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Abstract: Background: Toluene exposure in construction workers can lead to several health problems,
primarily affecting the nervous system, respiratory system, and skin. Utilizing advanced photo-
catalytic materials to degrade gaseous toluene aims to significantly mitigate its negative impact.
Methods: In this research, photocatalysts based on pure TiO2 and modified TiO2 were synthesized to
evaluate their efficacy in degrading gaseous toluene, a prevalent air pollutant in construction settings.
Two synthesis methods were employed. Sonoprecipitation was used to create Fe-N co-doped TiO2

nanoparticles in the first method, while the second method utilized co-precipitation and hydrothermal
techniques without ultrasonic assistance to achieve Fe-N co-doping. Seven types of nanophotocat-
alysts were synthesized, including TiO2-U (with ultrasonic assistance), NTiO2-U, FeNTiO2 (2.5)-U,
FeNTiO2 (5)-U, FeNTiO2 (7.5)-U, FeNTiO2 (10)-U, and FeNTiO2 (5) without ultrasonic assistance.
Characterization of the synthesized photocatalysts involved various analyses, including XRD, SEM,
EDX, UV–VIS DRS, FT–IR, BET, and N2 adsorption-desorption isotherm. Results: Ultrasonic as-
sistance notably improved particle dispersion and prevented agglomeration on the photocatalyst
surface. UV–VIS DRS analysis indicated a reduction in band gap energy due to Fe and N doping
of TiO2. The study also investigated the influence of Fe doping, initial toluene concentration, light
source, and residence time on the degradation rate of gaseous toluene. Experimental findings showed
that FeNTiO2 (5)-U exhibited a higher degradation rate of toluene (63.5%) compared to FeNTiO2 (5)
(50%) under visible light irradiation over 15 s. Conclusions: The study underscores the significant
enhancement in photocatalytic activity for toluene degradation achieved through the combined
effects of ultrasound and co-doping methods.

Keywords: FeNTiO2; nanophotocatalyst; sonoprecipitation; construction workers; gaseous toluene

1. Introduction

Due to industrial growth, the presence of air pollutants, such as volatile organic
compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs), has risen in both
environmental and workplace settings. [1–3]. Petroleum refineries and storage facilities,
residential heating systems, the use of solvents in construction and cleaning agents, as
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well as tobacco smoke, constitute the primary sources of these pollutants [4–7]. Toluene,
utilized in the production of various chemical compounds that are used widely in the
construction process, such as paints, coatings, adhesives, sealants, waterproofing products,
and polishing agents, represents a type of volatile organic compound (VOC) that poses
risks to both humans and the environment [8–11]. Toluene vapors can be harmful when
inhaled, leading to dizziness, headaches, and more severe neurological damage with
prolonged exposure. Studies show that both acute and chronic exposure to toluene affects
the central nervous system, leading to encephalopathy, cerebellar dysfunction, and other
neurotoxic effects. Additionally, prolonged or repeated skin contact can cause irritation
and dermatitis. The skin, being a route of exposure, absorbs toluene, which can lead to
local and systemic toxic effects, emphasizing the importance of protective measures [12].
Furthermore, improper disposal and spillage can lead to soil and water contamination,
posing risks to wildlife and ecosystems. Toluene’s persistence in the environment and its
toxicological profile make it a significant environmental pollutant [13].

Various techniques exist for removing pollutants, like toluene and benzene, from
workplace air streams. Ideally, pollutants should be eliminated at source in the production
process; when this is not feasible, workplace health and safety (WHS) management meth-
ods, such as engineering control, including ventilation, must be employed to degrade air
pollutants. One method that has garnered significant interest among researchers is photo-
catalytic degradation. This process uses semiconductors, such as TiO2-based photocatalysts,
to break down air pollutants through photocatalysis [14–17]. TiO2 is widely recognized
as a high-performance photocatalyst extensively employed for degrading air pollutants,
treating wastewater, and eliminating residual pesticides, among other applications [18–20].
TiO2 will be active when exposed to UV light because it has a high-energy band gap
(3.2 eV), so this is the main drawback of the TiO2 photocatalyst. Therefore, to enhance
photocatalyst efficiency in the visible light region, some metals, such as Fe, Co, Mn [21–23],
and non-metals, such as N, S and C [24–26], can be doped into photocatalyst structures.

Introducing metal ions into TiO2 traps electrons or holes, altering the recombina-
tion rate of electron–hole pairs [27]. Iron atoms have been regarded as suitable among
various transition metals because the ionic radius of iron is closely matched with that of
titanium. This similarity allows Fe3+ ions to effectively integrate into the crystal lattice of
TiO2 [28]. Another limitation of TiO2 photocatalysts is the rapid recombination of charge
carriers, which occurs within nanoseconds in the absence of promoters [29]. Therefore,
iron-doped TiO2 mitigates the recombination of electron–hole pairs and enhances the
photocatalytic activity [30,31]. Furthermore, researchers are increasingly focusing on the
ultrasonic method for synthesizing photocatalysts [32–34]. This approach is beneficial for
producing both amorphous and crystalline photocatalysts at the nanoscale, thereby enhanc-
ing photocatalytic activity in the visible light spectrum. [34,35]. Ultrasonic waves generate
regions of high and low pressure, resulting in the collapse of cavities. This process creates
localized hot spots of high temperature and pressure, facilitating the thorough mixing of
elements at the nanoscale. Additionally, the formation and collapse of cavitation bubbles
induce shock waves that break down particle aggregates and reduce particle size. [36–38].

Recent studies have demonstrated that doping TiO2 with non-metal atoms from the P
block of the periodic table shifts its optical absorption edge to lower energies. This enhance-
ment is expected to improve photocatalytic efficiency in the visible light spectrum [39,40].
To put it differently, introducing oxygen vacancies by substituting lattice oxygen with
elements from the P block, particularly through N-doping, reduces the band gap energy of
TiO2. This modification enhances the photocatalytic degradation efficiency under visible
light conditions [41–44]. This has been explained as due to a similar atomic size to oxygen,
small ionization energy and high stability [45].

The surface area, particle size, band gap energy, and crystalline structure of a pho-
tocatalyst, along with factors such as light intensity, pH, water vapor, and temperature,
significantly influence the enhancement of photocatalytic degradation rates. Research high-
lights the critical role of the elemental composition in photocatalytic activity, underscoring
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that synthesis conditions are crucial for determining catalyst properties. The method of
synthesis directly affects the doping status of ions within the catalyst. [46–48]. Various
synthesis methods, including sol–gel, hydrothermal, precipitation, and ultrasonic tech-
niques, are available for producing photocatalysts. In catalyst synthesis, the sol–gel method
offers high accuracy and uniformity but incurs higher costs and longer operation times,
while the hydrothermal technique, though less expensive and faster, faces implementation
difficulties due to stringent reaction conditions; precipitation is cost-effective and simple
but may suffer from lower precision, and ultrasonic techniques provide rapid processing
and enhanced dispersion at the expense of potential equipment-related challenges. In
certain cases, combinations of two or three methods may be employed to synthesize a
photocatalyst [49–52].

To address the shortcomings of the previous methods, this study aims to utilize
ultrasound-assisted co-precipitation and hydrothermal methods to synthesize Fe-N co-
doped TiO2 photocatalysts and investigate the impact of ultrasound assistance on photocat-
alyst characterization and activity. In this study, the photocatalytic efficiency of both pure
TiO2 and modified TiO2 are evaluated by their ability to degrade gaseous toluene under
both ultraviolet and visible light irradiation conditions. Finally, the main contributions to
the body of knowledge and practice can be listed as:

• The setting up of a continuous air purification reactor suitable for the real conditions
of working environments;

• Increasing the contact surface of the pollutant with the photocatalyst and the retention
time by creating sloping surfaces;

• Synthesis of a photocatalytic with better properties using an ultrasonic bath technique;
• Achieving a high rate of toluene degradation under continuous conditions;
• Improvement of photocatalyst performance under visible light compared to ultraviolet light.

2. Materials and Methods
2.1. Materials

TiCl4 was employed as the titanium precursor for synthesizing TiO2, HMT (hexam-
ethylenetetramine) served as the nitrogen source, iron nitrate nonahydrate (Fe(NO3)3·9H2O)
was used as the iron source, and a 25% ammonia solution was utilized for precipitation.
All materials were either purchased from or produced by Merch Company (Los Angeles,
CA, USA).

2.2. Nanophotocatalyst Preparation Procedure

As depicted in Figure 1, the samples were synthesized using two methods. In the
first approach, Fe-N co-doped TiO2 nanoparticles were prepared via sonoprecipitation.
The second method involved synthesizing Fe-N co-doped TiO2 through co-precipitation
and hydrothermal techniques without ultrasonic assistance. In detail, a specific volume of
TiCl4, HMT, and Fe(NO3)3·9H2O was added to 20 mL of deionized water. The mixture was
stirred using a magnetic stirrer for 2.5 h at 40 ◦C. Subsequently, a 25% ammonia solution
was added dropwise until the pH reached 8.0 ± 2. The suspension was vigorously stirred
at 40 ◦C. The resulting stable solution underwent 45 min of sonication at 300 W (Figure 2).
Another similar sample was prepared using conventional mixing with a magnetic stirrer for
45 min. After this step, hydrothermal aging was conducted for 12 h at 110 ◦C. Filtration and
washing with deionized water were performed three times for all samples. The samples
were then dried for 12 h at 110 ◦C in ambient air. Calcination was carried out for 5 h at
600 ◦C in ambient air.

Finally, nano-photocatalysts were synthesized in seven types: TiO2-U (U denotes
ultrasonic-assisted), NTiO2-U, FeNTiO2 (2.5)-U, FeNTiO2 (5)-U, FeNTiO2 (7.5)-U, FeNTiO2
(10)-U, and FeNTiO2 (5), without ultrasonic assistance.
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2.3. Nanophotocatalysts Characterization Techniques

To examine the crystalline structure of the samples, X-ray diffraction was performed
over a 2
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range of 5–70 degrees at a temperature of 25 ◦C using a Panalytical Xpert
PRO X-ray Diffractometer. BET surface analysis was conducted to determine the specific
surface area through nitrogen adsorption at 77 K using a Specific Surface Area and Porosity
Analyzer, PHS 1020.
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The morphology of the synthesized photocatalyst was examined using a scanning
electron microscope (Philips XL30 ESEM). Fourier transform infrared spectra (FTIR) were
analyzed using an FT–IR/FT–NIR Spectrum (400 Spectrometer). UV–VIS diffuse reflectance
spectroscopy (UV-VIS DRS) was performed using a Shimadzu UV 160 A UV–Vis Spectrom-
eter to study the optical properties.

Energy Dispersive X-ray spectroscopy (EDS) was utilized with an EDX spectrometer
integrated with the SEM to analyze the elemental composition of the photocatalysts.

2.4. Experimental Setup for Photocatalytic Performance Test

To assess the photocatalytic performance of the synthesized photocatalysts, experi-
ments were conducted under uniform conditions using TiO2-U, N-TiO2-U, Fe-N/TiO2 (5)-U,
and Fe-N/TiO2 (5). Figure 3 illustrates the experimental configuration. The photocatalytic
reactions took place in a 180 cm3 two-stage reactor constructed from polytetrafluoroethy-
lene (PTFE). Two quartz glass panels, each 1 mm thick, were fitted onto the PTFE. To
enhance air turbulence within the reactor and improve the interaction between the gas flow
and the photocatalyst, the PTFE surface was corrugated using a CNC machine (CNC NRC
6090 S2). Toluene was prepared in four concentration ranges: 50 ppm, 100 ppm, 150 ppm,
and 200 ppm, within a chamber measuring 50 cm × 50 cm × 20 cm, while airflow was
regulated by two rotameters. A thin layer of concrete (sand mesh: 20 × 40) was applied
on the PTFE, with the photocatalyst then coated on this layer. At the conclusion of each
experiment, the concrete layer was removed, and a new one was created on the PTFE.
Two UVA Philips 60 W lamps were positioned 1 cm away from the glass panels, and addi-
tional LED lamps were utilized for visible light photocatalytic degradation. Air containing
toluene was circulated through the reactor, and the outlet concentration was measured 15 s
later using a direct reading first check (first check + multi-gas PID, Ion technology). The
degradation rate was determined by calculating the ratio of the outlet concentration to the
inlet concentration.
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3. Results and Discussions
3.1. Nanophotocatalysts Characterization
3.1.1. XRD Analysis

Figure 4 displays the XRD patterns of TiO2-U, N-TiO2-U, Fe-N/TiO2 (5)-U, and Fe-
N/TiO2 (5). The peaks corresponding to TiO2-U and the other samples appear at 2
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= 25.3,
37.9, 48.4, 53.9, 55.3, 62.7, 69.0, 70.2, 75.4, and 83.2 (see Table 1), which aligns with the JCPDS:
00-001-0562 for anatase TiO2, indicating the successful synthesis of the photocatalysts.
Notably, only the anatase phase is present in all samples, with no evidence of rutile or
brookite phases. Upon the addition of iron and nitrogen, the XRD peaks become broader



Buildings 2024, 14, 2876 6 of 21

and shorter, suggesting the incorporation of these dopants into the TiO2 structure and a
reduction in crystallite size. Despite doping with N and Fe in various ratios, the anatase
phase of TiO2 remains unchanged. The crystallinity of TiO2, however, diminishes with
the inclusion of nitrogen and iron (see Table 2). The absence of distinct peaks for iron
and nitrogen in the patterns is attributed to the similarity in ionic radii between Fe3+ and
Ti4+, resulting in the integration of Fe3+ ions into the TiO2 lattice. Similar XRD pattern
results were reported by Kalantari et al. [53]. Additionally, a comparison between the
non-ultrasound and ultrasound patterns of Fe-N/TiO2 (5) reveals that the Fe-N/TiO2 (5)-U
sample has a superior crystalline structure. This improvement is attributed to the use of the
sonochemistry method, which enhances the distribution of crystal size and structure [54].
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Figure 4. XRD patterns of co-doped FeNTiO2 nanophotocatalysts: (a) TiO2-U, (b) NTiO2-U,
(c) FeNTiO2 (2.5)-U, (d) FeNTiO2 (5), (e) FeNTiO2 (5)-U, (f) FeNTiO2 (7.5)-U and (g) FeNTiO2 (10)-U.

Table 1. XRD Major Peaks of TiO2.

No Substance JCPDS No Phase XRD Major Peaks

1 TiO2 00-001-0562 Anatase 25.3, 37.9, 48.4, 53.9, 55.3, 62.7, 69.0, 70.2, 75.4, 83.2

Table 2. Structural properties of co-doped FeNTiO2 nanophotocatalyst.

Nanophotocatalyst N
(wt. %)

Fe/TiO2
(wt. %)

Ultrasound Irradiation SBET
(m2/g)

VP
(cm3/g)

DP
(nm)

λ0
(nm)

Band Gap
(eV)

Relative
Crystallinity

Time (min) Power (W) TiO2
a

TiO2-U - 0 45 300 47.8 0.1310 10.6 390.5 3.18 100
NTiO2-U 30 0 45 300 88.0 0.1880 8.2 413.3 3 92.6

FeNTiO2(2.5)-U 30 2.5 45 300 - - - - - 86.2
FeNTiO2(5) 30 5 - - 89.4 0.1940 8.1 424.7 2.92 75.5

FeNTiO2(5)-U 30 5 45 300 88.3 0.2070 9.3 437.7 2.83 61.7
FeNTiO2(7.5)-U 30 7.5 45 300 - - - - - 48.9
FeNTiO2(10)-U 30 10 45 300 - - - - - 40.4

a Crystallite phase: Anatase (JCPDS: 00-001-0562, 2θ = 25.3, 37.9, 48.4, 53.9, 55.3, 62.7, 69.0, 70.2, 75.4 and 83.2◦).
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3.1.2. FESEM Analysis

Figure 5 presents the field emission scanning electron microscopy (FESEM) images
of TiO2-U, N-TiO2-U, Fe-N/TiO2 (5)-U, and Fe-N/TiO2 (5) photocatalysts. The analysis
reveals that all samples are nanoscale with a spherical shape. Specifically, TiO2-U particles
are spherical and tend to agglomerate. The incorporation of iron and nitrogen into the TiO2
structure reduces both particle size and agglomeration. Figure 5c,d illustrates the surfaces
of Fe-N/TiO2 (5) and Fe-N/TiO2 (5)-U, respectively. It is evident that Fe-N/TiO2 (5)-U
particles are smaller and show no signs of agglomeration, indicating that the ultrasonic
method enhances the distribution of Fe and N on the TiO2 surface. The average particle
sizes for Fe-N/TiO2 (5)-U and Fe-N/TiO2 (5) are 37.7 nm and 41.8 nm, respectively.
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Figure 6 depicts the 3D surface images of Fe-N/TiO2 (5) (Figure 6b) and Fe-N/TiO2
(5)-U (Figure 6a). The maximum height, average height, and root mean square for Fe-
N/TiO2 (5) and Fe-N/TiO2 (5)-U are 200 nm, 91.9 nm, 33.9 nm, 50 nm, 25.5 nm, and 7.2 nm,
respectively. These findings confirm that the use of the ultrasonic method results in reduced
particle size and decreased agglomeration.
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and (b) FeNTiO2 (5)-U.

3.1.3. EDX Analysis

Energy Dispersive Spectroscopy (EDS) was conducted alongside the SEM analysis
using the same device under vacuum conditions to examine the elemental composition of
pure TiO2 and modified TiO2. Figure 7 displays the EDX dot maps for TiO2-U, N-TiO2-U,
Fe-N/TiO2 5-U, and Fe-N/TiO2 5. The EDX dot mapping confirms the presence of iron
(Fe), nitrogen (N), titanium (Ti), and oxygen (O) in the samples. These results demonstrate
that doping TiO2 with Fe and N was successful, even though the XRD patterns did not
show any peaks for Fe and N in the anatase TiO2. Similar findings have been reported
by Ganesh et al. and Ambati et al. [55,56]. Additionally, the EDX dot map micrographs
reveal an enhanced distribution of Fe and N on the surface of TiO2, with no evidence of
agglomeration. The distribution of Fe-N/TiO2 (5)-U is significantly better than that of
the non-ultrasonic Fe-N/TiO2 (5) sample. Agglomeration is observed on the surface of
Fe-N/TiO2 (5), but not on Fe-N/TiO2 (5)-U. These findings suggest that the ultrasonic
method improves the distribution of dopants on the TiO2 surface, thereby enhancing the
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photocatalytic activity of the samples. Zarrabi et al. [57] obtained similar results regarding
the impact of the ultrasonic method on particle distribution.
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3.1.4. BET–BJH Analysis

The specific surface area (SBET) plays a crucial role in photocatalytic activity. Figure 8
presents the BET–BJH analysis, adsorption and desorption graphs, and pore volume of
the synthesized photocatalysts. The analysis indicates that the specific surface areas of
modified TiO2 are greater than that of pure TiO2. Additionally, co-doped samples exhibit
larger specific surface areas compared to mono-doped samples. Consequently, the particle
size of co-doped samples is smaller than that of mono-doped and pure TiO2. The sonication
method helps prevent particle agglomeration and induces cavitation, which enhances the
specific surface areas of both co-doped and mono-doped TiO2 [58]. According to the results,
the specific surface area of Fe-N/TiO2 (5) U (88/37 m2·g−1) is less than Fe-N/TiO2 (5)
(89.4 m2·g−1), which could be due to measurement errors in the laboratory instruments.
However, Asl et al. [59] reported similar results for specific surface area.
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Figure 8. Adsorption/Desorption isotherms and pore size distribution of co-doped FeNTiO2 nanopho-
tocatalysts: (a) TiO2-U, (b) NTiO2-U, (c) FeNTiO2 (5) and (d) FeNTiO2 (5)-U.

Additionally, Figure 8 displays the N2 adsorption–desorption isotherms, pore volume,
and pore size distribution for TiO2 and modified TiO2. All samples exhibit a pore volume
greater than 2 nm, indicating that TiO2 has a mesoporous structure. The incorporation of
Fe and N into TiO2 results in an increase in the photocatalyst’s pore volume. Initially, at
low relative pressures, the adsorption of samples rises with increasing relative pressure.
However, once the relative pressure reaches 0.6, the adsorption rate increases sharply due
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to the accumulation of N2 in the TiO2 mesopores [60]. The samples exhibit the following
order of adsorption capacity from highest to lowest: Fe-N/TiO2 (5)-U > Fe-N/TiO2 (5)
> N/TiO2-U > TiO2-U. Notably, Fe-N/TiO2 (5)-U shows a higher adsorption capacity
compared to the non-ultrasonic synthesized Fe-N/TiO2 (5), attributed to its larger and
more diverse pore size distribution. The adsorption–desorption isotherms for these samples
fall into the IV type and H1 hysteresis category. These findings indicate that Fe-N/TiO2
(5)-U demonstrates superior photocatalytic activity compared to Fe-N/TiO2 (5) and the
other samples [61]. Moreover, the results show that employing the sonochemistry method
enhances the photocatalytic properties of the samples, leading to more effective removal of
pollutants from air and wastewater.

3.1.5. FTIR Analysis

Figure 9 displays the FTIR spectra for both TiO2 and modified TiO2. The broad and
intense peaks observed in the range of 480–1050 cm−1 are indicative of Ti-O and Ti-O-Ti
bonds within the photocatalysts [62]. The peaks at 1450, 1620, and 3420 cm−1 correspond
to the presence of water on the photocatalyst surface, which is either physically adsorbed
or associated with OH groups [63,64]. Additionally, the peak at 3420 cm−1 is associated
with the bonded OH groups, while the peak at 1620 cm−1 corresponds to the O-H bending
of water adsorbed on TiO2 [65,66].
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Figure 9. FTIR analysis of co-doped FeNTiO2 nanophotocatalysts: (a) TiO2-U, (b) NTiO2-U and
(c) FeNTiO2 (5)-U.
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Furthermore, the peaks at 2840 and 2910 cm−1 are attributed to the vibrations of
atmospheric C-H or CO2 present on the photocatalyst surface. Additionally, a small peak
observed in the 480–520 cm−1 range is linked to metal oxides, specifically the IR vibrations
of the anatase phase of Ti-O. In N-doped samples, this 480–520 cm−1 peak is extended,
indicating the formation of non-metal oxides [55,67]. Lastly, the FTIR analysis results show
a significant correlation with the findings from EDX and XRD analyses.

3.1.6. DRS Analysis

Figure 10 presents the UV–VIS diffuse reflectance spectra for TiO2 and modified TiO2
photocatalysts. Among all the samples, TiO2-U exhibits the lowest absorption, while
FeNTiO2 (5)-U shows the highest absorption. The band gap energies were determined
using the formula h
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= 1240/λ0, where h is Planck’s constant, υ is frequency, and λ0 is the
maximum wavelength. The maximum wavelength gradients for TiO2-U, FeTiO2 (2.5)-U,
FeNTiO2 (5), and FeNTiO2 (5)-U are 390.5, 413.3, 424.7, and 437.7 nm, respectively. Conse-
quently, the band gap energies were calculated as 3.18, 3.00, 2.92, and 2.83 eV, respectively.
The results indicate that doping TiO2 with Fe and N shifts the light absorption edge and
reduces band gap energies. Additionally, using the ultrasonic method in synthesizing
FeNTiO2 (5)-U increases absorption and decreases band gap energy, demonstrating that
this method enhances light absorption by reducing particle size and increasing the number
of active sites on the photocatalyst surface [68].
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Furthermore, Fe ions introduce a new energy level below the conduction band of TiO2.
Additionally, N doping in the TiO2 structure lowers the band gap energies and enhances
visible light absorption. This is due to the mixing of the N 2p energy state with the O
2p level at the top of the valence band of TiO2 [69,70]. Moreover, it is evident that the
band gap energies and visible light absorption of Fe and N co-doped TiO2 are greater than
those of N-doped TiO2 and pure TiO2. This is attributed to the charge transfer transition
between the d-electrons of iron ions and the conduction or valence band of TiO2 [71–73].
Additionally, iron ions can act as traps for photo-induced electrons. Due to their ability
to reduce photo-induced electrons, Fe ions can capture holes at Fe2+ sites, leading to the
formation of Fe3+ ions [74].
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3.2. Photocatalytic Degradation of Toluene
3.2.1. Influence of Doping Composition

Figure 11 illustrates the photocatalytic degradation rate of toluene using TiO2 U,
N/TiO2 U, Fe-N/TiO2 (5) U, and Fe-N/TiO2 (5) photocatalysts. At a concentration of
50 ppm, the toluene conversion after 15 s reached 22.40%, 23.30%, 40.2%, and 36.1%, respec-
tively. These results indicate that doping TiO2 with Fe and N enhances the photocatalytic
degradation of toluene. The degradation rate is further improved when Fe is doped into
the samples using the ultrasound-assisted method. XRD, SEM, and BET analyses confirm
that doping with Fe and N reduces crystalline size and increases surface area, while also
decreasing agglomeration. Additionally, there is only a slight increase in the degradation
rate with N doping alone, which may be due to the removal and washing away of nitrogen
during the synthesis process.
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Figure 11. Influence of doping composition on photocatalytic degradation of various toluene concen-
trations over FeNTiO2 nanophotocatalysts under UV irradiation.

3.2.2. Influence of Ultrasound Irradiation

Figure 12 illustrates the impact of ultrasound-assisted versus conventional methods
on the degradation of gaseous toluene. There is a clear distinction in photocatalytic activity
between FeNTiO2 (5)-U and FeNTiO2 (5). The sample synthesized using the sonochemical
method exhibits significantly higher photocatalytic activity compared to the sample made
using the conventional method. This enhanced activity is attributed to the increased
number of active sites, improved nucleation, and reduced particle size in the ultrasonic-
assisted sample compared to the conventional one [75]. These results demonstrate that the
ultrasonic method can enhance photocatalytic activity, effectively improving the removal
of pollutants from the air. [76].



Buildings 2024, 14, 2876 14 of 21
Buildings 2024, 14, x FOR PEER REVIEW 16 of 24 
 

 

 

Figure 12. Influence of ultrasound irradiation at various residence times on co-doping of FeNTiO2 
nanophotocatalysts in photocatalytic degradation of gaseous toluene under UV irradiation: (a) 
without ultrasound and (b) with ultrasound. 

3.2.3. Influence of Light Source 
The photocatalytic activity of both pure and modified TiO2 was evaluated through 

the removal of gaseous toluene under UV and visible light to assess the performance of 
the samples and the effect of different light sources. Initially, experiments conducted 
without UV or visible light showed no significant reduction in toluene concentration after 
one reaction cycle, indicating that toluene remains stable in the presence of photocatalysts 

0

10

20

30

40

50

60

10 15 25

D
eg

ra
da

tio
n 

(%
)

Residence Time (s)

50 ppm 100 ppm

150 ppm 200 ppm

UV Irradiation
FeNTiO2 (5)
Room temp.

(a) without Ultrasound

0

10

20

30

40

50

60

10 15 25

D
eg

ra
da

tio
n 

(%
)

Residence Time (s)

50 ppm 100 ppm

150 ppm 200 ppm

UV Irradiation
FeNTiO2 (5)-U
Room temp.

(b) with Ultrasound

Figure 12. Influence of ultrasound irradiation at various residence times on co-doping of
FeNTiO2 nanophotocatalysts in photocatalytic degradation of gaseous toluene under UV irradi-
ation: (a) without ultrasound and (b) with ultrasound.

Additionally, the impact of varying residence time was examined for Fe-N/TiO2 (5) U
and Fe-N/TiO2 (5) samples (see Figure 12). As residence time increased and airflow velocity
decreased, the degradation rate of the samples improved. This effect is more pronounced
in the ultrasonic-assisted sample. This can be attributed to the extended residence time
allowing for longer adsorption, which enhances the contact between photocatalysts and
toluene molecules, thereby facilitating more effective oxidation of toluene [77]. Additionally,
these results indicate that the degradation of toluene is influenced by the mass transfer
to the photocatalyst surface. As residence time decreases and airflow rate increases, the
photocatalytic degradation of gaseous toluene diminishes. This reduction is due to the
shorter residence time, which limits the amount of toluene that can reach the photocatalyst
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surface [78]. A study by Korologos et al. [79] reported comparable findings regarding
residence time.

3.2.3. Influence of Light Source

The photocatalytic activity of both pure and modified TiO2 was evaluated through the
removal of gaseous toluene under UV and visible light to assess the performance of the
samples and the effect of different light sources. Initially, experiments conducted without
UV or visible light showed no significant reduction in toluene concentration after one
reaction cycle, indicating that toluene remains stable in the presence of photocatalysts
without light. Figure 13 illustrates the impact of light sources on toluene degradation rates.
The degradation rate significantly increased when switching from UV irradiation to visible
light (from 40.2% to 63.5% for Fe-N/TiO2 (5) U. UV–VIS DRS analysis shows that doping
TiO2 with Fe and N enhances adsorption in the visible light range and reduces the band
gap energy. These factors contribute to the improved photocatalytic activity of Fe and
N co-doped TiO2 under visible light, surpassing its performance under UV irradiation.
Similar findings were reported by Dolat et al. [80].
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3.3. Reaction Pathway for Toluene Photocatalytic Degradation

To study the mechanism of the photocatalytic degradation process for removing
gaseous toluene (Figure 14), the energy value of the valance and conduction band was
calculated by:

Evb = X − E0 + 0.5Eg

Ecb =Evb − Eg
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In this equation, X is the geometrical mean of the electronegativity of atoms, E0 is the
energy of free electrons in the hydrogen scale that is +4.5 eV, Eg is the band gap energy, Ecb
is the energy of the conduction band and Evb is the energy of valance band.

Based on these equations, Ecb and Evb of FeNTiO2 (5)-U are −0.11 and +2.72 eV. Be-
cause Evb of this sample is more than that of the potential level of H2O/•OH (2.7 eV), pores
in the valance band can form OH radicals. Pores on the surface and OH radicals can react
with pollutant molecules and degrade them. On the other hand, the reduction–oxidation
potential of O2/−•O2− is −0.28 eV, and conduction band electrons cannot produce per-
oxide radicals. The lowest wavelength energy in the current study is 3.93 eV, so electrons
of the valance band can take this energy and excite it to upper levels. These electrons can
produce superoxide from absorbed oxygen to the photocatalyst surface. Electrons with
small energies (0.7 eV), which exist at low levels, can produce H2O2. Superoxide radicals
and hydrogen peroxide can attack pollutant molecules and produce CO2, H2O, and other
by-products. Specific surface area FeNTiO2 (5)-U is large and improves absorption of
pollutants on their surface. Finally, contact between pollutant and photocatalyst increases
and promotes degradation rate. Reaction to degradation of toluene follows:

FeNTiO2(5)-U + hϑ → FeNTiO2(5)-U (e− + h+) (1)

FeNTiO2(5)-U (h+) + H2O → FeNTiO2(5)-U + H+ •OH (2)

FeNTiO2(5)-U (h+) + OH− → FeNTiO2(5)-U + •OH (3)
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FeNTiO2(5)-U (e−) + O2 → FeNTiO2(5)-U + •O2− (4)
•O2+ H+ → •H2 (5)

HO•
2 + HO•

2 → H2O2 + O2 (6)

FeNTiO2(5)-U (e−) + H2O2 → -OH + •OH (7)

Pollutant + •O2− + •OH → H2O + CO2 + Other products (8)

While this study presents practical insights, it comes with both advantages and limi-
tations, much like other research in the field. One of the primary strengths of this study
is the implementation of a real-based two-stage continuous slope reactor, which closely
simulates actual workplace conditions. This setup not only enhances the retention time but
also increases the interaction between the pollutant and the photocatalyst surface, thereby
potentially improving the overall efficiency of the photocatalytic process. The use of an
ultrasonic method to synthesize the photocatalyst is another important advantage, as it
increases the photocatalyst’s activity under visible light irradiation, making the procedure
more effective and sustainable by employing a wider spectrum of light.

However, despite these strengths, the study also faces certain limitations. A notable
drawback is the difficulty in synthesizing bulk volumes of the photocatalyst, primarily
due to the requirement of additional starting materials, which can be cost-prohibitive
and resource-intensive. Additionally, while the ultrasonic synthesis technique improves
photocatalyst activity, it may concern complicated equipment and precise control situations
that could pose challenges in replicating the process consistently at a larger scale.

These challenges emphasise areas for future research, such as investigating alterna-
tive synthesis techniques that could synthesise larger numbers of photocatalysts without
significantly increasing costs or resource demands, and exploring methods to facilitate
the ultrasonic synthesis method for easier scalability. By addressing these challenges, the
potential for practical, large-scale application of the photocatalytic process can be further
realized, contributing to more effective pollutant degradation in real-world settings.

4. Conclusions

In this study, Fe-N/TiO2 photocatalysts were prepared using both ultrasonic-assisted
co-precipitation and a hydrothermal method. The ultrasonic-assisted method resulted in
smaller particle sizes and higher specific surface areas (SBET), enhancing the photocatalytic
activity of the synthesized samples. Among all the samples, Fe-N/TiO2 (5) U demonstrated
the highest photocatalytic performance for degrading gaseous toluene within 15 s. BET
analysis revealed that the specific surface area of the sample synthesized with ultrasound
was 88.3 m2/g, compared to 74 m2/g for the non-ultrasonic-assisted sample, highlighting
the role of ultrasound in increasing the SBET of the photocatalysts. XRD analysis showed
that the crystalline size of the non-ultrasonic sample was larger than that of the ultrasonic-
assisted sample. SEM images indicated that the ultrasonic-assisted sample had significantly
less agglomeration, which positively affected the toluene removal rate. Additionally, EDX
and FTIR analyses confirmed the successful doping of Fe and N into the TiO2 lattice.
The ultrasonic-assisted photocatalyst also had a smaller band gap energy than the non-
ultrasonic sample, contributing to its superior photocatalytic performance under visible
light. The Fe-N/TiO2 (5) U photocatalyst achieved a 63.5% degradation rate, while the
non-ultrasonic-assisted sample achieved only 50%. This study confirms the significant
synergistic effect of ultrasound and co-doping in enhancing photocatalytic activity for
the degradation of gaseous toluene. Despite the progress made in the photocatalytic
degradation of air pollutants, future research should build on the core concept of this
study, the use of a continuous reactor, and focus on its application in work environments.
Additionally, future studies like this one, which has employed ultrasonic methods and
elements such as iron and nitrogen to enhance performance in the visible light spectrum,
should explore techniques that further improve photocatalyst efficiency in this range. This
is important because ultraviolet radiation has harmful health effects.
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5. Patents

This article is derived from a master’s thesis at Tabriz University of Medical Sciences.
The reactor used in the study was patented in Iran’s Real Estate and Deeds Registration
Organization with registration number 108566 and international classification A61L9/20
on 16 January 2021.
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Abbreviations

Abbreviation Complete Term
PTFE Poly Tetra Fluoro Ethylene
XRD X-ray Diffraction
BET Brunauer–Emmett–Teller
DRS Diffuse Reflection Spectroscopy
FTIR Fourier Transform Infrared Spectroscopy
EDX Energy Dispersive X-ray Spectroscopy
SEM Scanning Electron Microscope
VOCs Volatile Organic Compounds
IRAC International Agency of Research and Cancer
EPA Environmental Protection Agency
NIOSH National Institute for Occupational Safety and Health
OSHA Occupational Safety and Health Administration
PPE Personal Protective Equipment
UV Ultraviolet irradiation
PCO Photocatalytic oxidation
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