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Abstract: As urbanization advances, rural construction and resource development in China encounter
significant challenges, leading to the widespread adoption of standardized planning and design
methods to manage increasing population pressure. These uniform approaches often prioritize
economic benefits over climate adaptability and energy efficiency. This paper addresses this issue by
focusing on traditional mountain villages in northern regions, particularly examining the wind and
thermal environments of courtyards and street networks. This study integrates energy consumption
and comfort performance analysis early in the planning and design process, utilizing Genetic and
XGBoost algorithms to enhance efficiency. This study began by selecting a benchmark model based
on simulations of courtyard PET (Physiological Equivalent Temperature) and MRT (mean radiant
temperature). It then employed the Wallacei_X plugin, which uses the NSGA-II algorithm for multi-
objective genetic optimization (MOGO) to optimize five energy consumption and comfort objectives.
The resulting solutions were trained in the Scikit-learn machine learning platform. After comparing
machine learning models like RandomForest and XGBoost, the highest-performing XGBoost model
was selected for further training. Validation shows that the XGBoost model achieves an average accu-
racy of over 80% in predicting courtyard performance. In the project’s validation phase, the overall
street network framework of the block was first adjusted based on street performance prediction
models and related design strategies. The optimized model prototype was then integrated into the
planning scheme according to functional requirements. After repeated validation and adjustments,
the performance prediction of the village planning scheme was conducted. The calculations indi-
cate that the optimized planning scheme improves overall performance by 36% compared with the
original baseline. In conclusion, this study aimed to integrate performance assessment and machine
learning algorithms into the decision-making process for optimizing traditional village environments,
offering new approaches for sustainable rural development.

Keywords: traditional mountain village spatial environment; wind and thermal environment; genetic
design; XGBoost algorithms

1. Introduction

With the rapid urbanization in China, the country’s swift economic growth has brought
unprecedented challenges to the development of traditional villages. On the one hand,
urban expansion is continually eroding and disrupting the original spatial patterns of
surrounding traditional villages. The uniform planning and design methods, which result
in a monotonous urban landscape, undermine the ecological layouts of village courtyards
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that adapt to nature and neglect the consideration of local characteristics. On the other hand,
the increasingly deteriorating climate environment and the goals of energy efficiency and
carbon reduction in buildings have prompted planners and designers to consider balancing
energy consumption with comfort during the planning and design phases. Against this
backdrop, optimizing and evaluating the spatial environmental performance of villages
with a focus on climate adaptability becomes especially important in the early stages of
design. Unlike traditional designs, where performance evaluation is often conducted
after the project is completed (post-evaluation paradigm) [1], this approach integrates
performance decision-making into the initial design phase, better combining spatial form
with performance optimization and minimizing the environmental impact.

Over the past few decades, performance simulation based on multi-objective genetic
algorithms has gradually gained popularity [2–5]. In most studies, building energy con-
sumption has been the primary optimization target. Al-Homoud was among the first
to propose balancing thermal comfort and energy consumption through proper design
and selection of building components during the early stages of office building design [6].
Coley and Schukat attempted to combine genetic algorithms with dynamic thermal models
and validated this method’s feasibility in designing a community hall [7]. Hauglustaine
and Azar conducted genetic algorithm-based optimization of building envelopes, focusing
on energy consumption and costs [8]. Dong and Sun conducted experiments on typical
buildings in severe cold regions. They proposed a decision-making method based on the
NSGA-II optimization algorithm to improve the accuracy of energy-efficient design [9].
Tian explored the role of passive design strategies, including opaque envelopes, windows,
shading, and natural ventilation, in building energy consumption simulation and optimiza-
tion [10]. From the above review, it is evident that most current multi-objective studies
focused on resolving conflicts between building energy consumption and the indoor envi-
ronment without considering how to balance energy consumption and indoor–outdoor
comfort through controlling building spatial elements during the design concept stage. Ad-
ditionally, the high learning and time costs of applying these methods have made it difficult
for most planning and design professionals to quickly implement them in real projects.

In recent years, machine learning models have emerged to address these shortcomings
of performance simulation based on multi-objective genetic algorithms. Current machine
learning research mainly focuses on two aspects: First, an imitative patch based on deep
learning technology mimics the original reference model by referencing large amounts of
raw data from specific databases [11,12]. For example, Mostafavi and Sun used the pix2pix
predictive model to conduct design studies on residential space layouts [13]. Such research
often targets specific design objects, with the core being image semantics learning and
some degree of intervention through a style guide, without analyzing or processing the
underlying database. The second approach involves collecting environmental information
using data sensors, obtaining tree-based model data, and conducting statistical predictions
based on this data [14–16]. For instance, Ahmad compared and validated the performance
of machine learning models with actual energy consumption using artificial neural network
models, utilizing supervised-based machine learning models to predict energy use in differ-
ent building environments [17]. Liu compared the complexity and accuracy of predictions
between artificial neural networks (ANNs) and support vector machines (SVMs) in build-
ing energy consumption prediction [18]. The third approach focuses on using machine
learning to enhance the contribution of specific building components to indoor comfort.
For example, Lin and Tsay predicted the daylighting performance of different building
facades using a daylighting model based on artificial neural networks [19]. Mo used the
XGBoost algorithm to develop window behavior models from collected data to improve
building energy efficiency [20].

In conclusion, most studies to date have focused only on predicting and optimizing
indoor or outdoor building performance [21–23], rarely combining indoor–outdoor com-
fort with energy consumption for simulation and optimization over a larger time scale.
Moreover, machine learning-related research is relatively limited for the specific cluster
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type of traditional villages. Most of them are limited to a single particular courtyard
type [24,25], with few studies summarizing and generalizing regional typological elements
from a broader perspective. Additionally, there is a lack of project-based validation of
the proposed models’ feasibility. Based on this, this paper proposes a method for predict-
ing the performance of traditional village courtyards using machine learning algorithms,
enabling the assessment of indoor–outdoor performance and energy consumption dur-
ing the design phase. This study focused on traditional mountain villages in northern
China. From the wind and thermal environment performance optimization perspective, it
analyzed the performance of courtyards and streets and their relationships with related
spatial elements. Specifically, in the analysis of courtyards, after statistical analysis and
the extraction of courtyard types, the initial dataset was obtained through multi-objective
genetic optimization (MOGO). Based on this, the raw courtyard dataset was preprocessed
through Algorithm Selection, Model Setting, and Validation of Model Training Accuracy to
finally obtain the predictive model. In the analysis of street networks, the street prediction
model and spatial element design guidelines are obtained through performance simulation.
Finally, the accuracy of this workflow is validated through an actual project, combining the
street and courtyard prediction models.

The innovation of this research lies, first, in the comprehensive evaluation of indoor
and outdoor light and thermal performance of courtyards and their internal buildings and,
second, in the development and validation of a performance-based generative architectural
design workflow that integrates machine learning algorithms by comparing the predictive
performance of the XGBoost algorithm with several other commonly used algorithms.
This research provides more specialized design recommendations for planning and design
professionals, enabling more efficient completion of planning and design tasks.

2. Methods
2.1. Overview Workflow

This paper introduces a design workflow that combines multi-objective genetic op-
timization (MOGO) and machine learning (Figure 1) that is structured into the follow-
ing steps:

(1) Simulation site and analysis objects settings: A benchmark courtyard model was
selected by simulating and ranking PET and MRT values across various courtyard
types using Honeybee 0.0.66 software.

(2) Multi-objective genetic optimization (MOGO) for courtyards. The benchmark court-
yard model underwent refinement through MOGO using the Wallacei_X plugin,
generating a dataset for subsequent machine learning.

(3) Wind and thermal environment analysis for street networks. Performance simulations
of the wind environment within street networks were conducted, and their correlation
with spatial elements was analyzed. Additionally, thermal environment simula-
tions at different analysis radii were performed to examine the relationship between
comfort and spatial elements, leading to the establishment of stepwise regression
predictive equations.

(4) Predictive model construction based on machine learning: The courtyard dataset
was processed in Scikit-learn 1.3 and trained using the XGBoost algorithm to create a
predictive model for courtyard performance.

(5) Program evaluation: Various design plans were proposed based on different target
objectives. The data parameters of each solution were input into the algorithm model
for performance evaluation, allowing for the selection of the most optimal design.
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2.2. Simulation Site and Analysis Objects Settings
2.2.1. Site Selection for This Study

This study centered on the environmental simulation and analysis of Village A, a
mountainous settlement in the cold regions of Shandong Province, northern China. The
selection of this study subject is based on the following considerations:

(1) Mountainous Location: Village A is situated in a mountainous area. According to
ArcGIS 10.8 statistical analysis of village distribution in Shandong Province, most
traditional villages are in mountainous regions. Using a cluster statistical analysis
method, this study overlayed the distribution of 519 villages in Shandong with a 30-m
resolution digital elevation model (DEM) of the province, resulting in a topographic
map of village distribution (Figure 2). The statistical results reveal that approximately
57% of the villages are situated at elevations exceeding 100 m (Table 1), primarily
concentrated in the central mountainous region of Shandong.

(2) Distance from Urban Areas: Village A is far from urban centers. To ensure the
independence of the study subject and minimize the influence of urban heat island
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effects, the selected site is over 40 km away from several city centers (Figure 3). The
mountainous terrain further reduces the impact of urban heat island effects.

Table 1. Distribution statistics of village elevation.

Elevation (m) <50 50–100 100–200 200–500 >500

Number of Villages 159 64 134 140 22
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Figure 3. Location map of the study subject.

Given these factors, Village A‘s geographical characteristics serve as a representative
example of traditional mountain villages in cold regions. It should be noted that the model
construction relies on Google imagery and DEM elevation data, which are cross-referenced
with on-site photographs. To maintain the comparability of analysis results, the model
simplifies roof forms and certain building shapes (Figure 4).
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2.2.2. Microclimate Measurements and Validation

Before conducting the subsequent performance simulation analysis, it is essential
to verify the accuracy of the simulation data. The simulated data were generated using
Honeybee 0.0.66 software, with measured data obtained using Kestrel NK-5400 instruments
(Kestrel Instruments, Delaware, PA, USA). This study employed indicators such as Mean
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Bias Error (MBE) and the Cumulative Variation of the Root Mean Square Error (CV(RMSE))
to compare the measured data to the simulation data. According to standards like ASHRAE
Guideline 14, IPMVP, and FEMP, the MBE (%) and CV(RMSE) (%) must be less than 5%
and 20%, respectively, to meet the experimental requirements.

In the subsequent analysis, the main performance simulation indicators involved
indoor and outdoor conditions, making validating the relevant meteorological elements
necessary. Key factors affecting comfort include air temperature, black globe temperature,
wind speed, and wind direction. Given that wind direction fluctuates significantly over
short intervals and is difficult to control by adjusting meteorological data parameters, the
actual measured wind direction was used directly in the simulation analysis. The results
indicate that black globe temperature, outdoor air temperature, and wind speed accuracy
fall within the standard range, allowing for their use in the subsequent performance
analysis (Figures 5–7). The building thermal parameters are referenced from local empirical
data (Table 2). In addition, this paper also made settings for the trees in the courtyard. In
Honeybee 0.0.66 software, the porosity schedule was set to reflect the changes in trees in
summer and winter (Figure 8). In subsequent research, the plants were hidden in this study
to speed up the computation.

Table 2. Energy model settings.

Index Energy Model Parameters

Wall 5 mm Cement mortar + 370 mm Fired claybrick
U-value = 1.72 W·m−2·K−1

Floor 10 mm Ceramic tile + 100 mm Concrete + 1500 mm Plain soil compaction
U-value = 0.47 W·m−2·K−1

Roof Color steel plate+ 10 mm Asphalt felt +10 mm Grass clay + 200 mm Cement mortar
U-value = 1.94 W·m−2·K−1

Glazing Wooden Glass
U-value = 5.03 W·m−2·K−1 SHGC = 0.6

Shading Not applied

Equipment loads per area 3.7 W·m−2

Infiltration rate per area 0.4 cfm/sf facade @ 75 Pa

Lighting density per area 11.8 W·m−2

Num. of people per area 0.03 people·m−2

Schedules Default Honeybee residential schedules
/The Schedule for controlling tree porosity

HVAC Ideal mechanical system

It is important to note that this study only verified the accuracy of outdoor meteoro-
logical elements and did not assess the accuracy of indoor conditions and building energy
consumption for the following reasons:

(1) Honeybee’s simulation of indoor comfort is based on outdoor meteorological elements
and does not offer a separate input interface for indoor data;

(2) This study focused on performance comparisons between multiple schemes, em-
phasizing the relative improvement or degradation in performance rather than the
building performance of a single scheme;

(3) Since various factors influence buildings during operation, the load settings for
building energy units can vary significantly, with no unified standard. Therefore, this
study only explored the energy consumption of buildings under ideal conditions,
examining the differences in energy consumption between various schemes and the
correlation with building parameters.
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2.2.3. Baseline Courtyards Model and Environment Setup

This study conducted a statistical analysis of over 100 courtyards in the site area, ulti-
mately identifying 17 courtyard types after sorting and analysis (Table 3). These courtyards
were categorized based on their degree of enclosure into one-sided, two-sided, three-sided,
and four-sided, with areas ranging from 70 to 130 m² (Figure 9). For the analysis period
of performance simulation, typical weeks from summer and winter (20–26 July, 23–29
December) were selected.

Table 3. Classification process of courtyards.

Classification No. Orientation No. of 2-Storey Buildings Category Code ** Total Categories

Traditional
Courtyards

(105)

4-sided 13
North–South

0 5c/5h

17

1 2c/2h

2 1c/1h

East–West
1 3c/3h

3 4c/4h

3-sided 45
North–South

0 7c/7h

1 9c/9h

2 10c/10h

East–West
0 6c/6h

1 8c/8h

2-sided 33
North–South

Central *
0 13c/13h

1 12c/12h

East 1 11c/11h

East–West
Central 1 15c/15h

East 1 14c/14h

1-sided 14
North–South 0 17c/17h

East–West 1 16c/16h

* The courtyards are further classified according to their location. ** “c” stands for typical winter week, and “h”
stands for typical summer week.

This stage explores the relationship between courtyard geometric elements (such as
shape and form) and outdoor comfort (PET, MRT). Previous studies established that PET
and MRT are widely recognized as effective indicators for evaluating outdoor thermal
comfort in cold regions. Chen et al. conducted a quantitative analysis of outdoor thermal
comfort in Harbin and determined that the acceptable PET range is 2.5–30.9 ◦C [26]. Yuan
et al. further investigated urban–rural differences in outdoor comfort in cold regions,
using PET as a benchmark for thermal evaluation [27]. Du et al. demonstrated that MRT
significantly impacts outdoor thermal comfort among similar meteorological factors in
severely cold areas [28]. Through empirical measurements, Krüger et al. validated the
correlation between MRT and outdoor thermal comfort [29]. The combination of PET and
MRT provides comprehensive and accurate information for outdoor comfort evaluation.
The entire process is linked to the energy model, considering the impact of airflow and
long-wave and short-wave radiation on outdoor comfort.

Additionally, the macro-scale environment was configured to closely match the actual
site conditions for the environmental setup. The site is elevated to an altitude of 150 m, with
mountains of 300 m on the north and south sides, accurately reflecting the real environment
(Figure 10). While investigating mountainous villages, it was noted that some villages
have rivers running through them. However, this study placed less emphasis on water
bodies for the following reasons: First, the width of rivers in northern mountainous villages
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typically ranges from 2 to 4 m, providing limited cooling capacity in summer and generally
drying up in winter. Second, due to software limitations, Honeybee’s ability to simulate the
heat storage properties of water bodies is restricted, as it lacks a dedicated water system
material library. At the meso-level of specific performance calculations, the courtyard sizes
and the widths of surrounding streets are based on empirical data collected during the
investigation. Courtyard boundaries were set at 20 by 20 m, with north-south streets at 4 m
and east-west streets at 3 m (Figure 11).
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2.3. Multi-Objective Genetic Optimization (MOGO) Based on Courtyards

This section employs the Wallacei_X plugin for algorithmic optimization using the
baseline courtyard model. By setting performance targets for both indoor and outdoor
environments, the plugin automatically identifies building parameter combinations that
meet the specified criteria.

2.3.1. Design Parameters and Performance Objectives Selection

In contrast to the previous stage, which focused solely on outdoor comfort (PET, MRT)
and courtyard geometric parameters (such as area and layout), this stage incorporates
additional building parameter indicators alongside spatial forms, such as standard floor
height and window-to-wall ratio (WWR), as outlined in Table 4. All parameter ranges are
based on local courtyard construction practices. For example, the “Secondary-house Floor
Control” parameter determines the floor height of the two secondary houses within the
courtyard. A value of “−1” indicates that both secondary houses are one story high; “0”
indicates that the left secondary house is one story high while the right is two stories; “1”
indicates that the left secondary house is two stories high while the right is one story. The
main house on the north side is set as two stories high by default, following traditional
principles where the primary functions are located on the north side, with the east and
west sides serving auxiliary functions. The WWR refers to the window-to-wall ratio of
each building in the courtyard. W_S and W_N represent the window-to-wall ratios on the
south and north sides of the main building, respectively; W_E1 and W_W1 represent the
window-to-wall ratios on the east and west sides of the left secondary house, respectively;
W_E2 and W_W2 represent those for the right secondary house. Based on local design
traditions, no windows are included on other sides.

Table 4. Design variable parameter range.

Design Variables Unit Scope

Courtyard width m [8, 13]

Standard floor height m [2.6, 4.1]

Orientation ◦ [−45, 45]

Secondary-house Floor Control - [−1, 1]

Window-to-wall ratio - [0, 0.35]

This paper identified performance objectives that encompass building energy con-
sumption and both indoor and outdoor comfort (Table 5), with the specifics outlined
as follows:

(1) Outdoor Comfort: This criterion is based on Honeybee’s outdoor comfort autonomy
modules, using PET (Physiological Equivalent Temperature) as the evaluation index.
The goal is to maximize the proportion of time within the 5–31 ◦C threshold, a range
deemed acceptable for cold regions according to related studies [27,30]. The analysis
period aligns with the benchmark model from the previous stage, focusing on typical
weeks in summer and winter (20–26 July and 23–29 December, respectively). The
results are denoted as “OTCA_C” for winter and “OTCA_H” for summer.

(2) Indoor Comfort: Similar to the outdoor comfort model, the indoor comfort autonomy
modules assess the proportion of comfortable time under natural ventilation, utilizing
the adaptive comfort model proposed by De Dear and Brager [31]. The analysis
concentrates on the typical summer week (20–26 July). In northern China, where
heating is provided from November to March, indoor comfort generally remains
within comfort ranges under steady-state conditions, rendering further analysis of a
typical winter week unnecessary. The results are represented by “ITCA_H”.

(3) Indoor Illuminance: This criterion evaluates indoor lighting conditions over a year
using spatial Daylight Autonomy (sDA) as the index. sDA measures the proportion
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of time in a year that achieves an illuminance level of 300 lux by the “Standard for
Lighting Design of Buildings” [32]. The results are indicated by “sDA”.

(4) Building Energy Consumption: Energy Use Intensity (EUI) was chosen as the evalua-
tion standard, referring to the energy consumption per unit building area (kWh/m²)
over one year. Since energy consumption values tend to be larger than other indicators,
EUI was normalized to a range of 0–1 for easier comparison.

Table 5. Performance objectives parameter range.

Performance Objectives Analysis Period The Acceptable Range Scope

Outdoor Comfort
OTCA_C Typical Week in Winter >5 ◦C [0, 1]

OTCA_H Typical Week in Summer <32 ◦C [0, 1]

Indoor Comfort
ITCA_H Typical Week in Summer <32 ◦C [0, 1]

sDA 1 year >300 l× [0, 1]

Building energy
consumption EUI 1 year - [0, 1]

This analysis incorporated five target values: OTCA_C, OTCA_H, ITCA_H, sDA,
and EUI. It is important to note that all comfort indices were calculated under natural
ventilation conditions, excluding active energy-saving measures, due to the complexity of
real-world factors. Each of these values was normalized to a 0–1 range. Since this study
focused on the early design stage, the weights of these five indicators were initially set to 1,
though practitioners can adjust them as needed for specific applications. Additionally, as
Wallacei_X defaults to minimizing values for optimization, all target values except for EUI
were set as negative values. For clarity in the presentation of results, all data in the Results
section are displayed in absolute values.

2.3.2. Simulation Generation Setup

Based on the above discussion, building energy consumption and comfort encom-
pass multiple performance evaluation metrics, making multi-objective optimization an
unavoidable issue. At this stage, multi-objective genetic optimization (MOGO) was con-
figured. In recent years, MOGO has been widely applied in building form and envelope
design [33–36]. In simple terms, MOGO uses genetic algorithms (GAs) to optimize multiple
performance objectives and find Pareto solutions. A brief explanation of the Pareto optimal
solution is necessary here: a solution is considered Pareto optimal if no other solution is
better in one objective variable while also being equal to or better in all other objective
variables [37]. Research has shown that Pareto front solutions offer significant advantages
in addressing multi-classification problems. Wright et al. used the NSGA-II algorithm to
optimize the window-to-wall ratio and window geometry, aiming for Pareto optimal solu-
tions that balance building energy consumption with economic efficiency [38]. Similarly,
Wang et al. conducted multi-objective optimization during the early design stages of green
buildings, focusing on variables such as building orientation, floor plan shape, window
type, window-to-wall ratio, and wall and roof materials. Their identified Pareto optimal
solutions significantly reduced the building’s life cycle costs and environmental impact [39].
This study used Pareto optimal solutions to balance the five target variables, OTCA_C,
OTCA_H, ITCA_H, sDA, and EUI, which are interconnected and sometimes conflicting
regarding light and thermal mechanisms. The MOGO process was carried out using the
Wallacei_X plugin for Grasshopper. The parameters are set in Table 6 based on the relevant
literature and several experimental trials [40,41].
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Table 6. Genetic algorithm parameter settings.

Population

Generation size 50

Generation count 60

Algorithm parameters

Crossover probability 0.9

Mutation probability 1/n

Crossover distribution index 20

Mutation distribution index 20

Random seed 1

2.4. Simulation and Correlation Analysis of Wind and Thermal Environment Performance Based
on Street Networks

This section presents the street performance simulation based on the site, focusing
on thermal and wind environments. For the thermal environment analysis, this study
investigated the impact of various morphological indicators on PET at different analysis
radii (10 m,20 m, 50 m, 100 m) (Figure 12). To visually represent this impact, this analysis
centered on the difference between the average PET within each analysis radius and the
average PET of the entire site, referred to as ∆PET. The influencing factors considered
include the street greenery ratio (G), floor area ratio (P), building density (D), average
building height (H), total wall area (W), street average height-to-width ratio (R), weighted
street radius (A), and the number of road intersections (I) for each analysis radius.
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Multiple sets of meteorological data from northern cold regions were included in the
simulation to ensure a robust sample size. The key evaluation parameters used were the
significance test p-value and the Pearson correlation coefficient. Indicators not significantly
associated with ∆PET were excluded based on these analysis results. After identifying
the analysis radius where each indicator has the greatest impact on ∆PET and excluding
weakly correlated indicators, a stepwise regression method was employed to establish
predictive equations. These equations incorporate scales and morphological indicator types
to maximize the dependent variable’s explanatory power. Figure 13 illustrates the analysis
results for the 50 m radius, with red areas highlighting the simulation analysis zone. Given
the wide range of certain design parameters like total wall area (W), normalization was
applied according to Equation (1). Here, x′ represents the normalized value, x is the original
value, and min(X) and max(X) are the minimum and maximum values within the dataset
X. This method scales the data to a [0, 1] range.

x′ =
x − min(X)

max(X)− min(X)
(1)
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For the wind environment analysis, street spaces were simulated using the Butterfly
plugin for Ladybug Tools. The impact of the street space parameters on wind environment
efficiency was summarized through data analysis. The evaluation criterion used was the
comfortable wind speed ratio, which is defined as the ratio of the area with comfortable
wind speeds to the total study area. The independent variables considered were street
width and the street height-to-width ratio. The comfortable wind speed settings referenced
the comfort range proposed by Professor Shuzo Murakami of the Architectural Institute of
Japan, with summer comfort wind speeds ranging from 0.7 to 1.7 m/s and winter comfort
wind speeds from 0.5 to 1.3 m/s [42]. The wind tunnel size settings followed the “Green
Performance Calculation Standard for Civil Buildings” [43], which specifies that the vertical
height from the top of the target building(s) to the upper boundary of the calculation
domain should be greater than 5H; the distance from the outer edge of the target building(s)
to the horizontal boundary of the calculation domain should also be greater than 5H; the
horizontal distance from the inflow boundary to the outer edge of the target building(s)
should be greater than 5H, and the horizontal distance from the outflow boundary to the
outer edge of the target building(s) should be greater than 10H (Figure 14).
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2.5. Machine Learning Settings

This section outlines a comprehensive workflow for developing a machine learning
algorithm to rapidly predict and assess the performance of courtyard building designs.
The process encompasses data collection and preprocessing, model selection, hyperparam-
eter tuning, and model evaluation. This study leveraged the Scikit-learn library within
the Python platform, a widely recognized tool for machine learning. Detailed steps are
provided in the following subsections.
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2.5.1. Data Preprocessing

This study filtered 3000 samples generated by MOGO, removing 135 samples with
a window-to-courtyard-side ratio of 0. These samples were flagged as noise data and
removed. Then, a combination paradigm was provided to machine learning models by
assigning solution sets with performance labels. Using Wallacei_X for data categorization,
two primary methods were employed: the first involved selecting solutions from the Pareto
front, and the second utilized unsupervised machine learning for clustering labels. Rele-
vant studies have demonstrated that using Pareto front-based generational division can
effectively evaluate the performance of datasets generated by MOGO [3]. Figure 15 illus-
trates the spatial distribution of datasets in a three-dimensional coordinate system obtained
through K-means clustering (unsupervised machine learning method) from Generation
49 to 59, where different colors represent different clusters. Table 7 presents randomly
selected sample points from other clusters and their performance scores. The results show
high similarity in performance target Outdoor_C and Indoor_sDA among Clusters 4, 5,
and 6, while Clusters 1, 2, and 3 exhibit better differentiation, which also can be seen from
Figure 15, where multiple clusters overlap in several areas within the three-dimensional
coordinate system. Based on this, the Pareto front was chosen as the standard for data
classification at this stage, with the accuracy of Pareto front optimization to be discussed in
the Results section.
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Table 7. The performance scores based on K-means clustering.

Outdoor_C Outdoor_H Indoor_H Indoor_sDA EUI

Cluster
1/Individual. 1 0.052194 0.353481 0.892496 0.893248 0.372975

Cluster
2/Individual. 6 0.060127 0.368541 0.793157 0.972145 0.265634

Cluster
3/Individual. 3 0.057044 0.361921 0.739375 0.792245 0.393248

Cluster
4/Individual. 5 0.069542 0.349952 0.897124 0.521406 0.391205

Cluster
5/Individual. 11 0.068231 0.365781 0.926355 0.575702 0.376893

Cluster
6/Individual. 8 0.067198 0.354203 0.885853 0.529257 0.389754
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The initial dataset consisted of the Pareto front solution set and non-dominated solu-
tion set obtained from optimization using Wallacei_X and was divided into six categories
according to specific design requirements (Table 8). Among them, the Pareto front solution
set with a significant portion of indoor illuminance indicator sDA greater than or equal
to 70% was categorized as A1, B2, and C3, with decreasing comprehensive performance
objectives, respectively. Other solutions in the Pareto front set that did not meet the require-
ment of a time ratio greater than 70% were categorized as D4. Additionally, data not in
the Pareto solution set with indoor illuminance indicator sDA greater than or equal to 70%
were categorized as E5, while the rest were categorized as F6.

Table 8. Pareto front screening criteria.

Generations sDA Value Performance Label

Pareto Front
Solutions

40–59 >0.7 A1

20–39 >0.7 B2

0–19 >0.7 C3

0–59 <0.7 D4

Non-Front Solutions
0–59 >0.7 E5

0–59 <0.7 F6

2.5.2. Data Splitting

The dataset was split into an 80% training set and a 20% test set to evaluate prediction
performance. The training set was further divided using cross-validation to prevent bias
and improve generalization. A five-fold cross-validation was employed to obtain the
average accuracy of the algorithm model. Model generalization was optimized using a grid
search method, focusing on parameters such as “learning rate”, “max_depth”, and “number
of decision trees (n_estimators)”. The specific settings were as follows: n_estimators = 150,
max_depth = 6, gamma = 0.01, subsample = 0.6, and learning rate = 0.2.

2.5.3. Algorithm Selection, Model Setting, and Validation of Model Training Accuracy

In the following steps, appropriate machine learning models were chosen to train
the preprocessed data. For most structured data problems, such as predicting energy
consumption or comfort ratings, tree-based models like Random Forest and XGBoost
generally achieve higher accuracy than neural network-based models and deep learning
approaches. Figure 16 compares the learning rates of various mainstream machine learning
algorithms, with the target being training examples. The results show that, compared with
AdaBoost and Random Forest, the XGBoost algorithm has a higher learning rate score of
0.875 and begins to converge gradually after 800 samples.

The XGBoost (eXtreme Gradient Boosting) algorithm, which evolved from the Gradient
Boosting Machine method and was proposed in 2016, has been widely adopted for building
performance prediction. Its distinguishing features include a gradient-boosting strategy
and regularization terms, which enhance the model’s generalization ability (Figure 17).
Additionally, XGBoost supports parallel processing, accelerating the training process. Based
on these advantages, this study selects XGBoost as the algorithm model.
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The components of the XGBoost function include both training loss and regularization
terms and are expressed as follows:
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known value that can be calculated.
After determining the machine learning algorithm and training the model for a certain

period, it is necessary to validate its accuracy. Common evaluation metrics include accuracy,
precision, recall, and F1 score. The F1 score combines and balances precision and recall,
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minimizing the difference between them, as shown in Formula (3). The extended Macro-F1
can evaluate the accuracy of multi-class classification problems. In this paper, Macro-F1
was used to assess the accuracy of performance target predictions.

F1 =
2 × precision × recall

precision + recall
(3)

2.6. Solution Validation

This section validates the analysis of the above results through a real-world project. The
following images illustrate the current state of a site within the research area (Figures 18 and 19).
Due to site boundary constraints, rapid population growth has resulted in high building
density within the village. This dispersed building mass has a high shape factor, negatively
impacting building energy efficiency. The high height-to-width ratio in both streets and
courtyards also impairs winter sunlight exposure. To address these issues, planning must
focus on integrating building masses by breaking down large volumes into smaller ones,
thereby improving energy efficiency and comfort through spatial design. This study
explored two intervention strategies: first, it employed street design strategies to selectively
widen and merge the existing road network; second, it mapped previously obtained
optimization prototypes to the design scheme based on actual functional requirements. The
trained machine learning model then evaluated the performance of the proposed planning
scheme. The improvement in performance relative to the original model was calculated
to select the optimal scheme. This workflow, which integrates performance evaluation
of streets and courtyards, aimed to enhance design efficiency and provides a scientific
approach to renovating and designing traditional villages.
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3. Results
3.1. Baseline Model Selection

Figure 20 shows the distribution of mean radiant temperature (MRT) of various types
of traditional courtyards in a typical winter week (23–29 December). Overall, the enclosed
courtyard has a specific shielding effect on the average radiation compared with the
outdoors. For four-sided courtyards, the MRT value of 4c is the lowest between 10:00 and
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15:00. It is speculated that due to the low sun altitude angle in winter, the two-story building
on the southeast side severely blocks the sun. The overall MRT value of 1c was higher. It
is speculated that the enclosed courtyard area is the largest and receives the most solar
radiation in winter, so the average value was also the highest. For three-sided courtyards,
the overall difference was not significant. The MRT value of 9c was slightly higher. It is
speculated that the reason for this is related to the less blockage on the south side and
the north-south direction of the courtyard. For two-sided and one-sided courtyards, 11c
had the highest MRT value. The reason for this is similar to that of 9c, which is related to
the mutual blocking relationship between courtyard buildings. A horizontal comparison
of the MRT distribution of courtyards in each period shows that the MRTs of 1c and all
three-sided courtyards are generally higher than others. The reason for this is speculated to
be that under the premise that the boundaries of the homestead are limited, the courtyard
area obtained by three-sided was the largest, and the average MRT was the highest.
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Through an hourly analysis of the winter MRT of each group of courtyards, the results
show that the courtyard’s primary factor affecting the MRT value is the courtyard area. The
larger the area, the higher the average MRT value. Secondly, in the selection of courtyard types,
since the areas of the investigated courtyards are relatively close under the same conditions, the
area of three-sided courtyards accounts for a higher proportion than that of quadrangles. The
area of two-sided courtyards and one-sided courtyards is smaller due to their relatively simple
functions; overall, the average MRT value of 3-sided courtyards is higher than that of other
courtyard types; in terms of plan aspect ratio, the MRT value of courtyards with north-south
extensions is significantly higher than those with square and east-west extensions, assuming
the areas are similar. For instance, the MRT value in Figure 20, 9c is overall higher than that
of 7c and 8c. Regarding the number of building floors, the height of the buildings on the
east and west sides will affect the MRT value of the courtyard to varying degrees. Taking
three-sided courtyards as an example, comparing 9c and 10c, we can find that before 13 o’clock,
the MRT values of the two are close. After this point, the MRT value of 10c drops particularly
obviously. Similar conclusions also appear in 2c and 3c; finally, in terms of orientation, the MRT
distribution trends differ in different periods for east-west and north-south orientations. The
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MRT value distribution of courtyards-oriented east-west is slightly better than that oriented
north-south. For example, the overall MRT value of 6c is slightly better than that of 7c.

Figure 21 shows the distribution of MRT of various types of traditional courtyards
in a typical summer week (20–26 July). Overall, compared with the outdoors, the closed
courtyard had a relatively lower MRT value than the outdoors. For four-sided courtyards,
the overall MRT value of 4h was relatively low. It is speculated that the impact of the
courtyard height-to-width ratio was higher than that of other factors. In total, 4h had
the most significant aspect ratio among all courtyards, so the MRT value was also lower.
Similar to the results obtained in summer, the overall MRT value was higher in 1h due
to the relatively large courtyard area. For three-sided courtyards, the overall difference
was not significant. The MRT values at 6h and 8h were relatively low. It is speculated
that the reason for this is that the shading effect of east-west-oriented buildings is better
than that of north-south shading. For one-sided and two-sided courtyards, the 14h and
17h values are relatively low in specific periods, and it is speculated that the reason is
related to the building orientation and height-to-width ratio. A horizontal comparison of
the distribution of MRT in courtyards at various periods shows that the MRTs of two-sided
and one-sided are generally lower than others. It is speculated that the reason is related to
the height-to-width ratio of the courtyards. The height-to-width ratio of these courtyards
is close to 1 to 1.5, which is significantly higher than other courtyard types; secondly, the
type of courtyard. In terms of selection, compared with other types of courtyards, the
average MRT value of two-sided courtyards was relatively low, indicating that under the
conditions of limited land use, this small-scale courtyard type is more suitable for summer
heat insulation; finally, in terms of orientation, east-west orientation The average MRT
value of the courtyard in each period is lower than that of the north-south direction.
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By simulating the MRT of each courtyard in summer and winter, the results show that
factors such as courtyard type, building height-to-width ratio, and courtyard area affect the
distribution of MRT in summer and winter to varying degrees. The courtyard type has an
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essential impact on MRT in both summer and winter. That is, three-sided is suitable for
increasing MRT values in winter, and two-sided is suitable for reducing MRT values in
summer. This also verifies from the side that most of the courtyards surveyed in Shandong
Province are three-sided, followed by two-sided, indicating that the actual demand for cold
protection in winter is higher than heat insulation in summer.

Figure 22 shows the statistical results of the PET simulation analysis. Due to space
limitations, this paper only presents the distribution of the average PET levels for each type of
courtyard. The data indicates that the courtyard type with the lowest PET value in summer is
the one-sided courtyard, likely due to its larger scale and the shading provided by buildings,
creating a relatively comfortable outdoor environment. In winter, the four-sided courtyard
and three-sided courtyard have the highest PET values, probably because of their larger
areas, ample solar radiation, and a higher proportion of two-story buildings on the north side,
which better resist the cold winter wind. Additionally, the low winter sun angle results in the
one-sided courtyard having the lowest PET value due to self-shading by the buildings.
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Figure 22. The relationship between courtyard categories and PET.

Considering the combined judgment of PET and MRT, along with economic costs, the
three-sided courtyard was selected as the basic model for further research. To facilitate
the comparison and optimization of improvement ratios in later stages, this study selected
the most frequently occurring three-sided courtyard within the study area as the baseline
model and calculated its performance scores. The results are shown in Figure 23.
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3.2. Simulation of Courtyard Performance

After multi-objective genetic optimization (MOGO) for courtyards, 3000 solution
sets were generated. The most recent ten generations of Pareto frontier solutions and
non-frontier solutions, totaling 500 solution sets, were filtered using Wallacei_X and were
distributed in the 3D coordinate system, as shown in Figure 24. The Pareto front, formed by
the optimal solutions, is represented by the 3D mesh surface in the figure. These solution
sets represent their respective performance attributes in different spatial positions, with the
X and Y axes representing the percentages of outdoor comfort time in winter and summer
(OTCA_C and OTCA_H), respectively, and the Z axis representing the percentage of indoor
comfort time in summer (ITCA_H). The color gradient from green to red indicates indoor
illuminance comfort (sDA) from suitable to unsuitable, and the size of the points reflects
building energy use intensity (EUI) from high to low. Figure 25 shows the planar layout of
the latest generation (59th generation) of Pareto frontier solution sets. Figure 26 shows the
distribution of these solution sets in a Parallel Coordinate Plot, with five vertical axes from
left to right representing OTCA_C, OTCA_H, ITCA_H, sDA, and EUI in sequence. The
closer to the lower end of the vertical axis, the better the optimization. As shown in the
figure, these data sets are well distributed in the plot, and most are near the lowest value.
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Wallacei_X offers several common optimization selection methods, such as the Aver-
age of Fitness Ranks and the Relative Difference Between Fitness Ranks. The Average of
Fitness Ranks calculates the average value after ranking all individuals in the population,
while the Relative Difference Between Fitness Ranks assesses the diversity and competitive
pressure of the population by ranking the relative difference values between two individ-
uals. Wallacei_X selects the optimal solution based on the best performance across these
two selection methods. The right half of Figures 27 and 28 displays the data distribution
of these two indicators using the Parallel Coordinate Plot. The left half shows the plan
views of the schemes corresponding to the evaluation indicators and the specific design
parameter values. The two schemes share common characteristics: the courtyards extend
along the east-west axis and face southwest, with two-story side houses located on the
west side.
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Additionally, it can be observed that there is a trade-off between the improvement
of building energy efficiency (EUI) and indoor comfort parameters (sDA and ITCA_H).
As shown in Figure 27, a 17% improvement in building energy efficiency leads to a 9.3%
reduction in sDA. Similar trends can be seen in Figure 28. The characteristics of this
data distribution can provide architects with valuable reference points during the early
design stages.

3.3. Simulation and Prediction Equation of Street Space Performance
3.3.1. Analysis of Street Thermal Environment Performance

During the calculation of the correlation of alley space indicators, a p-value of less
than 0.05 was considered significant. After filtering, the indicators strongly correlated
with ∆PET_C included G_20, D_50, H_50, W_100, R_100, and A_50, and those strongly
correlated with ∆PET_H included G_50, P_50, H_50, W_100, and R_100 (Figure 29). Based
on this, stepwise regression calculations were carried out to establish predictive equations
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that include different scales and types of form indicators to ensure the highest explanatory
power for the dependent variable.
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Figure 29. Statistical correlation coefficients of alley space indicators with ∆PET_H and ∆PET_C
under different calculation radii. G represents the street greenery ratio, P represents the floor area
ratio, D represents building density, H represents the average building height, W represents the total
wall area, R represents the average street height-to-width ratio, A represents the weighted street
radius, and I represent the number of road intersections. “*” indicates that the p value is less than
0.05, which means there is a significant statistical difference between the variables. “**” indicates
that the p value is less than 0.01, implying an even more significant statistical difference between
the variables.

For stepwise regression analysis, G_20, D_50, H_50, W_100, R_100, and A_50 were
used as independent variables, and ∆PET_C was used as the dependent variable. After
automatic model identification, three variables, D_50, R_100, and A_50, remained in
the model, with an R-squared value of 0.353. This means that D_50, R_100, and A_50
can explain 35.3% of the variation in ∆PET_C. The model passed the F-test (F = 23.437,
p = 0.000 < 0.05), indicating that the model is effective. Multicollinearity tests showed
that all VIF values in the model were less than 5, indicating no multicollinearity problems,
the D-W value was close to 2, indicating no autocorrelation, and the sample data were
not interrelated, making the model robust. Detailed analysis revealed that the regression
coefficient value of D_50 was 0.015 (t = 2.342, p = 0.001 < 0.01), indicating a significant
positive relationship with ∆PET_C. The regression coefficient value of R_100 was 0.048
(t = 4.241, p = 0.000 < 0.01), indicating a significant positive relationship with ∆PET_C. The
regression coefficient value of A_50 was 0.031 (t = 3.362, p = 0.001 < 0.01), indicating a
significant positive relationship with ∆PET_C. In summary, D_50, R_100, and A_50 have
significant positive effects on ∆PET_C. The predictive model equation is as follows:

∆PET_C = 0.003 + 0.015 × D_50+ 0.048 × R_100 + 0.031 × A_50 (4)

For stepwise regression analysis, G_50, P_50, H_50, W_100, and R_100 were used as
independent variables, and ∆PET_H was used as the dependent variable. After automatic
model identification, four variables, G_50, H_50, W_100, and R_100, remained in the
model, with an R-squared value of 0.493. This means G_50, H_50, W_100, and R_100
can explain 49.3% of the variation in ∆PET_H. The model passed the F-test (F = 20.425,
p = 0.000 < 0.05), indicating that the model is effective. Multicollinearity tests showed that
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all VIF values in the model were less than 5, indicating no multicollinearity problems, and
the D-W value was close to 2, indicating no autocorrelation, and the sample data were
not interrelated, making the model robust. Detailed analysis revealed that the regression
coefficient value of G_50 was 0.158 (t = 4.347, p = 0.000 < 0.01), indicating a significant
positive relationship with ∆PET_H. The regression coefficient value of H_50 was 0.018
(t = 2.552, p = 0.013 < 0.05), indicating a significant positive relationship with ∆PET_H. The
regression coefficient value of W_100 was 0.002 (t = 2.535, p = 0.013 < 0.05), indicating a
significant positive relationship with ∆PET_H. The regression coefficient value of R_100
was 0.022 (t = 3.861, p = 0.000 < 0.01), indicating a significant positive relationship with
∆PET_H. In summary, G_50, H_50, W_100, and R_100 have significant positive effects on
∆PET_H. The predictive model equation is as follows:

∆PET_H = 1.006 + 0.158 × G_50 + 0.018 × H_50 + 0.002 × W_100 + 0.022 × R_100 (5)

3.3.2. Analysis of Street Wind Environment Performance

Figures 30 and 31 illustrate the relationship between alley wind efficiency and spatial
scale. The results in Figure 30 show that, overall, the comfortable wind speed ratio in
winter is slightly higher than in summer. When the alley width is fixed, the comfortable
wind speed ratio shows a significant positive correlation with building height. Conversely,
when building height is fixed, the comfortable wind speed ratio initially increases and
then decreases as the alley width increases. Figure 31 shows that within a certain range
of height-to-width ratios, the comfortable wind speed ratio in both summer and winter
initially increases and then decreases with an increase in the alley height-to-width ratio.
Additionally, an increase in the height of buildings on both sides of the alley significantly
improves the comfortable wind speed ratio. In winter, when the building height reaches 6
m, the comfortable wind speed ratio continues to increase steadily after reaching a high
value, unlike in summer, where this does not occur. Based on the current conditions, it
can be concluded that an alley width of 1.5 m has the highest comfortable wind speed
ratio among all spatial scales. Regarding the height-to-width ratio of the alleys, in summer,
a building height-to-width ratio of 1.5 results in the maximum comfortable wind speed
ratio. In winter, for buildings with a height of 6 m or more, a height-to-width ratio of 3 is
needed to achieve the maximum comfortable wind speed ratio. For buildings below 6 m, a
height-to-width ratio of 1.5 results in the maximum comfortable wind speed ratio.

Overall, combining existing studies on wind comfort ratios with alley space factors
shows that different combinations of building heights, alley widths, and height-to-width
ratios will produce different comfortable wind speed ratios. In practice, these analysis charts
can be used to select optimal parameters corresponding to different design parameters.
In actual project implementation, for new buildings, a 4 m fire lane should be considered,
while this constraint does not apply to renovated buildings. Therefore, the design needs to
consider specific situations accordingly.

Buildings 2024, 14, x FOR PEER REVIEW 24 of 31 
 

3.3.2. Analysis of Street Wind Environment Performance 
Figures 30 and 31 illustrate the relationship between alley wind efficiency and spatial 

scale. The results in Figure 30 show that, overall, the comfortable wind speed ratio in win-
ter is slightly higher than in summer. When the alley width is fixed, the comfortable wind 
speed ratio shows a significant positive correlation with building height. Conversely, 
when building height is fixed, the comfortable wind speed ratio initially increases and 
then decreases as the alley width increases. Figure 31 shows that within a certain range of 
height-to-width ratios, the comfortable wind speed ratio in both summer and winter ini-
tially increases and then decreases with an increase in the alley height-to-width ratio. Ad-
ditionally, an increase in the height of buildings on both sides of the alley significantly 
improves the comfortable wind speed ratio. In winter, when the building height reaches 
6 m, the comfortable wind speed ratio continues to increase steadily after reaching a high 
value, unlike in summer, where this does not occur. Based on the current conditions, it 
can be concluded that an alley width of 1.5 m has the highest comfortable wind speed 
ratio among all spatial scales. Regarding the height-to-width ratio of the alleys, in sum-
mer, a building height-to-width ratio of 1.5 results in the maximum comfortable wind 
speed ratio. In winter, for buildings with a height of 6 m or more, a height-to-width ratio 
of 3 is needed to achieve the maximum comfortable wind speed ratio. For buildings below 
6 m, a height-to-width ratio of 1.5 results in the maximum comfortable wind speed ratio. 

Overall, combining existing studies on wind comfort ratios with alley space factors 
shows that different combinations of building heights, alley widths, and height-to-width 
ratios will produce different comfortable wind speed ratios. In practice, these analysis 
charts can be used to select optimal parameters corresponding to different design param-
eters. In actual project implementation, for new buildings, a 4 m fire lane should be con-
sidered, while this constraint does not apply to renovated buildings. Therefore, the design 
needs to consider specific situations accordingly. 

 
Figure 30. Variation of comfort wind speed ratio with street width for different building heights 
((left) shows a typical winter week, (right) shows a typical summer week). 

 
Figure 31. Variation of comfort wind speed ratio with street height-to-width ratio for different build-
ing heights ((left) shows a typical winter week, (right) shows a typical summer week). 

Figure 30. Variation of comfort wind speed ratio with street width for different building heights
((left) shows a typical winter week, (right) shows a typical summer week).



Buildings 2024, 14, 2796 25 of 31

Buildings 2024, 14, x FOR PEER REVIEW 24 of 31 
 

3.3.2. Analysis of Street Wind Environment Performance 
Figures 30 and 31 illustrate the relationship between alley wind efficiency and spatial 

scale. The results in Figure 30 show that, overall, the comfortable wind speed ratio in win-
ter is slightly higher than in summer. When the alley width is fixed, the comfortable wind 
speed ratio shows a significant positive correlation with building height. Conversely, 
when building height is fixed, the comfortable wind speed ratio initially increases and 
then decreases as the alley width increases. Figure 31 shows that within a certain range of 
height-to-width ratios, the comfortable wind speed ratio in both summer and winter ini-
tially increases and then decreases with an increase in the alley height-to-width ratio. Ad-
ditionally, an increase in the height of buildings on both sides of the alley significantly 
improves the comfortable wind speed ratio. In winter, when the building height reaches 
6 m, the comfortable wind speed ratio continues to increase steadily after reaching a high 
value, unlike in summer, where this does not occur. Based on the current conditions, it 
can be concluded that an alley width of 1.5 m has the highest comfortable wind speed 
ratio among all spatial scales. Regarding the height-to-width ratio of the alleys, in sum-
mer, a building height-to-width ratio of 1.5 results in the maximum comfortable wind 
speed ratio. In winter, for buildings with a height of 6 m or more, a height-to-width ratio 
of 3 is needed to achieve the maximum comfortable wind speed ratio. For buildings below 
6 m, a height-to-width ratio of 1.5 results in the maximum comfortable wind speed ratio. 

Overall, combining existing studies on wind comfort ratios with alley space factors 
shows that different combinations of building heights, alley widths, and height-to-width 
ratios will produce different comfortable wind speed ratios. In practice, these analysis 
charts can be used to select optimal parameters corresponding to different design param-
eters. In actual project implementation, for new buildings, a 4 m fire lane should be con-
sidered, while this constraint does not apply to renovated buildings. Therefore, the design 
needs to consider specific situations accordingly. 

 
Figure 30. Variation of comfort wind speed ratio with street width for different building heights 
((left) shows a typical winter week, (right) shows a typical summer week). 

 
Figure 31. Variation of comfort wind speed ratio with street height-to-width ratio for different build-
ing heights ((left) shows a typical winter week, (right) shows a typical summer week). 
Figure 31. Variation of comfort wind speed ratio with street height-to-width ratio for different
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3.4. Machine Learning Validation
3.4.1. Analysis of the Influence of Courtyard Design Parameters

Figure 32 shows the sensitivity analysis of various design variables using XGBoost,
where higher values indicate that changes in those variables have a greater impact on
building performance. In addition to the previously discussed design parameters, H/L
and H/W ratios have been included in this analysis (where H represents the height of
the building on the north side of the courtyard, and L and W represent the length and
width of the courtyard, respectively) to better understand how changes in courtyard spatial
relationships affect overall performance. The performance here specifically refers to the
impact on performance ratings ranging from A to F, as discussed earlier. As illustrated in
the figure, the courtyard’s width, the height of the building on the east side of the courtyard,
and the angle of the courtyard have the highest impact on performance ratings. Regarding
the window-to-wall ratio, W_W1 has the highest influence compared with other locations.
Regarding courtyard spatial relationships, the H/W ratio has a greater impact than the
H/L ratio, indicating that the horizontal expansion of the courtyard has a more significant
effect on building performance ratings than vertical expansion.
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3.4.2. Verification Results of Machine Learning Accuracy

In this study, the design parameters were input into the XGBoost model to verify
the accuracy of the machine learning-based ratings. Design parameters corresponding
to different performance levels were entered into the machine learning algorithm, with
20 samples taken for verification for each performance label. As shown in Table 9, the
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rightmost column, “Prediction accuracy”, displays the average accuracy of the machine
learning model, which ranges from 75% to 89%, with an overall average accuracy of 83.83%.
Additionally, to demonstrate the performance improvement relative to the baseline model,
one sample’s performance score was selected from every 20 samples to represent that
performance level. For example, the scheme with Index 1 showed a 27% and 1% reduction
in Outdoor_C and Outdoor_H, respectively, but a 12% and 11% increase in Indoor_H
and sDA, respectively. In terms of building energy consumption, energy consumption
increased by 24%. By observing the parameter values corresponding to each performance
rating, it can be seen that the XGBoost algorithm, after considering multiple performance
objectives, places relatively more emphasis on improving Indoor Comfort. This is closely
related to the data labeling process, where sDA was set as the second step rating standard
based on the Pareto front screening. Overall, except for the energy consumption of the
C-level label, which is relatively low, other performance labels generally show an increase
in energy consumption. At the same time, the C-level label is the performance rating closest
to the baseline model. This indicates, to some extent, that the spatial design of traditional
courtyards is relatively energy-efficient but has room for improvement in terms of comfort.

Table 9. Performance improvement of each optimization target.

Index/
Performance

Rating

Outdoor Comfort Indoor Comfort Building Energy
Consumption

/EUI

Prediction
AccuracyOutdoor_C

Simulation
Outdoor_H
Simulation

Indoor_H
Simulation

Indoor_sDA
Simulation

1/A 0.051136 0.358759 0.892034 0.89998 0.372426

89%Optimization
percentage
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 

42%

2/B 0.069129 0.365641 0.780046 0.79998 0.317511

82%Optimization
percentage

Buildings 2024, 14, x FOR PEER REVIEW 26 of 31 
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level label, which is relatively low, other performance labels generally show an increase 
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est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
comfort. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
comfort. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
comfort. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
comfort. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
comfort. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
est to the baseline model. This indicates, to some extent, that the spatial design of tradi-
tional courtyards is relatively energy-efficient but has room for improvement in terms of 
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 
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based on the Pareto front screening. Overall, except for the energy consumption of the C-
level label, which is relatively low, other performance labels generally show an increase 
in energy consumption. At the same time, the C-level label is the performance rating clos-
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3.5. Application and Performance Analysis Statistics 
As shown in Figure 33, the scheme performance evaluation process is depicted from 

left to right, representing different design stages. The first image shows the “Status of the 
Base,” indicating the site’s current state. The site can be divided into three parts: Retail 
and dining area, Master’s studio, and Cultural exhibition area, according to its functions 
for subsequent scheme comparisons. Building parameter information within each func-
tional area was input into the machine learning model to calculate the average perfor-
mance rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 
0.60, 0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the 
Overall Performance Score was calculated, with the final score ranging between 0 and 1. 
As illustrated, the Overall Performance Score for the initial base state was 0.55. The second 
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and 
new construction. The preservation-focused design respects the original village texture 
but results in limited overall performance improvement. The new construction design is 
more integrated in its overall layout, achieving a higher comprehensive performance score 
but showing less respect for the traditional context. The final plan integrates elements 
from both middle proposals, adjusting the design to include functional spaces honoring 
the original village texture while incorporating large spaces to meet modern functional 
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show 
that the final plan improves overall performance by 36% compared with the status of the 
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable 
training model is available for performance evaluation. Instead, the performance values 
were assessed directly by simulating energy consumption and comfort. These values were 
then compared with the corresponding performance scores for each rating category to 
identify the closest rating. Regarding alley space control, the north-south streets marked 
in red represent the main pedestrian pathways, which were appropriately widened in the 
design. The internal alleys marked in blue were delineated and designed according to the 
specific needs of each scheme. 

−2%

Buildings 2024, 14, x FOR PEER REVIEW 26 of 31 
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3.5. Application and Performance Analysis Statistics

As shown in Figure 33, the scheme performance evaluation process is depicted from
left to right, representing different design stages. The first image shows the “Status of the
Base”, indicating the site’s current state. The site can be divided into three parts: Retail and
dining area, Master’s studio, and Cultural exhibition area, according to its functions for
subsequent scheme comparisons. Building parameter information within each functional
area was input into the machine learning model to calculate the average performance
rating for each location. Ratings from F to A were assigned values of 0.15, 0.30, 0.45, 0.60,
0.75, and 1.00, respectively. Based on the area proportion of each functional zone, the
Overall Performance Score was calculated, with the final score ranging between 0 and 1.
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As illustrated, the Overall Performance Score for the initial base state was 0.55. The second
and third images, representing Plan 1 and Plan 2, indicate proposals for preservation and
new construction. The preservation-focused design respects the original village texture
but results in limited overall performance improvement. The new construction design is
more integrated in its overall layout, achieving a higher comprehensive performance score
but showing less respect for the traditional context. The final plan integrates elements
from both middle proposals, adjusting the design to include functional spaces honoring
the original village texture while incorporating large spaces to meet modern functional
demands. The Overall Performance Score aligns with that of Plan 2. The calculations show
that the final plan improves overall performance by 36% compared with the status of the
base. It is important to note that for large spaces (e.g., the Master’s Studio), no suitable
training model is available for performance evaluation. Instead, the performance values
were assessed directly by simulating energy consumption and comfort. These values were
then compared with the corresponding performance scores for each rating category to
identify the closest rating. Regarding alley space control, the north-south streets marked
in red represent the main pedestrian pathways, which were appropriately widened in the
design. The internal alleys marked in blue were delineated and designed according to the
specific needs of each scheme.

Buildings 2024, 14, x FOR PEER REVIEW 27 of 31 
 

 

Figure 33. Flowchart of design schemes. 

In summary, the validation of the above projects demonstrates that this workflow has 
effectively achieved the goal of integrating performance evaluation with design in the 
early stages. The process comprehensively considers aspects such as road boundary opti-
mization, functional zoning, and performance evaluation, and it provides real-time feed-
back on performance assessments. 

4. Discussion 
Research on the performance simulation of traditional villages often focuses on the 

thermal insulation of walls and windows, energy-saving strategies for HVAC systems, 
and other micro-level aspects [44–48]. However, there is rarely an emphasis on design-
oriented strategies, such as the spatial relationship between courtyards and streets, to re-
duce building energy consumption and enhance comfort. This study analyzed the micro-
climate environment of villages from the two dimensions of courtyards and streets using 
the XGBoost algorithm. By training a dataset generated from design, a prediction model 
was obtained. This prediction model allows for rapid performance assessment of planning 
schemes, significantly reducing time and economic costs. It changes the usual design pro-
cess where performance prediction can only be conducted after the completion of plan-
ning and design, allowing for relatively accurate forecasts at the early stages of planning 
and design. However, this design process still has certain limitations. Firstly, the current 
analysis results of street performance only apply to optimizing the original scheme, with 
limited correlation analysis between streets and courtyards. Including street data in ma-
chine learning would greatly increase time costs, and the presence of many different di-
mensional evaluation indicators would also reduce the accuracy of performance predic-
tions. Secondly, in the stage of generative design based on multi-objective optimization, 
the involvement of multiple goals and the time cost of thousands of iterations create 

Figure 33. Flowchart of design schemes.

In summary, the validation of the above projects demonstrates that this workflow
has effectively achieved the goal of integrating performance evaluation with design in
the early stages. The process comprehensively considers aspects such as road boundary
optimization, functional zoning, and performance evaluation, and it provides real-time
feedback on performance assessments.
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4. Discussion

Research on the performance simulation of traditional villages often focuses on the
thermal insulation of walls and windows, energy-saving strategies for HVAC systems,
and other micro-level aspects [44–48]. However, there is rarely an emphasis on design-
oriented strategies, such as the spatial relationship between courtyards and streets, to
reduce building energy consumption and enhance comfort. This study analyzed the mi-
croclimate environment of villages from the two dimensions of courtyards and streets
using the XGBoost algorithm. By training a dataset generated from design, a prediction
model was obtained. This prediction model allows for rapid performance assessment of
planning schemes, significantly reducing time and economic costs. It changes the usual
design process where performance prediction can only be conducted after the completion
of planning and design, allowing for relatively accurate forecasts at the early stages of
planning and design. However, this design process still has certain limitations. Firstly, the
current analysis results of street performance only apply to optimizing the original scheme,
with limited correlation analysis between streets and courtyards. Including street data in
machine learning would greatly increase time costs, and the presence of many different
dimensional evaluation indicators would also reduce the accuracy of performance predic-
tions. Secondly, in the stage of generative design based on multi-objective optimization, the
involvement of multiple goals and the time cost of thousands of iterations create difficulties
for subsequent applications. Lastly, regarding the machine learning algorithm, this study
selected the XGBoost model, which is widely used in the professional field. However,
the generalizability of its classification prediction model requires further exploration. If
design variables are changed or the prediction target is modified, the prediction accuracy
may vary.

5. Conclusions

At the early planning and design stage, this paper proposes a design workflow that
combines performance-based generative design with machine learning. During the perfor-
mance simulation stage, the study conducted performance prediction analysis for court-
yards and street spaces. In the analysis of street performance, regression analysis of thermal
comfort indicated that D_50, R_100, and A_50 can explain 35.3% of the variance in ∆PET_C,
while G_50, H_50, W_100, and R_100 can explain 49.3% of the variance in ∆PET_H. Analy-
sis of the wind environment shows that a street width of 1.5 m has the highest comfortable
wind speed ratio in various spatial scales. For street height-to-width ratios, in summer, a
building height-to-width ratio of 1.5 achieves the highest comfortable wind speed ratio. In
winter, except for buildings 6 m or higher, where the ratio needs to be 3, buildings lower
than 6 m achieve the highest comfortable wind speed ratio at a height-to-width ratio of
1.5. In the performance analysis of courtyards, a comprehensive analysis of various types
of courtyards’ PET and MRT shows that three-sided courtyards perform best overall. In
the courtyard performance simulation stage, the models selected and optimized through
MOGO, based on the Average of Fitness Ranks and the Relative Difference between Fitness
Ranks, showed improvements in building comfort and energy consumption. Notably, both
sDA and ITCA_H decreased to varying degrees during the optimization process. In the
machine learning stage, this study verified the accuracy of performance labels, showing
89% accuracy for A-rated performance and 88% for F-rated performance, with a relatively
lower accuracy of 75% for D-rated performance. Observing the performance prediction
analysis results, the baseline model, although classified as C under existing performance
rating rules, had the lowest energy use intensity (EUI), indicating that traditional village
courtyard designs perform well in passive energy saving and have significant potential for
improving comfort. Models rated A showed significant improvements in indoor comfort,
with Indoor_H and Indoor_sDA increasing by 12% and 11%, respectively, while outdoor
comfort and building energy consumption decreased, especially with a 42% reduction in
EUI efficiency. This result relates to the selection of performance labels, where the paper
prioritizes indoor illuminance sDA following the Pareto frontier, biasing subsequent ma-



Buildings 2024, 14, 2796 29 of 31

chine learning training results towards improved indoor comfort. Results would vary if the
selection criteria were changed to outdoor comfort indicators like PET or building energy
consumption EUI. Practitioners can adjust criteria as needed during actual operations.
Finally, in the scheme validation phase, this study selected a real site within the study area
for validation. After assessing the performance of the original site project, two rounds of
scheme design were conducted based on different development objectives. Compared with
the original performance score of 0.55, the optimized planning scheme achieved a 36%
improvement, reaching a score of 0.75. Overall, the workflow based on generative design
and machine learning can be applied at the early stage of planning and design, providing
relatively professional advice and reference for practitioners in optimizing building and
outdoor environment performance. The optimized models at each design stage showed
performance improvements over the baseline scheme. Street prediction and machine learn-
ing algorithm models can also offer specific design suggestions and timely performance
evaluation feedback for planning schemes.

However, this study has some limitations. First, the research focuses on traditional
villages in northern China, most located in mid-to-high altitude mountainous areas. Unlike
plain villages with multiple courtyards, these mountainous villages are often constrained
by topography and typically have single courtyards. As a result, the predictive model based
on the three-sided courtyard has limited applicability to courtyards on flat terrains. Future
research could build upon this workflow to include an analysis of courtyard combinations
in plain villages. In specific application scenarios, planners can incorporate meteorolog-
ical data of different climate zones into the model calculations and develop appropriate
machine-learning models according to the workflow. Second, given the complexity of real-
world conditions, the performance simulation of village courtyards in this study primarily
compares the performance of various schemes rather than analyzing a specific scheme
in detail. This approach inevitably simplifies the simulation of real conditions, such as
the thermal performance of water systems and the impact of plant transpiration on the
atmospheric environment. Lastly, while this study focuses on energy consumption and
thermal comfort, other factors like noise pollution and indoor glare, which also affect user
experience, were observed during field research. Future studies should incorporate a com-
prehensive analysis of environmental sound, light, and heat to more accurately simulate
and analyze the real microclimate of villages, providing more professional design advice
and guidance for planning practitioners.
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