRFC = 9.30(10 · xr)− 8.1418
( xs

100

)2
+ 2.7091

( xs

100

)
+5.0833

(
1000 · x f

)
+ 6.1386

(11)

where fc and fct are the 28d compressive and flexural strength of PFRFC (MPa), respectively;
NPFRFC is the number of impact failures of PFRFC; and xr, xs, and x f are the values of
rubber content (%), rubber particles size (mesh) and fiber content (%), respectively.

Accordingly, the predictions versus the experimental values regarding compressive
strength, flexural strength, and impact resistance are shown in Figure 17. These empirical
equations correspond to coefficients of determination (R2) of 92.648%, 90.311%, and 96.174%,
respectively, indicating that the prediction equations are all able to fit more than 90%
of experimental data and thus demonstrating a high degree of reliability. It should be
mentioned that these empirical equations are only available for the PFRFC with a wet
density of 700 kg/m3. For other densities, these equations may need to multiply an
augment coefficient, but this requires more experimental data and is out of the scope of
this paper.
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3.6. Mechanism of Synergistic Improvement of Mechanical Strength Between Rubber and Fiber

(1) Mitigation of adverse effects on static strength
As shown in Figure 18a, the rubber particles reduce the cementitious material content

after replacing part of the cement and hinder the effective encapsulation of the cement
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paste, resulting in the existence of micro-cracks and pores in the interface zone, which leads
to the decrease in compressive and flexural strength with the increase in rubber content.
The fibers are uniformly dispersed to form a mesh skeleton, bridging the cement matrix and
rubber particles, limiting the deformation of the matrix, and hindering the initial formation
and expansion of cracks, as shown in Figure 18b. However, when there are too many fibers,
the dispersion becomes poor and agglomeration phenomena occur at this time, reducing
the static strength.
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(2) Synergistic enhancement of dynamic strength
Under the impact load, the rubber particle undergoes large deformation, absorbs

energy through plastic deformation, and reduces the transfer of impact energy to the
matrix, and at the same time, the interface between the rubber and the matrix slides relative
to each other to produce friction, consumes energy, and reduces the propagation speed of
the impact stress wave, improving the damping ratio of the material. When an initial crack
appears in the matrix, the fiber spans both sides of the crack and resists crack extension
through its own tensile strength (>486 MPa) and interfacial friction, so that the specimen
can still withstand multiple impacts after cracking. In addition, the three-dimensional
distribution of fibers forms an “energy-consuming network”, which acts synergistically
with the deformation energy dissipation of the rubber to prolong the damage process and
increase the number of impacts, as shown in Figure 19.
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4. Conclusions
This paper systematically investigated the effects of the rubber content, rubber particle

size, and fiber content on the static and dynamic strength of foam concrete. We explains
the improvement mechanism of rubber and fiber on the mechanical properties of foam
concrete. The main conclusions are as follows:

1. With the increase in the rubber content, the compressive strength and flexural strength
of PFRFC are reduced, while the impact resistance is increased. However, the compres-
sive and flexural strengths of PFRFC are improved by adding polypropylene fibers.

2. With the increase in the rubber particle size, the compressive strength, flexural strength,
and impact resistance of PFRFC show parabolic trends. Fibers can fill the undesirable
pores of large rubber particles to mitigate the strength decrease caused by large particle
size. Overall, the optimal indicators are obtained with 20-mesh rubber particles.

3. Since too many fibers cause aggregation phenomena, the compressive and flexural
strengths of PFRFC show a parabolic trend as the content of polypropylene fibers
increases and reaches the optimum value at a content of 0.2%. The impact resistance
of PFRFC increases with increasing fiber addition due to the formation of a three-
dimensional mesh structure at the microscopic level.

4. The mechanism of synergistic improvement of mechanical properties of PFRFC by
rubber particles and polypropylene fibers was determined. Fibers mitigate the de-
crease in compressive and flexural strength caused by the rubber particles, and the
rubber particles and fibers work together to enhance the impact resistance of PFRFC.

5. Based on the experimental data, we established the optimized proportion and predic-
tion formulas of static and dynamic strength based on rubber content, rubber particle
size, and fiber content. The R2 proves that the relevance was high and the prediction
formulas were accurate.

This paper makes a significant contribution to the field by proposing the simultaneous
addition of rubber particles and polypropylene fibers to enhance the static and dynamic
strength of foam concrete. It also reveals the strengthening mechanism of static and
dynamic strength by rubber content, rubber particle size, and fiber content.

However, there are still some limitations in this study, such as the absence of research
on the mechanical behavior of PFRFC under multiaxial static–dynamic loading, and the
absence of research related to the durability of PFRFC; this may be used a potential direction
for future research or field tests.
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