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Abstract: This paper presents a Bayesian inference framework for updating the structural rigidity
ratio of aging hollow slab RC bridges using deflection measurements. The framework models the
structural rigidity ratio as a stochastic field along the hollow RC slabs, using the Karhunen-Loeve
(KL) transform to capture spatial correlation and variation. Bayesian inference is then applied using
deflection data from static loading tests, supported by a finite element model (FEM) and a Kriging
surrogate model to enhance computational efficiency. The posterior distribution of the structural
rigidity ratio is derived using a Markov chain Monte Carlo (MCMC) sampler. The proposed method
was tested on an RC bridge with hollow slabs, using deflection measurements taken before and after
reinforcement. The Bayesian updates indicated increased structural rigidity ratios after reinforcement,
validating the effectiveness of the reinforcement. The deflection predictions from the updated models
closely matched the measurements, with the 95% confidence bounds encompassing most of the data.
This demonstrates the method’s validity and robustness in capturing the structural improvements

post-reinforcement.
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1. Introduction

Reinforced concrete (RC) bridges constitute a significant portion of China’s bridge
network. By the end of 2022, the country’s roadway network included 1,033,200 in-service
bridges, with RC bridges accounting for 80% to 90% of the total [1]. Primarily constructed
during the 1980s and 1990s, these aging bridges have undergone varying degrees of
degradation due to continuous exposure to environmental stressors and repeated impacts,
significantly affecting their structural safety and serviceability. Consequently, the financial
burden of maintaining these aging bridges has become a major concern. This increasing cost
of bridge maintenance is a challenge faced by many countries [2], underscoring the global
need for effective bridge management strategies. Therefore, efficient bridge management
systems should be established based on accurate condition assessments of critical bridges
in the network. This approach allows for the optimization of maintenance routines and
better allocation of limited maintenance budgets, marking a transition from prescribed
periodical maintenance to condition-based maintenance strategies [3—12].

The rapid development of structural health monitoring systems in recent years has
provided bridge engineers with a substantial amount of data, enabling the estimation of
the structural identification of bridges [13]. Structural identification of aging bridges is
conducted using various dynamic indicators, including structural frequency [14], mode
shape [15], modal curvature [16], strain mode [17], and structural flexibility [18]. These dy-
namic indicators have been shown to be damage-sensitive, and changes in these indicators
are expected to suggest structural damage.
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On the other hand, static indicators such as deflection have been used for the struc-
tural identification of aging bridges [18]. Theoretically, bridge deflection is correlated with
multiple variables associated with structural safety and serviceability, including damage,
structural rigidity, prestress loss, creep, and shrinkage. Therefore, structural identification
based on bridge deflection can reveal the actual states of these variables. Furthermore, com-
pared with dynamic indicators, static deflection excels in its low cost and better availability,
as such data are readily available during the routine inspection of bridges [19]. Additionally,
the measurement of deflection is subject to less noise compared to the measurements of
dynamic indicators [20].

The current literature discussing structural identification using bridge deflection is
mostly output-only analysis, which directly works on deflection data to extract damage-
sensitive indicators [21]. One crucial issue in relevant studies is filtering out deflections
caused by environmental factors, which involves establishing empirical input-output
relationships between these factors and the corresponding deflections. In the method
proposed by Peeters and De Roeck [22], the long-term deflection is divided into “normal”
components under environmental influences such as wind loads and temperature, and
anomalies caused by damage, considering the former not to be safety-affecting factors.
Hedegaard et al. [23] identify anomalies in deflection from both short-term and long-
term perspectives. In similar studies, the relationship between environmental factors and
deflection increments is assumed to be linear or non-linear, and filtering techniques such as
principal component analysis (PCA) and kernel principal component analysis (KPCA) are
used to remove the environmental impacts [24].

As an alternative approach, model-based structural identification based on bridge
deflection uses information from mechanistic models (e.g., finite element model, FEM) as
well as deflection measurements to calibrate associated structural state variables. Results
indicate that model-based structural identification using bridge deflection can outperform
methods based on dynamic indicators. This advantage primarily arises from the stability
of deflection measurements, which also eliminates the influences of structural mass and
damping [25,26]. In a series of studies by Sanayei [25-29], the stiffness of elements in FEM
is calibrated based on deflection measurements. Banan [30,31] formulates the inversion
analysis into a least squares problem that minimizes the differences between measured
static displacements and model predictions. The authors solved the optimization using the
Monte Carlo method and discussed the influence of initial values on the solution results.

Beyond these deterministic methods, probabilistic structural identification methods
are proposed based on Bayesian inference. Compared with deterministic methods, proba-
bilistic structural identification using Bayesian inference can update the range of structural
state variables while considering their uncertainties. The range estimation in the prob-
abilistic method is more robust than the point estimation in the deterministic method,
considering the stochastic nature of the structural state variables [32,33]. Nettis et al. [34]
propose an automated framework for efficient probabilistic structural assessment of bridges,
considering various critical corrosion scenarios and uncertainties in geometric and mechan-
ical properties.

In this paper, the damage states of aging hollow slab bridges are subject to Bayesian
inference using the deflection measurements collected during a static loading test. The
damage states are defined by the distribution of the structural rigidity of the slabs, which
are modeled as stochastic fields along the lateral direction of the bridge. A 3-D FEM is
constructed to compute the deflection under various loading conditions. To improve the
computation efficiency, a Kriging surrogate model of the FEM is trained and used as the
forward model in the Bayesian inference. The posterior distribution of damage states is
approximated by a Markov chain Monte Carlo (MCMC) sampler.

The remainder of this paper is organized as follows: Section 2 presents the methods of
this paper, in which Section 2.1 presents the general procedures of the Bayesian inference
considering the stochastic field of damage for aging hollow slab bridge; Section 2.2 presents
the details of the setup of FEM and its Kriging surrogate model; Section 2.3 formulates the
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MCMC sampler used to derive the posterior distribution of the damage states. Section 3
presents a numerical application of the proposed method on an existing RC hollow slab
bridge, using the deflection measurements from the field test.

2. Materials and Methods
2.1. Stochastic Field of the Damage States of Hollow Slab Bridge

Considering a hollow slab bridge, the structural damage states are represented by a set
of random variables d = (d1, d5. . .dy)T. As shown in Figure 1, d; denotes the ratio between
the effective and nominal flexural stiffness of the i-th slab girder, i.e.,

d; = EI;/Ely; (1)

where EI; and Elj; are the effective and nominal flexural stiffness of the i-th slab girder,
respectively. N denotes the number of slabs in the bridge.

[eliclicliclicllcliclielicllellelle]]
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Figure 1. Illustration of the damage indicator for the RC hollow slab bridge.

In practical applications, d is often considered as a stochastic field. This approach takes
into account the spatial correlation of damage, thereby preventing excessive variability in
damage on adjacent hollow slabs, which is a common scenario in engineering projects.

In this paper, d is considered a one-dimensional stochastic field along the lateral
direction of the bridge using the KL transform, which aims to reduce the dimensionality of
a dataset while preserving as much variability as possible. It achieves this by transforming
a set of correlated variables into a set of uncorrelated variables called principal components,
ordered by the amount of variance each can explain. Then, d is derived as [35] the following:

N
d=dol+ Y 6/ Aufn 2)
m=1

where dj denotes the average damage of the slabs of the bridge; A, and f;, are the m-th
eigenvalue and eigenvector of the autocorrelation matrix R, which are derived by the
singular decomposition of R:

Rf = Af 3)

Here, the autocorrelation matrix R is derived using the autocorrelation function R [36]:

R(0) R(Ax) ... R((N-2)Ax) R((N-—1)Ax)
R(Ax) R(0)

R = (4)
R((N-2)Ax) ... ... R(Ax)
R(N-1)Ax) ... ...  R(Ax) R(0)

Om in Equation (2) is the weight of the m-th distribution basis for damage. According
to Equation (2), the damage vector d can be represented by the weight vector 8, which is
subject to the Bayesian inference.

2.2. Bayesian Inference Considering the Stochastic Field of the Damage States of Hollow
Slab Bridge

Bayesian methods promise an effective approach to infer the condition of bridge
structures by utilizing both health monitoring data and prior information about the bridge’s
state parameters [32,33]. The results of Bayesian methods are probabilistic estimates of the
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structure’s condition, rather than deterministic point estimations, which can enhance the
robustness compared to deterministic structural identification methods.

The Bayesian inference in this paper aims to update 6 based on a set of deflection
measurements D. The posterior distribution of © conditioned on the measurements D is
derived as the following [32]:

__p(DJo)p(o)
PO = 74D 10 )p(0)do ®

where p(0 | D) is the posterior distribution of 8, which represents the damage states of the
hollow slab bridge updated by the deflection measurement D; p(0) is the prior distribu-
tion of ©; p(D | 8) denotes the likelihood function, which can be formulated as the joint
distribution of the Gauss variables at the observation sites of D:

N M. 2
pDIe) = ey L () ©

(V270) i=1

where M(0) is the deflection computed by the FEM, conditioned on the damage states 6. D;
is the deflection measurements at the i-th observation site. ¢ is the standardized deviation
of the Gauss error variables, which takes into account the model error from the observation
and the FEM simulation.

2.3. Kriging Surrogate of the FEM
2.3.1. Formulation of the Kriging Surrogate

The likelihood function in Equation (6) involves a computationally expensive FEM
simulation. If a sampling method is used to approximate the posterior distribution, each
sample requires an FEM calculation, which significantly reduces computational efficiency.
Therefore, it is necessary to use a Kriging surrogate model to approximate the FEM simulation.

The Kriging model is a type of statistical model that is often used in the fields of
geostatistics and engineering for interpolating and predicting spatial data. It provides
a flexible and robust approach for modeling complex physical phenomena by fitting a
Gaussian process governed by prior covariances. In this context, the Kriging model serves
as a surrogate for computationally expensive Finite Element Method (FEM) simulations. By
using the Kriging model, the computational burden is greatly reduced, as it approximates
the outputs of FEM simulations based on a limited set of simulation data [37]. This
approach significantly enhances the efficiency of probabilistic analyses, such as Bayesian
inference, where numerous evaluations of the likelihood function may be required. The
surrogate model accurately estimates FEM outputs without the need for repeated, detailed
simulations, thereby providing a cost-effective and time-efficient alternative for structural
assessments and other engineering applications.

The Kriging model models the original FEM M(0) by combining a deterministic
regression model F, with a stochastic process e [37]:

M(0) = F(g, 0) +¢(0) )

The regression model F is derived from a linear combination of deterministic basis
functions f:

F(5,0) = c1mfi(8) + comf2(0) ...+ cpmfp(0) = (8)g €)

The auto-correlation function of the stochastic process e is determined by an auto-
correlation function Ry:
Ele(81),e(82)] = 0i*R(61,62) )
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where 0y, is the standardized deviation of the autocorrelation in function. The Kriging
model is trained using the samples computed by the FEM, and it is formulated as the
following Gauss process [38]:

M(8) ~ N(pq(8),04(0)) (10)

where 1;(0) and 0,(0) are, respectively, the mean and standardized deviation of model
prediction given 0 as model input. y;(0) and 0;(0) are derived by the following equation:

ua(8) = £1(8)g* +r(8,085) " Rs1[d(05) — Fog*] (11)

024(8) = o?[1 — 1(6,0,)TRs1x(6, 05) + u(0)  (FTRs'F) 'u(0)] (12)

where 6, and d(6;) are the model inputs and outputs of the design of experiments (DOEs)
computed from the FEM; r(6, 05) is the correlation coefficient between 6, and 0; R is the
autocorrelation matrix of the DOEs, where the component Rg;; represents the correlation
coefficient between the i-th and j-th DOEs. F is the model value of f at the DOEs.

2.3.2. Selection of DOEs

To train the Kriging surrogate, sufficient DOEs computed from the FEM are required,
and the strategy of selecting the DOE:s is crucial for the predictive accuracy of the Kriging
model. Specifically, these DOEs must cover important areas of the parameter space of 6,
where the probability of its prior distribution p(0) is relatively high.

Given the orthogonality of the damage distribution modes derived by the KL trans-
form, each component of 0 is independent and follows a Gauss distribution, and the
joint distribution of 0 is a unimodal multivariate Gauss distribution. Nonetheless, the
marginal areas in the parameter space are equally important. Therefore, this paper adopts
a space-filling strategy using Latin Hypercube Sampling (LHS), which features uniform
stratification and can obtain samples from marginal areas with fewer samples. A standard
LHS is conducted as follows [39]:

(i) Divide the interval [0, 1] into N equal-length intervals;

(ii) Assuming a variable U that follows a uniform distribution over the range [0, 1]. Draw
a sample from U, and map this sample to the inverse of the cumulative distribution
function (CDF) of the standard Gauss distribution. The sample in the n-th interval is
derived as the following;:

n—1 u

N + N) (13)

0, =F(

2.4. MCMC Sampler for the Posterior Distribution

Equation (5) formulates the posterior distribution of the damage states 6. However,
the analytical solutions for the posterior distribution are challenging as a multi-dimensional
integral [ p(D|0)p(6)d6 is involved. Consequently, sampling methods are typically used
to approximate the statistical characteristics of the posterior distribution.

Direct Monte Carlo sampling, while straightforward, requires excessive samples to
approximate high-dimensional posterior distributions, which is computationally expensive,
as each sample requires a FEM run. In practice, important sampling techniques are often
adopted to improve computation efficiency. For the problem in this paper, however, the
complicated manifold introduced by the FEM prohibits the use of deterministic importance
sampling densities (ISDs). In that case, the Markov chain Monte Carlo (MCMC) sampler is
often applied to draw samples from the posterior distribution of the damage states 6.

An MCMC sampler draws samples of damage states 0 in an iterative approach [40].
At the r-th step of the Markov chain, a candidate sample 6., is generated based on the
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current sample 6,. In this paper, 6,41 is randomly generated using a Gauss transition
kernel centered at the current sample 0,

0,41 = N(6,,7) (14)

where y represents the vector of standardized deviations for the Gauss transition ker-
nel. The candidate sample 6,,1 is then evaluated based on the Metropolis-hastings algo-
rithm [41], which accepts the following probability:

- mi p(6,41|D)
a(0y,0,41) = min(1, (0, D)

) (15)

By using Equation (15), the computationally expensive multi-dimensional integral in
the posterior distributions can be circumvented, and samples from the posterior distribution
can be effectively drawn.

3. Case Study
3.1. Case Description

This section presents a numerical application of the proposed method in a case bridge.
Figure 2a,b illustrates the geometry of the case bridge, which has a superstructure consisting
of three 13-m simply supported hollow slab spans, each with 12 hollow slabs, denoted as
51 to S12, respectively. The geometry of the cross-section is illustrated in Figure 2b. The
substructure of the case bridge includes double-column piers and frame abutments, with
simple oil felt pad bearings.

1300 1300 1300
bz}
g » ¢ e g
(a)
1200
50 1100 50

— i

[K ¢ Measurement site /ﬁ
=

OJOTOTOTOTOTOTOTOTOTOTO

[ [ [ [ [ $ T T T $ [] ]

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
(b)

Figure 2. Geometry of the case bridge (in cm). (a) Longitudinal geometry of the case bridge; (b) cross-

section geometry of the case bridge.

The bridge was reinforced with an FRP fiber plate, and loading tests were made before
and after the reinforcement. The loading location and details of the loading vehicles are
presented in Figure 3 and Table 1, respectively. During the loading tests, data of mid-span
deflections of each hollow slab were measured. The measured deflections were used to
conduct the Bayesian inference of damage states based on the method proposed in this
paper. Measurement points were placed at the mid-span section of the second span, and
the locations of the measurement points within the cross-section are presented in Figure 3.
Table 1 presents the distribution of axial weights for the loading vehicle. The total weight
of the loading vehicle is 30.36 t, which is distributed on axes 1, 2, and 3, as illustrated by
Table 1.

As presented in Figure 4, two sets of deflection were measured at the bottom of each
slab before and after the reinforcement. These deflection measurements are used as the
target D for the Bayesian inference formulated as Equation (5), so as to calibrate the damage
states of the bridge.
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Figure 3. Geometry of the case bridge (in cm). (a) Longitudinal view of the loading condition;

(b) cross-section geometry of the loading condition.

Table 1. Axial distribution and weights of the loading vehicle.

Axial Weight (t) Distance (cm)
Axel Axe 2 Axe 3 A B C
6.24 12.24 11.88 445 140 185
1 2 3
) (D—()- U=
1 A | B | | ¢ |
1'4 i T T T T T T I_
L —e— Before reinforcement
12+ —e— After reinforcement
’é\ 1.0 i
= 0.8
.2
S5 0.6
5]
% L
Q 0.4 -'
0.2+
00 1 1 1 N 1 N 1 N 1
0 2 4 6 8 10 12

Slab No.

Figure 4. Deflection measurements before and after the reinforcement.

3.2. Model Setup
3.2.1. The FEM to Compute the Bridge Deflection

As presented in Figure 5, an FEM of the case bridge was established using ABAQUS.
Based on the design documents, only span 2 was modeled considering the simply supported
boundary condition. The damage state of span 2 is most correlated with the test data
and is therefore specifically considered in the Bayesian inference for assessing structural
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conditions. The connections among the concrete slab bridge are fixed connections, which
are simulated by the shared nodes between adjacent slabs in the FEM model.

Figure 5. FEM of the case bridge.

As formulated in Equation (1), each of the 12 slabs is assigned with a damage indicator
d; (i =1, 2, 3...12), which is spatially correlated and governed by the stochastic field
generated by Equation (2). Following the KL transform described in Equation (2), the
distribution modes of the stochastic fields, i.e., v/Apfy (m = 1,2...12), are derived. Here,
the autocorrelation function R in Equation (4) is determined as an exponential form:

A
R = exp(—fx) (16)
where Ax denotes the distance between the centers of two slabs; L is the critical length of
the autocorrelation function. In this paper, L is assumed to be the width of the slab. The
weights of the distribution modes 8; (i =1, 2, 3...12) are subject to the Bayesian inference.

3.2.2. Kriging Surrogate of the FEM

A Kriging surrogate model of the FEM is constructed to improve the computational
efficiency of the Bayesian inference. Following the LHC algorithm detailed in Section 2.3.2,
500 DOE:s are selected in the parameter space of §; (i =1, 2, 3...12). The deflection data at
the measurement sites in Figure 6b are obtained as the output of the DOEs.

(8) (h) ®

Figure 6. DOEs for the Kriging surrogate. (a) Model 1; (b) Model 10; (c) Model 131; (d) Model 207;
(e) Model 237; (f) Model 309; (g) Model 345; (h) Model 422; (i) Model 481.
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To derive the DOEs, a Python script was used to convert the model input 6 into the
stochastic field of damage states d and then use Equation (1) to modify the stiffness of each
slab in the ABAQUS. The established FEMs are demonstrated in Figure 6.

3.2.3. Model Parameters for the MCMC Sampler

As detailed in Section 2.3, a Gauss transition kernel is used for the MCMC sampler,
which can satisfy the detailed balance condition of the Markov chain. The standardized
deviation of the transition kernel is determined as 0.01 for §; (i = 1, 2, 3...12). The start
point of the Markov chain is chosen as the 8 =1, where 1 denotes a unity vector.

A total number of 50,000 samples are drawn along the Markov chain, in which the first
10% of samples (i.e., 5000 samples) are discarded to ensure that the samples can populate
the important regions of the posterior distribution.

3.3. Results and Discussion
3.3.1. Inference Results of the Weights of Damage Distribution Modes

Figure 7 illustrates the evolution of the samples of the mean damage indicator dy, as
defined by Equation (2), along the Markov chain. It is indicated that both the damage
indicator samples before and after the reinforcement are stable along the Markov chain,
which justifies the convergence of the MCMC sampler and the validity of the drawn
samples. Furthermore, the results suggest significantly lower values of dy after the update,
which manifests the improvements in structural rigidity after the reinforcement.

1.6

—_—
N~

—— After reinforcement
—— Before reinforcement

Mean damage indicator
—
—_ V)

o
S

2 3 4 5
Sample index x10*

S
—_

Figure 7. Evolution of the mean damage indicator dj along the Markov chain.

Figure 8 presents the developments of the weights of the distribution modes along
the Markov chain, denoted as for 6; (i = 1, 2, 3...12), which suggests a relatively stable
evolution of these weights along the Markov chain. The acceptance rate of these weights is
75.63%, which ensures the samples sufficiently explore the important regions of their joint
posterior distribution, and the drawn samples can be used to approximate the statistics
of the joint posterior distribution. In addition, the variances of the weights are different,
which suggests the different contributions of the distribution modes in the reconstruction
of the damage distribution. For example, the contribution of the first distribution mode
is relatively insignificant, which is manifested by the smaller values of §;. On the other
hand, as suggested by the larger values of 015, the contribution of the 12th distribution
is significant.

Figure 9 presents the samples of 6; (i =1, 2, 3. ..12) drawn according to the deflection
measured after the reinforcement of the case bridge. The samples are shown to feature
stable evolution along the Markov chain, with an acceptance rate of 62.29%, which suggests
that the samples can efficiently explore the posterior distribution of 6; (i =1, 2, 3...12) after
the reinforcement. Table 2 presents a comparison between the mean and standardized
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deviation of 0 before and after the reinforcement. Compared to the samples drawn before
the reinforcement, the sample values of 01, are significantly smaller, which suggests the
less significant contribution of the 12th distribution mode of damage distribution. This
observation can be explained by the fact that the 12th distribution mode, as illustrated in
Figure 9, is characterized by the high-frequency variation of damage distribution. After
the reinforcement, the stiffness of the hollow slabs is improved comprehensively and the
contribution of the high-frequency component becomes less significant.
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Figure 8. Developments of the weights of the distribution modes along the Markov chain (before
update). (a) 61; (b) 62; (c) 63; (d) 04; () 05; (f) O6; (g) 07; (h) bs; (i) O9; (j) O10; (k) O11; (1) 12
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Figure 9. Developments of the weights of the distribution modes along the Markov chain (after
update). (a) 61; (b) 62; (c) 03; (d) 04; (e) b5; (£) O6; (g) 67; (h) O; (i) B9; (j) O10; (k) O11; (1) B12.

Table 2. Statistics of 0 before and after the reinforcement.

Variables 01 6, 03 04 05 06 07 09 610 011 012
Before Rein- Mean  —0.081 —0.091  0.035 0.055 —-0.045 —-0.067 —0.105 -—-0.089 —-0.033  0.023 0.059 0.006
forcement Stdev 1.006 0.980 0.974 1.016 0.987 0.959 0.986 1.065 0.987 0.974 0.991 0.302
Before Rein-  Mean 0.184  -0.158 0155 0119 -0194 -0.169 -0205 —-0417 0363 —0.365 0.873 0.167
forcement Stdev 0.960 0.963 0.954 0.979 0.973 0.953 0.951 0.937 0.949 0.820 0.755 0.258
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3.3.2. Inference Results of the Damage States

Figure 10 illustrates the marginal posterior distributions of the damage indicators d;
(i=1, 2, 3...12) for each slab of the bridge before the reinforcement, which is calculated
based on the posterior distribution of the weight vector ©.
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Figure 10. Marginal posterior distributions of the damage indicators (before update). (a) dy; (b) do;
(c) d3; (d) dy; (e) ds; (f) de; (8) d7; (h) ds; (i) do; (j) d1o; (k) d11; (1) daa.

It is indicated that the damage indicators all approximately follow the Gauss distribu-
tion, with their mean values centered around the undamaged state (d = 1). Their averages
and standardized deviations are used for further investigation of the damage states.

Figure 11 presents the marginal posterior distributions of the damage indicators of each
hollow slab after the reinforcement of the case bridge. The marginal distributions all follow
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Gauss distributions, and the averages and standardized deviations of the distributions are
used to characterize the distributions.
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Figure 11. Marginal posterior distributions of the damage indicators (after update). (a) dy; (b) dp;
(c) d3; (d) dy; (e) ds; (f) de; (8) d7; (h) ds; (i) do; (j) di1o; (k) di1; (1) daa.

Figure 12 illustrates the averages and 95% confidence bounds (CBs) for the damage
indicators before and after the reinforcement of the case bridge. The data indicate that the
indicators increased significantly in all hollow slabs following the reinforcement, suggesting
an improvement in structural rigidity. After the reinforcement, the 95% lower confidence
bound of the structural rigidity indicator nearly overlaps with the undamaged state (d = 1),
indicating that the reinforcement has effectively restored the structural rigidity to meet the
design criterion.
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Figure 12. The averages and 95% confidence bounds (CBs) for the damage indicators before and after
the reinforcement.

Figures 13 and 14 show the deflections calculated from the updated model parameters
before and after reinforcement. The figures demonstrate the average deflection of the
updated model and the 95% confidence bounds of the deflection. It can be observed that
the average deflection of the updated model matches well with the measured deflection
before and after reinforcement. The 95% deflection confidence bounds (the shadow area in
Figures 13 and 14) of the updated model effectively encompass almost all deflection mea-
surements. This indicates that the updated model’s stiffness distribution closely matches
the measured deflection values. In other words, the stiffness distribution obtained through
the update represents the most likely stiffness distribution based on the measured deflec-
tion values, demonstrating an effective inversion result. Therefore, the conclusion that the
structural stiffness improvement is valid and reliable.
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Figure 13. Validation of the updated model parameters before reinforcement.
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Figure 14. Validation of the updated model parameters after reinforcement.

4. Conclusions

In this paper, a Bayes inference frame was established to update the structural rigidity
ratio of an aging hollow slab RC bridge based on the deflection measurement of the bridge.
Major conclusions are listed as follows:

1.  The structural rigidity ratio of the aging RC bridge is modeled as a stochastic field
along the hollow RC slabs using the KL transform, and the weights of the distribution
modes of structural rigidity were used as the model parameters subject to Bayes infer-
ence, which can capture the spatial correlation and variation of the structural rigidity.

2. The structural rigidity ratio of the aging RC bridge was updated based on the Bayesian
inference using the deflection measured during a static loading test. The Bayesian
inference leverages the information from a FEM that computes the deflection of the
bridge, and a Kriging surrogate model of the FEM was constructed to improve the
computation efficiency. The posterior distribution of the structural rigidity ratio was
derived by an MCMC sampler, and the drawn samples were used to approximate the
statistics of the posterior distributions.

3.  The proposed method was applied on a RC case bridge with hollow slabs, based
on two sets of deflection measurements before and after the reinforcement of the
case bridge. The Bayes updates using the deflection measurements suggest higher
structural rigidity ratios among the hollow slabs after the reinforcement, which quan-
titatively justifies the effectiveness of the reinforcement. The deflection calculated
by the updated models can well match deflection measurements, with the 95% CBs
of deflection including most of the measurements, which justifies the validity and
robustness of the proposed method.

The proposed method can be used to update the status of concrete slab bridges and
assess the efficiency of reinforcement. To ensure the reliability of the algorithm, it is
necessary to use structural monitoring data from different times to interpolate structural
information and track the time dependency of structural states. Additionally, it is important
to further use heterogeneous data beyond deflection for the Bayesian inference, which can
be achieved by establishing a framework capable of processing information from various
sources to enhance the reliability of the Bayesian inference.
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