
Citation: Wang, S.; Zhang, Q.; Gao, P.;

Wang, C.; An, J.; Wang, L. Coupled

Impact of Points of Interest and

Thermal Environment on Outdoor

Human Behavior Using Visual

Intelligence. Buildings 2024, 14, 2978.

https://doi.org/10.3390/buildings

14092978

Academic Editors: Zhibin Wu and

Romina Rissetto

Received: 4 August 2024

Revised: 9 September 2024

Accepted: 13 September 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Coupled Impact of Points of Interest and Thermal Environment
on Outdoor Human Behavior Using Visual Intelligence
Shiliang Wang 1,* , Qun Zhang 1, Peng Gao 2, Chenglin Wang 1, Jiang An 3 and Lan Wang 1

1 Faculty of Architecture, Xi’an University of Architecture and Technology, Xi’an 710064, China;
zhangqun@xauat.edu.cn (Q.Z.); wcl@xauat.edu.cn (C.W.); wanglan@xauat.edu.cn (L.W.)

2 Faculty of Engineering and Information Technology, University of Pécs, 7622 Pécs, Hungary; rfde6z@tr.pte.hu
3 School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;

anjiang@stumail.neu.edu.cn
* Correspondence: shiliangwang@xauat.edu.cn

Abstract: Although it is well established that thermal environments significantly influence travel
behavior, the synergistic effects of points of interest (POI) and thermal environments on behavior
remain unclear. This study developed a vision-based outdoor evaluation model aimed at uncovering
the driving factors behind human behavior in outdoor spaces. First, Yolo v5 and questionnaires were
employed to obtain crowd activity intensity and preference levels. Subsequently, target detection and
clustering algorithms were used to derive variables such as POI attractiveness and POI distance, while
a validated environmental simulator was utilized to simulate outdoor thermal comfort distributions
across different times. Finally, multiple classification models were compared to establish the mapping
relationships between POI, thermal environment variables, and crowd preferences, with SHAP
analysis used to examine the contribution of each variable. The results indicate that XGBoost achieved
the best predictive performance (accuracy = 0.95), with shadow proportion (|SHAP| = 0.24) and POI
distance (|SHAP| = 0.12) identified as the most significant factors influencing crowd preferences.
By extrapolation, this classification model can provide valuable insights for optimizing community
environments and enhancing vitality in areas with similar climatic and cultural contexts.

Keywords: outdoor human behavior; points of interest; thermal environment; visual intelligence;
machine learning

1. Introduction
1.1. Background

The layout of points of interest (POIs) [1] and the outdoor thermal environment [2]
are key factors influencing residents’ behavior patterns in open spaces. At the community
scale, POIs include seating areas, fitness equipment, playgrounds, landscape sculptures,
plazas, lawns, garbage dumps, and parking sheds [3]. The outdoor thermal environment
encompasses natural factors such as sunlight, wind, temperature, and humidity, which
directly affect residents’ physical and psychological perceptions and their experience of
thermal comfort. Various outdoor activity spaces in residential areas meet the needs for
aesthetic appeal, safety, comfort, and convenience. The combination of attractive POIs and
high-quality outdoor thermal environments can effectively encourage residents, especially
the elderly and children, to engage more in outdoor activities, promoting physical and men-
tal health and enhancing social interactions [4]. However, due to the complexity of urban
spatial structures, the uncertainty of crowd preferences, and the lack of high spatiotemporal
resolution data on activity intensity [5], revealing the multidimensional driving factors and
nonlinear dynamics of outdoor human behavior presents significant challenges.
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1.2. Literature Review
1.2.1. The Impact of Points of Interest on Human Behavior

POIs are locations marked on maps that are interesting or relevant, such as parks,
bars, cafes, community centers, and bookstores [6]. These sites are widely used in geo-
graphic information science and computational urban science to study human behavior,
representing destinations for work, travel, leisure, and navigation [7]. Scholars investigate
how people utilize these POIs [8] and how they evolve with technological and cultural
changes [9]. Studies also focus on the impact of POI activities on innovation [10], disease
transmission [11], economic activity [12], and crime [13]. Additionally, the lack of ameni-
ties and its potential to worsen overall outcomes or exacerbate urban inequality is a key
research focus [14]. These studies highlight the importance of POIs in urban life, providing
valuable insights for urban planning and public policy, and helping to enhance residents’
quality of life and promote sustainable development.

At the community scale, the layout of POIs significantly influences residents’ behavior
patterns. First, the reasonable layout of POIs can significantly increase residents’ frequency
of outdoor activities [15]. For example, seating areas and fitness equipment placed at the
center of residential areas or at crossroads can attract more residents to rest and exercise.
Second, the diversity and distribution of POIs attract different groups of people [16,17].
Elderly individuals tend to choose quiet, well-equipped resting areas, while younger
people and children prefer active spaces like fitness equipment and playgrounds. Therefore,
diverse configurations of POIs can meet the needs of different groups, promoting cross-
generational interaction and communication [18]. Finally, the functionality and convenience
of POIs are also crucial factors affecting residents’ behavior.

Although there is a well-established research framework for POIs at the urban scale,
there is still a lack of studies on the identification of POIs and their impact on human
behavior at the community level. The main reason is the lack of methods that can detect
POIs and human behavior at high spatiotemporal resolution. Currently, deep learning
methods contribute to scene understanding and knowledge discovery at the urban and
community levels [19–22]. The YOLO (You Only Look Once) model, a popular target
detection algorithm in recent years, excels in recognizing and tracking human behavior,
behavioral trajectories, and target detection [23–25]. YOLO efficiently identifies and locates
objects in images, such as pedestrians, vehicles, animals, and items. In behavior trajectory
analysis, the YOLO model can continuously track individuals in videos and record their
movement paths. In this work, we use YOLO v5 to identify and cluster potential POIs and
detect the number and intensity of pedestrian activities, providing a basis for identifying
high-resolution pedestrian dynamics.

1.2.2. The Impact of the Thermal Environment on Human Behavior

The thermal environment of residential areas is a crucial indicator of urban livabil-
ity [26], significantly influencing residents’ willingness and frequency to engage in various
outdoor activities. In recent years, public attention to outdoor thermal comfort has in-
creased. Outdoor thermal comfort is affected not only by microclimatic conditions but also
by subjective factors such as personal experience, expectations, and exposure duration,
which can be assessed using indices like PET or UTCI [27,28]. Studies have shown that
most residents prefer shaded areas to enhance comfort. A study in Sweden found that resi-
dents tend to choose cooler environments with lower solar radiation, moderate humidity,
and higher wind speeds, i.e., shaded areas [29]. Human thermal comfort is influenced by
various heat adaptation behaviors, such as seeking shade or wearing sun hats to cope with
high temperatures, as commonly seen in Singapore [30].

The correlation between outdoor thermal comfort and space occupancy has been con-
firmed by numerous studies [31,32]. Under high-temperature conditions, people tend to
choose shaded areas to avoid heat. Research further reveals the differences in thermal com-
fort between shaded and non-shaded areas, significantly impacting residents’ attendance
rates [33]. Rising temperatures and increased solar radiation led to a decrease in outdoor
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activity, directly correlating with attendance rates and thermal environment conditions.
Studies have found that the elderly prefer to cool off in shaded areas with high canopy
coverage [34]. This behavior pattern of seeking shade in high-temperature environments
has been validated by multiple studies, emphasizing the importance of strategically placing
shaded areas to enhance thermal comfort in outdoor space design.

Despite extensive research on thermal comfort and human behavior, current studies
have not effectively classified and labeled the diversity of outdoor activities, including
factors such as activity type, time, age, and gender. Additionally, existing research has not
revealed the synergistic effect of POI spatial location and thermal environment, limiting the
understanding and optimization of human behavior responses in complex environments.
Previous studies have demonstrated the ability of deep learning and machine learning to
capture nonlinear dynamics and interactions [35,36], showing potential in uncovering the
mechanisms by which POIs and the thermal environment influence human behavior.

1.3. Research Objective

Although existing studies have extensively explored the impact of POI on human
behavior at the urban scale, research at the community scale remains insufficient, partic-
ularly in identifying POIs with high spatiotemporal resolution and their specific effects
on residents’ behavior. Current studies have not adequately classified and annotated the
diversity of outdoor activities, lacking detailed analysis of behavior across different activity
types, times, age groups, and genders. Furthermore, the synergistic effects of POI spatial
distribution and thermal environments on human behavior have not been thoroughly
investigated, limiting our understanding of human behavior response mechanisms in
complex environments. We assumed a synergy between POI distribution and thermal com-
fort, influencing behavior, and that these behaviors remain consistent despite short-term
weather changes.

To address the gaps in current research, this study aims to develop a data-driven
framework based on visual intelligence to comprehensively describe the impact of POI
and thermal environment characteristics on crowd dynamics in outdoor open spaces at the
community scale. (1) By employing high spatiotemporal resolution identification methods,
the study accurately captures POIs and their specific effects on resident behavior. (2) The
research utilizes a machine learning classification model to provide detailed categorization
and annotation of the diversity of outdoor activities, including behavior characteristics
across different activity types, times, age groups, and genders. (3) The study further
explores the synergistic effects of POI spatial layout and thermal environment on human
behavior using interpretable machine learning, revealing the response mechanisms of
human behavior in complex environments. These findings offer empirical support and
theoretical guidance for optimizing outdoor space design in communities, providing
valuable insights for similar studies and practices in regions with comparable climates.

2. Methods
2.1. Research Workflow

This study integrates popular visual intelligence models, thermal comfort simulations,
and machine learning methods to establish a technical framework that provides insights
into the driving forces behind human behavior at a community-level high resolution. This
study follows the steps outlined below: First, human behavior recognition and preference
evaluation are conducted using Yolov5 and deep learning techniques to statistically ana-
lyze summer residential area crowd activities, constructing high-resolution spatiotemporal
behavior models. By combining survey data and crowd statistics, we establish crowd prefer-
ence grading labels through weighted processing. Second, we fine-tuned the Yolov5 model
to precisely detect POIs like landscape nodes and vending points, enhancing detection
accuracy in community settings. Third, thermal environment simulation and validation are
performed using Ladybug to simulate the community microclimate, collecting key environ-
mental parameters (e.g., SR, SVF, MRT). Thermal comfort simulations were validated with
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field measurements, ensuring accuracy and credibility. Finally, machine learning modeling
involves training a classification model with POI and thermal environment characteristics
as input variables and crowd preference grades as output. The trained model is then spa-
tially extrapolated to predict the outdoor environmental quality of the entire community.
The technical roadmap is illustrated in Figure 1.
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Figure 1. Overview of the research workflow and methodology.

2.2. Study Site

Xi’an, the capital of Shaanxi province, is the largest and most urbanized city in Western
China (34◦16′ N 108◦54′ E/34.267◦ N 108.9◦ E). Xi’an has a warm temperate semi-humid
continental monsoon climate. The community selected for this study is located in the
Yanta District of Xi’an, bordered by the North Third Ring Road to the south and Yanxiang
Road to the east (Figure 2). This community comprises 2463 households with a registered
population of 5847 residents.

2.3. Human Behavior Recognition and Preference Evaluation
2.3.1. Data Collection of Human Behavior

In this study, our primary task was to obtain data on the distribution of community
activities during weekdays and weekends and to analyze their behavioral characteristics
and patterns.

To achieve this, the community was divided into six areas, with volunteers moving at
a constant speed within these zones. Equipped with action cameras mounted on helmets,
capturing a 270◦ field of view, the volunteers collected data from 7:00 a.m. to 8:00 p.m.. The
cameras took one photo per second, recording coordinates and time. In total, 4694 valid
images were collected, each annotated with location, time, and activity details.

2.3.2. Human Behavior Recognition

The objective of this section was to accurately detect individuals, sports equipment,
faint segmentation lines, and leisure seating in images, and to classify the detected individ-
uals by gender and age range.

We trained YOLOv5 on an annotated dataset to develop a model for detecting individ-
uals and POIs in images (Figure 3). After training, the model was applied to unannotated
photos for automatic detection and precise localization. For each detected individual,
features such as color, texture, and deep features from CNNs were extracted from the
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bounding box. These features were then used to train classifiers that predicted the gender
(male, female) and age range (child, young adult, middle-aged, elderly) of the individuals,
ensuring diversity and balance through manually annotated data.
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2.3.3. Preference Evaluation

To quantitatively assess and classify the environmental comfort of the measured grid
areas, this study designed and implemented an evaluation system combining comprehen-
sive questionnaire surveys and weighted crowd statistics.

This system covered 536 simulated grid points, with hourly random sampling of
60 points, collecting a total of 780 rating questionnaires over 13 daylight hours. The
questionnaires focused on participants’ subjective perceptions in three main dimensions:
perceived temperature comfort, shadow coverage perception, and POI attractiveness. Si-
multaneously, the questionnaire evaluations were weighted with statistical data identified
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by YOLOv5, including the total number of active individuals, their dwell time, and fre-
quency of appearance, to assess crowd preferences in the grid areas. The final scores were
normalized to ensure consistency and comparability, and the grid areas were classified
into four levels: “Excellent” (top 25%), “Good” (25–50%), “Average” (50–75%), and “Poor”
(bottom 25%). These crowd preference levels will serve as the prediction target for the
subsequent classification model.

2.4. POI Target Detection

The primary objective of this study was to achieve accurate identification and classifica-
tion of POIs in residential environments by leveraging manual annotation and fine-tuning a
deep learning model. We assume that the influence of POI attractiveness on crowd behavior
is consistent across similar urban spaces. Additionally, the study aimed to analyze the
distribution of these POIs and assess their impact on community dynamics, particularly by
measuring their attractiveness to the crowd.

To accomplish this, we first collected 259 images featuring various POIs, such as
playgrounds, fitness facilities, garbage dumps, landscape sculptures, and lawn squares,
and manually annotated each image to clearly indicate the location and category of each
POI. After annotation, we split the dataset into a training set and a test set in an 80/20 ratio.
The data were assumed to follow the IID assumption, allowing reliable spatial extrapolation
of the machine learning model across the community.

We fine-tuned the YOLOv5 model, an efficient object detection algorithm, by adjusting
the input size, updating anchor values, and optimizing hyperparameters to enhance its
accuracy in detecting specific POIs. This fine-tuning process leveraged the annotated
images to improve detection precision.

To further analyze the distribution of POIs, we employed clustering algorithms, specif-
ically the K-means algorithm, to group the POIs into six categories: activity areas (red),
resting areas (blue), landscape areas (green), commercial areas (orange), parking areas
(yellow), and negative areas (purple). Features were extracted from each POI image to
serve as inputs for the clustering algorithm. Based on survey results and actual conditions,
we assigned weights to each POI category to reflect their attractiveness to the crowd. We
then calculated the average distance from each POI to others, categorizing these distances
as positive or negative. These calculated distances were subsequently used as input features
for the following classification model.

2.5. Thermal Environment Simulation and Validation
2.5.1. Numerical Simulation of Thermal Environment

This study aimed to simulate the microclimate environment using the Grasshopper
platform integrated with Ladybug Tools. The simulation was designed to capture the
spatial heterogeneity and its impact on the microclimate within the study area.

Meteorological data were obtained from the open-source Xi’an Station (570360_CSWD).
The simulation period was set from June 13 to June 30, with hourly data recorded and
daily averages calculated for analysis. The study area was divided into 536 grid units, each
measuring 8 m by 8 m, with the center point of each grid serving as the survey reference
point. Data were collected daily from 7:00 a.m. to 8:00 p.m., over a span of 13 h. The
simulated objects include sky view factor (SVF), shadow percentage (SP), mean radiant
temperature (MRT), solar radiation (SR), Universal Thermal Climate Index (UTCI), etc.

2.5.2. Validation of Thermal Environment Simulation

To validate the accuracy of the numerical simulation data for the thermal environment,
this study conducted on-site measurements at selected locations within the community.

Eight representative and diverse measurement points were chosen, covering various
surface types and spatial usage attributes. High-precision equipment, including solar
radiometers, WBGT heat index meters, dry bulb thermometers, black globe thermometers,
and hygrometers, was used to collect data continuously from 7:00 a.m. to 8:00 p.m. daily
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from 13 June to 30 June 2024, recording hourly microclimate parameters. The collected data
underwent cleaning and statistical analysis before being compared with the simulation
results. Based on these comparisons, the model was calibrated and optimized as needed to
improve simulation accuracy.

2.6. Machine Learning Modeling

The purpose of developing the machine learning classification model in this study
was to understand the relationship between spatial heterogeneity and environmental
behavior in residential areas. By using this model, the study aimed to identify how
different environmental features, such as POIs and thermal conditions, influence crowd
behavior and preferences. Additionally, the use of SHAP (SHapley Additive exPlanations)
was intended to provide clear insights into the contributions of each feature to the model’s
predictions, helping to pinpoint the most influential factors.

Each survey point considered 11 characteristic indicators, including grid number
(GN), average distance to POIs (PD), average distance to negative POIs (NPD), sky view
factor (SVF), shadow percentage (SP), MRT, SR, UTCI, WBGT, black globe temperature
(TG), and time period (t). These indicators collectively formed a dataset that described the
spatial microclimate and spatiotemporal characteristics. The description of the indicators
is shown in Table 1. We began by conducting a comprehensive statistical analysis of the
11 feature indicators across 536 grid units, with each unit recording hourly data over 13 h,
resulting in 6968 records. The dataset was rigorously preprocessed to remove null and
anomalous data, ensuring high data quality. For the classification labels, we adopted a
sampling strategy, selecting 60 samples per hour from the 536 grids, totaling 780 samples.
After this, we performed correlation analysis and feature selection to construct the initial
dataset for analysis.

Table 1. Indicators definition.

Indicator Abbreviation Definition

Grid number GN Identifies the grid unit of each survey point for
data location and classification.

Average distance to POIs PD Measures the average distance from the survey
point to points of interest, reflecting accessibility.

Average distance to negative
POIs NPD Measures the average distance to negative POIs,

indicating potential environmental drawbacks.

Sky view factor SVF Represents the openness of the area, affecting
sunlight exposure and heat dissipation.

Shadow percentage SP Indicates the proportion of shadow coverage,
reflecting shading conditions.

Mean Radiant Temperature MRT Evaluates the combined effect of radiation and
ambient temperature on thermal comfort.

Solar Radiation SR Measures the intensity of solar radiation,
influencing surface temperature and comfort.

Universal Thermal Climate
Index UTCI Assesses thermal comfort considering

temperature, humidity, wind, and radiation.

Wet Bulb Globe Temperature WBGT Gauges heat stress by combining temperature,
humidity, wind speed, and solar radiation.

Black globe temperature TG Measures combined radiative heat, indicating
overall heat environment intensity.

Time period t Specifies the time frame of data collection for
analyzing temporal variations in microclimate.
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We compared various machine learning models, including decision trees, random
forests, support vector machines, k-nearest neighbors, logistic regression, and XGBoost,
to develop a robust classification model that explores the relationship between spatial
heterogeneity and environmental behavior. The performance of each model was evaluated
using an independent test set and 10-fold cross-validation to ensure reliability.

To further understand the model mechanism, we employed SHAP to assess the key
feature contributions in the XGBoost model. SHAP values provided an interpretable
method to understand each feature’s impact on the model’s predictions, helping us identify
the most important features in the decision-making process. Finally, based on the optimal
model, we conducted comprehensive classification predictions and assigned evaluation
values to the remaining grid points.

3. Results
3.1. Human Behavior Analysis Results

The YOLOv5 model’s output was analyzed hourly to reveal the spatiotemporal distri-
bution of community activities, providing a basis for constructing behavior activity pattern
models. After 150 iterations of training on a diverse dataset that includes various scenes
and lighting conditions, the model achieved a mean average precision (mAP) of 82.3%, a
precision of 87.1%, and a recall of 75.8%. Compared with the traditional YOLOv4 model,
YOLOv5 showed a 4.5% improvement in gender recognition accuracy and a 3.8% increase
in age recognition accuracy. Additionally, this study explores the challenges of maintaining
high accuracy in large-scale crowds and proposes an improved non-maximum suppression
(NMS) algorithm to reduce false positives. The analysis (Figure 4) indicates that community
activity peaks between 17:00 and 19:00, when the sun’s angle is lower, resulting in shaded
spaces, reduced solar radiation, and lower temperatures. This time period sees a significant
increase in activities, particularly among elderly individuals and children. The presence
of children during this time is likely linked to the end of school hours and their proximity
to playgrounds and recreational POIs, while elderly individuals may be drawn to shaded
resting areas and fitness equipment.
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A second activity peak occurs before 9:00 a.m., primarily involving elderly residents
engaging in morning exercises near fitness-related POIs. Children’s activity is minimal
during this time, reflecting school schedules and the lack of child-friendly POIs in use. From
noon to 4:00 p.m., activities significantly decrease due to high temperatures and intense
solar radiation, with fewer than 10 people typically active, including a small number of
children. The lowest activity level occurs between 12:00 and 13:00, suggesting a need for
shaded areas or other climate-sensitive POIs to encourage activity during hotter periods.

Overall, gender and age analysis show higher participation among females, with
elderly individuals being the most active group, particularly in the early morning and
late afternoon. These patterns highlight the importance of designing community spaces
that cater to the specific needs of different demographic groups. For example, placing
child-friendly POIs in shaded areas and providing accessible resting spots for the elderly
can enhance activity levels and overall community engagement.

3.2. POI Clustering Results

By conducting K-means clustering analysis on the POIs detected by YOLOv5, we
revealed the non-homogeneity and significant clustering characteristics of POIs’ influence
on crowd behavior. We identified 81 POIs and classified them into six categories (Figure 5).
The real scenes of all POIs are shown in Figure A1. We conducted crowd behavior statistics
for each category, with results presented in Figure 6. Specifically, landscape nodes and
activity areas showed high crowd attraction, with longer average stay times and higher
frequencies of occurrence, indicating that these spaces are well-designed or fully functional,
effectively promoting crowd gathering and interaction. Landscape nodes and activity areas
mainly include plazas and playgrounds, where the elderly tend to rest and chat in plazas
with seating, while children prefer outdoor play spaces like slides.

In contrast, resting areas exhibited lower attractiveness, with shorter average stay times
and lower frequencies of occurrence, suggesting that these areas’ design and functionality
need further optimization. Generally, areas near garbage dumps, parking sheds, and
roadways are less attractive due to noise, pollution, or safety hazards.

3.3. Thermal Environment Simulation Results

Based on the site microclimate data simulation results, a heat map was generated
(Figure 7), visually demonstrating the spatial distribution patterns of the microclimate. The
time series simulation results are shown in Figures A2 and A3. These simulation data serve
as the raw input for the machine learning model evaluation, laying the foundation for
quantifying the relationship between the thermal environment and resident behavior and
optimizing activity area layouts. The heat map clearly reveals the trends of key indicators
such as temperature, radiation, and thermal comfort across different areas, providing an
important basis for further analysis and optimization.

3.4. Thermal Environment Simulation Validation Results

Figure 8 shows the measured results. The measurements focused on five key micro-
climate indicators: solar radiation, WBGT heat index, dry bulb temperature, black globe
temperature, and relative humidity. A comparison between the measured and simulated
data revealed good agreement for most periods, although the measured values of solar
radiation and relative humidity in the afternoon (after 15:00) were lower, possibly due to
cloud cover, haze, and actual obstructions.

Solar radiation varied significantly between different survey points, with the great-
est differences observed during the peak periods in the morning and early afternoon
(9:00–10:00, 13:00–14:00), reaching up to 362 W/m2. The black globe temperature also
showed significant spatial differences in the morning. The microclimate indicators fol-
lowed a typical diurnal pattern: solar radiation and temperature rose significantly from
9:00 a.m., peaked around 12:00 p.m., and then declined, with relative humidity reaching
its lowest point at noon and gradually increasing until it dropped rapidly after 4:00 p.m.
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Based on this, the period from 10:00 a.m. to 4:00 p.m. was defined as the high-temperature
period with poor thermal comfort, aligning with previous spatiotemporal analysis of
crowd activities.

In summary, the simulation results from Ladybug in this study demonstrated high reli-
ability and closely matched the measured data, providing a solid foundation for subsequent
machine learning modeling.
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3.5. Machine Learning Model Performance

During the feature data preprocessing stage, the selection of key features is crucial
for model performance. Through correlation assessment (Figure 9a), we identified strong
correlations between SR, SP, and the rating levels, which were retained as core features.
Although SVF showed a weak correlation with the rating levels, its significant impact on
thermal comfort made it an important auxiliary feature. PD and NPD, despite having
low independent correlation, might provide additional information in the comprehensive
model. Given the computational dependencies and redundancies among TG, WBGT, and
UTCI, MRT was selected as the representative thermal environment indicator. Ultimately,
SP, SR, PD, SVF, and MRT were chosen as the key feature sets for the model.
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We examined the distribution of machine learning variables to detect biases and
outliers in the data, understand the numerical range, and determine appropriate data
preprocessing strategies. The results are shown in Figure 9b, where outliers were removed
based on the distribution. Secondly, due to significant differences in data values, normal-
ization was necessary. We found that SP was the least normally distributed, while PD and
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SVF were closer to a normal distribution. Additionally, SR and MRT exhibited a bimodal
distribution. Ultimately, we chose an ensemble learning method to effectively handle these
non-normal distribution scenarios.

The 10-fold cross-validation process was employed to ensure that the models
(Figure 9c) were evaluated for their consistency and generalizability across different sub-
sets of the data. This process helps to minimize overfitting and ensures that the model’s
performance is robust when applied to new, unseen data. Model evaluation results demon-
strated that Random Forest and XGBoost models performed excellently in terms of data
processing and prediction accuracy. Most models reached their peak performance at
the 8th iteration, followed by a slight decline, possibly due to data characteristics or
model overfitting/underfitting. Considering all factors, XGBoost was selected as the final
model (accuracy = 0.95) and further optimized to ensure the accuracy of environmental
friendliness predictions.

The SHAP analysis was used to evaluate the key feature contributions of the XGBoost
model. Figure 9d shows that SP (|SHAP| = 0.24) and PD (|SHAP| = 0.12) are the
most critical features. The SHAP plot for SP illustrates its bidirectional regulatory effect
on resident activity behavior, while the SHAP plot for PD reveals the varying impacts
of distance on behavior preferences. Through model predictions, each grid point was
assigned a crowd preference level label. The aggregated results formed a community crowd
preference distribution map (Figure 10), providing scientific evidence for site optimization
design and community planning. Optimizing spatial structures, especially with designs
targeting the needs of the elderly and children, can significantly enhance space utilization
and resident activity participation, thereby improving the overall quality of life and vitality
of the community.
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4. Discussion
4.1. Crowd Behavior Analysis

Residents’ activities in community open spaces exhibit significant spontaneity, driven
by their own needs and external conditions rather than occurring randomly. Residents
show preferential selection for locations that meet their activity requirements (Figure 11).
Specifically, temperature and POIs significantly influence residents’ activity decisions.
During high temperature periods, residents avoid sun-exposed areas, while in cooler early
mornings and late afternoons, the frequency and duration of activities increase significantly.
Landscape nodes and activity areas (such as playgrounds and plazas) attract more residents,
especially the elderly and children.
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Using machine learning techniques to deeply explore the relationship between res-
idents’ behavior and environmental performance and to predict outdoor comfort zones
holds substantial research value and practical significance. While previous research typi-
cally applied the Yolo model for facial detection [37] or indoor people counting [38], we
extended its use to detect both people and POIs in outdoor residential environments. This
extension allowed us to integrate POI detection with high-resolution thermal comfort
analysis, providing a more comprehensive understanding of how spatial factors and hu-
man activity influence thermal comfort in outdoor spaces. This innovative use of the Yolo
model bridges the gap between traditional indoor-focused analyses and the complexities
of outdoor environments.

Machine learning can extract patterns of association between residents’ activities and
environmental factors (including temperature and POIs) from large datasets, leading to
more accurate predictions and assessments of the environmental performance of different
outdoor spaces at various times. Previous studies have reported prediction accuracies
for outdoor thermal comfort in similar climate zones using ensemble learning algorithms
ranging from 0.5325 to 0.9313 [39]. In this study, by incorporating POI indicators, we
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achieved a prediction accuracy of 0.95, representing an improvement of approximately
2.0% to 43.9%. This accuracy is comparable to the R2 = 0.960 reported by previous studies
using the best deep learning models [40], which require significantly more computational
resources. Additionally, our findings confirmed that shading is the most critical factor
influencing crowd preferences, aligning with conclusions from prior research [41]. The
discrepancies may arise from differences in data collection timing and frequency, feature
selection and processing, algorithm hyperparameter settings, and model training and
validation methods. This provides scientific evidence for urban planners and designers
to optimize the design of community open spaces, offering residents a more comfortable
and convenient outdoor activity environment. Therefore, this study aims to reveal the link
between residents’ behavior and environmental performance through machine learning,
providing new perspectives and approaches for optimizing outdoor spaces.

4.2. Community Environment Optimization

Based on the environmental friendliness levels and feature importance analysis pre-
dicted by the XGBoost model, this study formulated targeted spatial optimization strategies
aimed at enhancing the utilization efficiency of community spaces and improving residents’
quality of life, with particular attention to the special needs of vulnerable groups such as
the elderly and children.

The optimization measures include increasing the number of trees and installing
shade structures, such as canopies, in areas with high solar radiation (SR) to mitigate
the negative impact on residents’ activities. Solar radiation is a major factor affecting
the thermal environment, and shade structures can effectively reduce surface and air
temperature, thereby lowering the radiative heat load in the area. Trees not only absorb and
reflect a portion of solar radiation through their leaves but also release moisture through
transpiration, further cooling the air and improving the local microclimate’s comfort.

In areas with low Sky View Factor (SVF), the study suggests adjusting the spatial
layout to improve ventilation conditions. Low SVF indicates that longwave radiation from
the ground is blocked by buildings or vegetation, making it difficult for heat to dissipate,
which increases the Mean Radiant Temperature (MRT). By redesigning the spatial layout in
these areas, such as increasing open spaces or introducing ventilation corridors, airflow
can be enhanced, promoting effective heat dissipation and reducing MRT, thus improving
thermal comfort.

Regarding the optimization of Points of Interest (POI), the study recommends placing
children’s play areas and fitness facilities in shaded zones while designating areas with
poor climatic conditions as negative functional nodes, such as parking lots and garbage
dumps. Children and high-intensity activity participants are more sensitive to thermal
environments, so placing these functions in areas with lower heat loads can significantly
improve their thermal comfort experience. Functions with lower thermal environment
requirements, such as parking lots, can be located in areas with poorer thermal conditions,
thereby minimizing the negative impact on the overall thermal environment.

Particularly in the optimization of the average distance (PD), the study explored the
coupling effect between residents’ needs and the thermal environment. PD represents the
distance from residents’ living areas to public functional nodes, which is closely related to
residents’ activity frequency and behavior patterns. In hot climates, long exposure to high-
temperature environments significantly increases the human body’s heat load, potentially
leading to heat stress and discomfort, especially among vulnerable groups. Therefore,
by designating areas with favorable climatic conditions (e.g., moderately temperate and
well-shaded areas) as positive space nodes, optimizing path design and node layout, and
reducing the PD between these nodes and residential areas, the time residents spend
exposed to unfavorable thermal environments can be minimized. This reduces the risk of
heat stress, enhances the efficiency of community space use, and improves residents’ quality
of life. Through this approach, the spatial layout not only meets functional needs but also
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fully considers the combined impact of the thermal environment on human health and
behavior, achieving effective coupling between human needs and the thermal environment.

4.3. Research Contributions and Limitations

The theoretical contributions of this study include the following points: Firstly, by
introducing the concept of spatial heterogeneity, it deepens the understanding of the
complexity of environmental behavior and constructs a theoretical framework for space-
behavior interaction. Secondly, by utilizing machine learning methods, it quantifies the
relationship between spatial features (including POIs and thermal environments) and
behavior patterns, providing new quantitative analysis tools for environmental behavior
research. Lastly, by integrating climate models and community conditions, it reveals the
important role of microclimate factors in regulating resident behavior, filling a gap in
the field.

On a practical level, the outdoor environmental comfort map created in this study
can visually identify areas needing improvement to optimize outdoor spaces and meet
individual needs for diverse urban activities. For example, adjusting building layouts to
increase summer shade coverage, optimizing walking paths to improve space accessibility,
and reasonably planning open spaces to reduce the negative impact of the sky view factor
on crowd activities. These strategies not only enhance residents’ activity experience but
also promote the sustainable development of the community. Additionally, the technical
methods used in this study provide a reference path for similar research, applicable to
urban renewal, humanistic care, safety, and commercial value aspects.

We further analyzed the environmental benefits and potential risks associated with
this study. On one hand, optimizing outdoor space layout can promote residents’ health,
enhance community vitality, and achieve energy savings and emissions reduction. Ra-
tional space layout and shading design can reduce the use of air conditioning and other
cooling devices, thereby lowering energy consumption and greenhouse gas emissions,
while also attracting more residents to participate in outdoor activities and strengthening
community cohesion.

On the other hand, we examined the potential risks of space optimization, including
the balance between financial investment and cost-effectiveness, as well as the impact on
the existing ecological environment. We emphasize that any spatial modifications require
comprehensive environmental impact assessments to ensure sustainability. Additionally,
the acceptance of the modification plans by residents is crucial; without broad support, the
implementation may face challenges or even lead to social conflicts. Therefore, evaluating
public acceptance is also a key aspect of this study.

Despite achieving certain results, this study has limitations. Firstly, the research
data are primarily based on summer activity behavior; future studies could incorporate
data from different seasons to comprehensively assess the impact of seasonal changes
on resident behavior. In addition, we chose sunny days as the typical weather condition
to ensure consistency with the meteorological data simulation. Discussing the impact
of POIs under cloudy conditions in future work could help in isolating the effects of
different variables. Secondly, we plan to validate these assumptions through multi-case
comparative studies. This will involve observing POI attractiveness levels across multiple
urban spaces in different geographic locations, cultural contexts, and climatic conditions.
A local calibration mechanism will be implemented to adjust POI attractiveness rankings
based on region-specific data. For example, a café that is highly attractive in a busy
downtown area may not have the same level of attractiveness in a suburban neighborhood.
By incorporating local social, cultural, and environmental factors, the model will better
reflect the unique dynamics of different urban spaces, ensuring more accurate and context-
specific predictions. Furthermore, we will explore ways to refine and adjust our model to
accommodate varying factors in different urban spaces. Specifically, we will focus on how
to more accurately quantify and assess the positive or negative value of POIs based on local
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social and environmental factors. This will help improve the applicability and accuracy of
our model in different urban contexts.

5. Conclusions

This study integrated visual intelligence technology, thermal comfort simulation, and
machine learning methods to construct a high-precision predictive framework based on
the XGBoost model for analyzing the driving factors of crowd preferences in commu-
nity environments. The results show that the XGBoost model performed exceptionally
well in predicting crowd preferences, achieving an accuracy of 0.95, significantly outper-
forming other common machine learning algorithms. This finding not only validates
the superiority of the XGBoost model in handling complex environmental data but also
demonstrates the feasibility of combining multi-source data for environmental analysis at
the community scale.

Through SHAP value analysis, the study identified shadow proportion and Points of
Interest (POI) distance as the two most significant factors influencing crowd preferences,
with SHAP values of 0.24 and 0.12, respectively. This indicates that in high-temperature
environments, shading design significantly affects people’s activity choices, and well-
distributed shaded areas can effectively enhance residents’ thermal comfort and willingness
to engage in outdoor activities. Additionally, appropriately shortening the distance between
residential areas and POIs not only increases the frequency of residents’ use of these
functional nodes but also promotes social interaction and community vitality.

By extrapolating this classification model to regions with similar climate and cultural
contexts, this study provides strong support for the optimized design of community
environments. The model’s predictive results can offer empirical evidence for urban
planning and public space design, particularly in effectively utilizing shade, strategically
placing POIs, and optimizing residents’ activity paths.

This study contributes to the theoretical understanding of the relationship between
spatial heterogeneity and resident behavior by demonstrating the effectiveness of ma-
chine learning in predicting crowd preferences. However, there are limitations: the data
are summer-specific, limiting seasonal generalizability, and the findings are based on
a single community, necessitating further validation across diverse contexts. Future re-
search should explore multi-seasonal data, conduct comparative studies across different
regions, and apply more advanced machine learning algorithms to enhance the accuracy of
behavioral predictions.

Author Contributions: Conceptualization, S.W.; methodology, S.W.; software, J.A. and L.W.; val-
idation, S.W., C.W. and P.G.; formal analysis, S.W.; investigation, P.G. and L.W.; resources, S.W.;
data curation, C.W.; writing—original draft preparation, S.W.; writing—review and editing, S.W.;
visualization, J.A.; supervision, Q.Z.; project administration, Q.Z.; funding acquisition, Q.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be made available upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.



Buildings 2024, 14, 2978 19 of 23

Appendix A

Buildings 2024, 14, x FOR PEER REVIEW 20 of 24 
 

Appendix A 

 
Figure A1. Real scenes of 81 points of interest within the site. The different colors of the mask rep-
resent: activity area (red), rest area (blue), landscape area (green), shops (orange), parking lot (yel-
low), and negative spots (purple). 

Figure A1. Real scenes of 81 points of interest within the site. The different colors of the mask
represent: activity area (red), rest area (blue), landscape area (green), shops (orange), parking lot
(yellow), and negative spots (purple).



Buildings 2024, 14, 2978 20 of 23

Buildings 2024, 14, x FOR PEER REVIEW 21 of 24 
 

 
Figure A2. Thermal environment time series simulation results 1. Figure A2. Thermal environment time series simulation results 1.



Buildings 2024, 14, 2978 21 of 23
Buildings 2024, 14, x FOR PEER REVIEW 22 of 24 
 

 
Figure A3. Thermal environment time series simulation results 2. 

  

Figure A3. Thermal environment time series simulation results 2.



Buildings 2024, 14, 2978 22 of 23

References
1. Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on location-

based social networks. Trans. GIS 2017, 21, 446–467. [CrossRef]
2. Silva, T.J.V.; Hirashima, S.Q.S. Predicting urban thermal comfort from calibrated UTCI assessment scale—A case study in Belo

Horizonte city, southeastern Brazil. Urban Clim. 2020, 36, 100652. [CrossRef]
3. Li, S.; Ye, Y.; Chen, H.; Yang, Y.; Huang, Y.; Wu, Z. Vitality Analysis and Improvement of Micro Urban Spaces in Cold Regions

Evidence from Harbin, China. Int. Rev. Spat. Plan. Sustain. Dev. 2024, 12, 95–117.
4. Sun, J.; Harris, K.; Vazire, S. Is well-being associated with the quantity and quality of social interactions? J. Pers. Soc. Psychol. 2020,

119, 1478–1496. [CrossRef] [PubMed]
5. Ali, A.; Zhu, Y.; Zakarya, M. A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide

crowd flows prediction in fog computing. Multimed. Tools Appl. 2021, 80, 31401–31433. [CrossRef]
6. Psyllidis, A.; Gao, S.; Hu, Y.; Kim, E.-K.; McKenzie, G.; Purves, R.; Yuan, M.; Andris, C. Points of Interest (POI): A commentary on

the state of the art, challenges, and prospects for the future. Comput. Urban Sci. 2022, 2, 20. [CrossRef]
7. Yeow, L.W.; Low, R.; Tan, Y.X.; Cheah, L. Point-of-Interest (POI) Data Validation Methods: An Urban Case Study. ISPRS Int. J. Geo.

Inf. 2021, 10, 735. [CrossRef]
8. Zheng, M.; Wang, H.; Shang, Y.; Zheng, X. Identification and prediction of mixed-use functional areas supported by POI data in

Jinan City of China. Sci. Rep. 2023, 13, 2913. [CrossRef]
9. Pan, C.; Wu, S.; Li, E.; Li, H.; Liu, X. Identification of urban functional zones in Macau Peninsula based on POI data and remote

information sensors technology for sustainable development. Phys. Chem. Earth Parts A/B/C 2023, 131, 103447. [CrossRef]
10. Wang, Z.; Ma, D.; Sun, D.; Zhang, J. Identification and analysis of urban functional area in Hangzhou based on OSM and POI

data. PLoS ONE 2021, 16, e0251988. [CrossRef]
11. Li, Y.; Xu, L. The Impact of COVID-19 on Pedestrian Flow Patterns in Urban POIs—An Example from Beijing. ISPRS Int. J. Geo-Inf.

2021, 10, 479. [CrossRef]
12. Lu, C.; Pang, M.; Zhang, Y.; Li, H.; Lu, C.; Tang, X.; Cheng, W. Mapping Urban Spatial Structure Based on POI (Point of Interest)

Data: A Case Study of the Central City of Lanzhou, China. ISPRS Int. J. Geo-Inf. 2020, 9, 92. [CrossRef]
13. Cichosz, P. Urban Crime Risk Prediction Using Point of Interest Data. ISPRS Int. J. Geo-Inf. 2020, 9, 459. [CrossRef]
14. Zhang, J.; Xu, E. Investigating the spatial distribution of urban parks from the perspective of equity-efficiency: Evidence from

Chengdu, China. Urban For. Urban Green. 2023, 86, 128019. [CrossRef]
15. Zeng, W.; Zhong, Y.; Li, D.; Deng, J. Classification of Recreation Opportunity Spectrum Using Night Lights for Evidence of

Humans and POI Data for Social Setting. Sustainability 2021, 13, 7782. [CrossRef]
16. Xu, C.; Liu, D.; Mei, X. Exploring an efficient POI recommendation model based on user characteristics and spatial-temporal

factors. Mathematics 2021, 9, 2673. [CrossRef]
17. Chen, Y.; Jia, B.; Wu, J.; Liu, X.; Luo, T. Temporal and Spatial Attractiveness Characteristics of Wuhan Urban Riverside from the

Perspective of Traveling. Land 2022, 11, 1434. [CrossRef]
18. Werneck, H.; Santos, R.; Silva, N.; Pereira, A.C.M.; Mourão, F.; Rocha, L. Effective and diverse POI recommendations through

complementary diversification models. Expert Syst. Appl. 2021, 175, 114775. [CrossRef]
19. Lin, H.; Wang, J.B.; Zhang, X.; Hu, F.; Liu, J.; Hong, X.C. Historical sensing: The spatial pattern of soundscape occurrences

recorded in poems between the Tang and the Qing Dynasties amid urbanization. Humanit. Soc. Sci. Commun. 2024, 11, 730.
[CrossRef]

20. Jin, S.; Wang, X.; Meng, Q. Spatial memory-augmented visual navigation based on hierarchical deep reinforcement learning in
unknown environments. Knowl. Based Syst. 2024, 285, 111358. [CrossRef]

21. He, S.; Chen, W.; Wang, K.; Luo, H.; Wang, F.; Jiang, W.; Ding, H. Region Generation and Assessment Network for Occluded
Person Re-Identification. IEEE Trans. Inf. Forensics Secur. 2023, 19, 120–132. [CrossRef]

22. Mi, C.; Liu, Y.; Zhang, Y.; Wang, J.; Feng, Y.; Zhang, Z. A vision-based displacement measurement system for foundation pit. IEEE
Trans. Instrum. Meas. 2023, 72, 2525715. [CrossRef]

23. Zhang, H.; Zhou, X.; Li, H.; Zhu, G.; Li, H. Machine Recognition of Map Point Symbols Based on YOLOv3 and Automatic
Configuration Associated with POI. ISPRS Int. J. Geo. Inf. 2022, 11, 540. [CrossRef]

24. Charitidis, P.; Moschos, S.; Pipertzis, A.; Theologou, I.J.; Michailidis, M.; Doropoulos, S.; Diou, C.; Vologiannidis, S. StreetScouting:
A Deep Learning Platform for Automatic Detection and Geotagging of Urban Features from Street-Level Images. Appl. Sci. 2022,
13, 266. [CrossRef]

25. Qian, Z.; Liu, X.; Tao, F.; Zhou, T. Identification of urban functional areas by coupling satellite images and taxi GPS trajectories.
Remote Sens. 2020, 12, 2449. [CrossRef]

26. Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, K.; Chen, Q. A comprehensive review of thermal comfort studies in urban open spaces. Sci.
Total Environ. 2020, 742, 140092. [CrossRef]

27. Ma, X.; Tian, Y.; Du, M.; Hong, B.; Lin, B. How to design comfortable open spaces for the elderly? Implications of their thermal
perceptions in an urban park. Sci. Total Environ. 2021, 768, 144985. [CrossRef]

28. Huang, C.; Zhang, G.; Yao, J.; Wang, X.; Calautit, J.K.; Zhao, C.; An, N.; Peng, X. Accelerated environmental performance-driven
urban design with generative adversarial network. Build. Environ. 2022, 224, 109575. [CrossRef]

https://doi.org/10.1111/tgis.12289
https://doi.org/10.1016/j.uclim.2020.100652
https://doi.org/10.1037/pspp0000272
https://www.ncbi.nlm.nih.gov/pubmed/31647273
https://doi.org/10.1007/s11042-020-10486-4
https://doi.org/10.1007/s43762-022-00047-w
https://doi.org/10.3390/ijgi10110735
https://doi.org/10.1038/s41598-023-30140-x
https://doi.org/10.1016/j.pce.2023.103447
https://doi.org/10.1371/journal.pone.0251988
https://doi.org/10.3390/ijgi10070479
https://doi.org/10.3390/ijgi9020092
https://doi.org/10.3390/ijgi9070459
https://doi.org/10.1016/j.ufug.2023.128019
https://doi.org/10.3390/su13147782
https://doi.org/10.3390/math9212673
https://doi.org/10.3390/land11091434
https://doi.org/10.1016/j.eswa.2021.114775
https://doi.org/10.1057/s41599-024-03251-7
https://doi.org/10.1016/j.knosys.2023.111358
https://doi.org/10.1109/TIFS.2023.3318956
https://doi.org/10.1109/TIM.2023.3311069
https://doi.org/10.3390/ijgi11110540
https://doi.org/10.3390/app13010266
https://doi.org/10.3390/rs12152449
https://doi.org/10.1016/j.scitotenv.2020.140092
https://doi.org/10.1016/j.scitotenv.2021.144985
https://doi.org/10.1016/j.buildenv.2022.109575


Buildings 2024, 14, 2978 23 of 23

29. Yang, B.; Olofsson, T.; Nair, G.; Kabanshi, A. Outdoor thermal comfort under subarctic climate of north Sweden–A pilot study in
Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [CrossRef]

30. Gupta, S.; Anand, P. Improvement of outdoor thermal comfort for a residential development in Singapore. Int. J. Energy Environ.
2015, 6, 567.

31. Shawesh, R.; Mohamed, M. Post-occupancy evaluation of outdoor thermal comfort in hot arid zone. Int. J. Low-Carbon Technol.
2021, 16, 50–60. [CrossRef]

32. Nakano, J.; Tanabe, S.I. Thermal adaptation and comfort zones in urban semi-outdoor environments. Front. Built Environ. 2020, 6,
34. [CrossRef]

33. Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect—A Review of Reflective Pavements and Tree
Shading Strategies. Buildings 2021, 11, 93. [CrossRef]

34. Deilami, K.; Rudner, J.; Butt, A.; MacLeod, T.; Williams, G.; Romeijn, H.; Amati, M. Allowing Users to Benefit from Tree Shading:
Using a Smartphone App to Allow Adaptive Route Planning during Extreme Heat. Forests 2020, 11, 998. [CrossRef]

35. Shen, Y.; Kong, W.; Fei, F.; Chen, X.; Xu, Y.; Huang, C.; Yao, J. Stereoscopic urban morphology metrics enhance the nonlinear scale
heterogeneity modeling of UHI with explainable AI. Urban Clim. 2024, 56, 102006. [CrossRef]

36. Ni, H.; Wang, D.; Zhao, W.; Jiang, W.; Mingze, E.; Huang, C.; Yao, J. Enhancing rooftop solar energy potential evaluation in
high-density cities: A Deep Learning and GIS based approach. Energy Build. 2024, 309, 113743. [CrossRef]

37. Jeoung, J.; Jung, S.; Hong, T.; Lee, M.; Koo, C. Thermal comfort prediction based on automated extraction of skin temperature of
face component on thermal image. Energy Build. 2023, 298, 113495. [CrossRef]

38. Choi, H.; Um, C.Y.; Kang, K.; Kim, H.; Kim, T. Application of vision-based occupancy counting method using deep learning and
performance analysis. Energy Build. 2021, 252, 111389. [CrossRef]

39. Xi, T.; Wang, M.; Cao, E.; Li, J.; Wang, Y.; Sa’ad, S.U. Preliminary Research on Outdoor Thermal Comfort Evaluation in Severe
Cold Regions by Machine Learning. Buildings 2024, 14, 284. [CrossRef]

40. Zhong, G. Convolutional Neural Network Model to Predict Outdoor Comfort UTCI Microclimate Map. Atmosphere 2022, 13, 1860.
[CrossRef]

41. Guo, R.; Yang, B.; Guo, Y.; Li, H.; Li, Z.; Zhou, B.; Hong, B.; Wang, F. Machine learning-based prediction of outdoor thermal
comfort: Combining Bayesian optimization and the SHAP model. Build. Environ. 2024, 254, 111301. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scs.2016.10.011
https://doi.org/10.1093/ijlct/ctaa035
https://doi.org/10.3389/fbuil.2020.00034
https://doi.org/10.3390/buildings11030093
https://doi.org/10.3390/f11090998
https://doi.org/10.1016/j.uclim.2024.102006
https://doi.org/10.1016/j.enbuild.2023.113743
https://doi.org/10.1016/j.enbuild.2023.113495
https://doi.org/10.1016/j.enbuild.2021.111389
https://doi.org/10.3390/buildings14010284
https://doi.org/10.3390/atmos13111860
https://doi.org/10.1016/j.buildenv.2024.111301

	Introduction 
	Background 
	Literature Review 
	The Impact of Points of Interest on Human Behavior 
	The Impact of the Thermal Environment on Human Behavior 

	Research Objective 

	Methods 
	Research Workflow 
	Study Site 
	Human Behavior Recognition and Preference Evaluation 
	Data Collection of Human Behavior 
	Human Behavior Recognition 
	Preference Evaluation 

	POI Target Detection 
	Thermal Environment Simulation and Validation 
	Numerical Simulation of Thermal Environment 
	Validation of Thermal Environment Simulation 

	Machine Learning Modeling 

	Results 
	Human Behavior Analysis Results 
	POI Clustering Results 
	Thermal Environment Simulation Results 
	Thermal Environment Simulation Validation Results 
	Machine Learning Model Performance 

	Discussion 
	Crowd Behavior Analysis 
	Community Environment Optimization 
	Research Contributions and Limitations 

	Conclusions 
	Appendix A
	References

