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Abstract: The purpose of this research is to compare clustering methods and pick up the optimal
clustered approach for rural building energy consumption data. Research undertaken so far has
mainly focused on solving specific issues when employing the clustered method. This paper con‑
cerns Yushan island resident’s time‑series electricity usage data as a database for analysis. Fourteen
algorithms in five categories were used for cluster analysis of the basic data sets. The result shows
that Km_Euclidean and Km_shape present better clustering effects and fitting performance on con‑
tinuous data than other algorithms, with a high accuracy rate of 67.05% and 65.09%. Km_DTW is
applicable to intermittent curves instead of continuous data with a low precision rate of 35.29% for
line curves. The final conclusion indicates that the K‑means algorithm with Euclidean distance cal‑
culation and the k‑shape algorithm are the two best clustering algorithms for building time‑series
energy curves. The deep learning algorithm can not cluster time‑series‑building electricity usage
data under default parameters in high precision.

Keywords: cluster analysis; rural building; time‑series electricity; carbon emission; energy efficiency

1. Introduction
1.1. Background

With the ongoing progression of the economy, global energy consumption levels are
steadily rising, with building energy usage constituting approximately 40% of total energy
consumption—a figure that continues to grow [1]—contributing to over 30% of CO2 emis‑
sions [2].

Tomitigate the current reliance on fossil fuels and, consequently, lessen the adverse ef‑
fects on the global climate, attention has shifted towards clean energy sources such as solar,
wind, and geothermal energy. Research indicates that the installed capacity of renewable
energy was around 2800 GW in 2020 [3], increasing to 3064 GW in 2021 [4]. Furthermore,
it is suggested that achieving an installed capacity of 27,700 GW of renewable energy by
2050 could help limit global temperature rise to no more than 1.5 degrees Celsius by that
year [5].

Reducing the energy consumption tied to building operations is vital for reaching
sustainability objectives. Effective energy management is essential for enhancing energy
efficiency and minimizing both total energy usage and operational costs. Concurrently,
sophisticated automatic control technologies have been developed to manage energy con‑
sumption with precision, contributing to the resolution of global energy issues. Never‑
theless, despite the proliferation of energy‑saving technologies and policies, applying ad‑
vanced technologies and enacting policies still necessitates human intervention. Research
has shown that human behavior significantly influences building energy consumption [6].

Data mining (DM) has emerged as a powerful method for uncovering patterns in
building operation energy consumptiondata, garnering significant attention in recent years.
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Unlike traditional statistical or physical principle‑based approaches, DM excels at process‑
ing massive datasets, uncovering potentially valuable and previously unknown informa‑
tion, and requiring less domain expertise [7]. One of the key insights gained through
DM techniques is load profiling, which involves grouping temporal subsequences of mea‑
sured electricity data to discern typical electricity consumption patterns in buildings [8].
However, these raw electricity consumption patterns can be challenging to interpret [7].
Thus, the interpretation of clustering results, referred to as “knowledge discovery”, be‑
comes an attractive andvaluable step,makingDM techniquesmore practical for real‑world
applications.

1.2. Literature Review
Unsupervised learning techniques are highly effective in discerning patterns in build‑

ing electricity consumption from operational data [9]. Recognizing typical electricity load
patterns (TELPs) is crucial for comprehending the characteristics of daily electricity load
profiles (DELPs) in buildings [10]. Clustering, a commonly employed unsupervised learn‑
ing method, is extensively used to extract building electricity load patterns by identify‑
ing inherent patterns within datasets [11]. Clustering algorithms utilized for analyzing
electricity load profiles can be categorized into partition methods, hierarchical methods,
density‑based methods, and model‑based methods [12].

For instance, Ma et al. utilized the partitioning around medoids algorithm to iden‑
tify typical daily heating load profiles in higher education buildings, using the Pearson
correlation coefficient instead of Euclidean distance to measure dissimilarity between clus‑
ter heating load profiles [13]. Agglomerative hierarchical clustering with combined dis‑
similarity measures was employed to discover electricity load profiles in two university
library buildings [14]. These profiles are more likely to be grouped into the same cluster,
with the K‑means algorithm being a prominent example of this method [15]. Addition‑
ally, K‑medoids and hierarchical clustering are significant components of this approach.
Some recently proposed clustering methods also depend on Euclidean distance. Ref. [16]
used cluster analysis of simulated energy consumption data from 134 US LEED NC of‑
fice buildings to classify them into high, medium, and low energy use intensity clusters,
showing that lower energy use is primarily due to reduced process and heating loads. Ref‑
erence [17] identifies key variables influencing energy consumption in Singaporean office
buildings using k‑means clustering, highlighting gross floor area, non‑air‑conditioning en‑
ergy consumption, chiller efficiency, and chiller capacity. A kRNN‑LSTM deep learning
framework integrated k‑means algorithm was used for predicting and optimizing build‑
ing energy management, achieving 94% accuracy using smart meter data [18]. Similarly,
ref. [19] introduced a cluster‑based aggregate forecastingmethod using k‑medoids and the
additive Gaussian process to improve residential load prediction accuracy. Ref. [20] inves‑
tigated a framework using hierarchical clustering to identify inefficient rural US homes for
energy efficiency improvements.

However, these traditional algorithms are inadequate for capturing temporal varia‑
tions between data objects, which is a significant limitation for clustering occupant behav‑
ior patterns that are strongly time‑dependent. Consequently, recent years have seen an
increased interest among researchers in utilizing time‑series clustering algorithms, such
as the K‑shape clustering algorithm, to enhance clustering accuracy [21]. As illustrated
in Figure 1, over 55% of researchers employ the K‑means clustering method. In contrast,
approximately 8% use the K‑mode clustering method, around 4% use the K‑shape cluster‑
ing method, and about 10% use hierarchical clustering methods. The remaining 22% of
researchers utilize various other clustering algorithms [22].

The k‑means algorithm, a classic partitioning clusteringmethod, is frequently utilized
in datamining literature due to its ease of implementation andhigh efficiency [11]. Ref. [23]
compared the k‑means, bisecting k‑means, and Gaussian mixture model algorithms and
found that k‑means was the most suitable for analyzing building electricity load patterns
in a dataset comprising 1910 residential and 1919 non‑residential buildings. Ref. [24] pro‑
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posed an improved k‑means clustering method that integrates optimal initial cluster cen‑
ters with principal component analysis to enhance convergence speed using large‑scale
smart meter data. Additionally, ref. [25] used the k‑means algorithm to identify daily heat‑
ing electricity load profiles of 139 Danish dwellings, revealing two main clusters: one for
weekday profiles and another for weekend profiles.

Buildings 2024, 14, x FOR PEER REVIEW 3 of 24 
 

 
Figure 1. Percentage condition for various clustered usage in the literature. 

The k-means algorithm, a classic partitioning clustering method, is frequently uti-
lized in data mining literature due to its ease of implementation and high efficiency [11]. 
Ref. [23] compared the k-means, bisecting k-means, and Gaussian mixture model algo-
rithms and found that k-means was the most suitable for analyzing building electricity 
load patterns in a dataset comprising 1910 residential and 1919 non-residential buildings. 
Ref. [24] proposed an improved k-means clustering method that integrates optimal initial 
cluster centers with principal component analysis to enhance convergence speed using 
large-scale smart meter data. Additionally, ref. [25] used the k-means algorithm to identify 
daily heating electricity load profiles of 139 Danish dwellings, revealing two main clusters: 
one for weekday profiles and another for weekend profiles. 

However, for large time-series datasets with high dimensionality (24 or higher), some 
clustering algorithms, including k-means, become impractical and may not be suitable for 
grouping similar electricity load profiles. This issue is known as the “curse of dimension-
ality” [26]. Dynamic time warping was developed to measure the similarity between time 
series to address this issue, but it can be computationally intensive. 

To mitigate these issues, researchers have developed strategies to reduce data dimen-
sionality. One approach is feature definition, which involves describing each electricity 
load profile with a limited number of expert-defined features, avoiding additional param-
eters. Ref. [27] defined three load shape parameters extracted from the raw time-series 
data: the peak-base load ratio, working/nonworking day load ratio, and on-hour duration. 
Ref. [28] defined seven statistical features—mean, standard deviation, skewness, kurtosis, 
chaos, energy, and periodicity—to represent the raw time-series, and then applied k-
means clustering. Ref. [29] divided a day into four periods: overnight, breakfast, daytime, 
and evening, and calculated the relative average electricity consumption for each period. 
Ref. [24] improved the K-means algorithm into shape-based clustering to identify electric-
ity consumption patterns from residential smart meter data. Ref. [30] investigated a clus-
tering method of k-means for smart meter electricity demand data, finding significant var-
iability in household consumption patterns that challenge standard assumptions and 
highlight important implications for energy policy and demand response programs. Ref. 
[31] developed a novel symbolic hierarchical clustering method to cluster the building 
operation patterns. In other words, some advanced deep-learning approaches were also 
developed for the purpose of data mining [32]. Ref. [33] developed a Monte Carlo-based 
model coupled with the k-means algorithm, using real-time occupancy data to improve 
building energy simulation performance, showing significant load prediction improve-
ments over fixed schedules. Compared to raw time series, these studies have 

Figure 1. Percentage condition for various clustered usage in the literature.

However, for large time‑series datasets with high dimensionality (24 or higher), some
clustering algorithms, including k‑means, become impractical and may not be suitable for
grouping similar electricity load profiles. This issue is known as the “curse of dimension‑
ality” [26]. Dynamic time warping was developed to measure the similarity between time
series to address this issue, but it can be computationally intensive.

To mitigate these issues, researchers have developed strategies to reduce data dimen‑
sionality. One approach is feature definition, which involves describing each electricity
load profile with a limited number of expert‑defined features, avoiding additional param‑
eters. Ref. [27] defined three load shape parameters extracted from the raw time‑series
data: the peak‑base load ratio, working/nonworking day load ratio, and on‑hour dura‑
tion. Ref. [28] defined seven statistical features—mean, standard deviation, skewness, kur‑
tosis, chaos, energy, and periodicity—to represent the raw time‑series, and then applied
k‑means clustering. Ref. [29] divided a day into four periods: overnight, breakfast, day‑
time, and evening, and calculated the relative average electricity consumption for each
period. Ref. [24] improved the K‑means algorithm into shape‑based clustering to identify
electricity consumption patterns from residential smart meter data. Ref. [30] investigated
a clustering method of k‑means for smart meter electricity demand data, finding signifi‑
cant variability in household consumption patterns that challenge standard assumptions
and highlight important implications for energy policy and demand response programs.
Ref. [31] developed a novel symbolic hierarchical clusteringmethod to cluster the building
operation patterns. In other words, some advanced deep‑learning approaches were also
developed for the purpose of data mining [32]. Ref. [33] developed a Monte Carlo‑based
model coupled with the k‑means algorithm, using real‑time occupancy data to improve
building energy simulation performance, showing significant load prediction improve‑
ments over fixed schedules. Compared to raw time series, these studies have demonstrated
that feature‑based clustering can enhance clustering performance while reducing time and
computational costs.
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In addition to clustering methods, association rule mining algorithms have been suc‑
cessfully applied to identify energy‑inefficient appliance usage behaviors [34], window
usage behaviors [35], energy‑inefficient lighting system usage behaviors [36], and the im‑
pacts of occupants on residential electricity consumption [37]. These algorithms have also
been used to detect sensor faults, device faults, and control strategies in building energy
systems. For instance, Yu et al. identified an energy‑inefficient exhaust fan control strategy
and two air handling unit faults in an HVAC system using association rule mining algo‑
rithms based on operational data [38]. Recent research has shown that association rule
mining methods can also uncover dynamic operation patterns in building energy systems.
For example, a temporal association rule mining method [39] and a progressive pattern
mining method [40] have been proposed to detect energetic anomalies in HVAC systems.
Ref. [41] combined the analytic hierarchy process manner into ARM route archiving build‑
ing energy systems post evaluation. Ref. [42] integrated anomaly detection and dynamic
energy performance evaluation functions into one ARM workflow. Ref. [43] adopted the
ARM method and successfully investigated the dynamic relationship between building
patterns and the people moving mode, both pre‑pandemic and during the pandemic. The
results showed that the size of the floor and the number of rooms have a positive impact
on higher occupancy levels. Ref. [44] improved the Apriori method, finding occupants’ ac‑
tivities could lead to enhanced pollutant concentrations within 2 h in residential buildings.

According to the book Post‑Mining of Association Rules: Techniques for Effective Knowl‑
edge Extraction [45], the number of association rules generated in fields such as retail, tele‑
com, and insurance is often enormous, with many being of little value. The same problem
has been identified in the building sector, as noted in the literature. This significantly in‑
creases the time required for domain experts to extract valuable knowledge from themined
association rules. Consequently, post‑mining is essential for enhancing the efficiency of
identifying valuable association rules.

Combining the cluster and association rule mining approaches, some research has
been carried out to investigate building running conditions. Ref. [46] proposes a three‑
step K‑means clustering framework for energy benchmarking using time‑series data, im‑
proving accuracy by categorizing buildings based on operational similarities. Ref. [47]
proposed an effective post‑mining workflow with FP‑growth to filter and reduce associa‑
tion rules from building operation data, revealing significant patterns and faults. Ref. [19]
studied a hybrid data mining‑based framework for identifying and interpreting typical
electricity load patterns to enhance building energy management and anomaly detection.

Table 1 presents some research that has investigated similar tasks with method sig‑
nificant information. This table shows that most of the articles used single clustering and
ARMmethods to realize the knowledge discovery mission from the panel data. It is insuf‑
ficient to determinewhich algorithm is the best for time‑series data analysis in the building
investigation field. This research aims to address the existing literature gap concerning the
optimal algorithm for time‑series data analysis in building energy investigations. While
previous studies have primarily employed single clustering and ARMmethods for knowl‑
edge discovery from panel data, they have not definitively determined the most effective
approach for time‑series data. This study compares various clustering methods analyz‑
ing occupants’ continuous electricity demand behavior in building energy management.
It contributes by thoroughly exploring various time series clustering algorithms and com‑
paring their efficacy in capturing occupants’ power load demand patterns. Additionally,
the study introduces novel indicators to assess clustering performance and examines fac‑
tors influencing disparate clustering outcomes.



Buildings 2024, 14, 2491 5 of 24

Table 1. Comparison of different literature.

Author Time Data Type Methods Unsupervised Algorithms Purpose

[48] 2015 Panel data Cluster; regression k‑means Prediction

[49] 2016 Panel data Cluster; ARM k‑means; apriori Knowledge extract

[50] 2018 Longitudinal data ARM Gradual pattern mining Knowledge extract

[51] 2018 Panel data Cluster k‑means Knowledge extract

[17] 2018 Cross‑section data Cluster k‑means Knowledge extract

[30] 2019 Panel data Cluster k‑means Knowledge extract

[24] 2019 Panel data Cluster k‑means Knowledge extract

[47] 2020 Cross‑section data ARM FP‑growth Knowledge extract

[46] 2020 Panel data Cluster k‑means Knowledge extract

[19] 2021 Panel data Cluster k‑means Knowledge extract

[18] 2022 Cross‑section data Cluster; regression k‑means Prediction

[52] 2023 Panel data Cluster; regression k‑medoids Prediction

[20] 2023 Panel data Cluster Hierarchical Knowledge extract

[33] 2023 Panel data Cluster k‑means Knowledge extract

[53] 2024 Cross‑section data Cluster Hierarchical Knowledge extract

[22] 2024 Panel data Cluster k‑means; k‑shape;
DTW, DDTW Knowledge extract

[54] 2024 Panel data Cluster t‑SNE Knowledge extract

[55] 2024 Panel data Cluster; classification k‑means Knowledge
extract; prediction

[32] 2024 Panel data Cluster Deep learning Knowledge extract

To explore the application prospects of various time‑series clustering algorithms in
analyzing occupants’ continuous electricity demand behavior, this study compares the
clustering effects of multiple different algorithms. The contributions of this study are
as follows:
1. Conducted a comprehensive investigation of time series clustering methods for occu‑

pants’ behavior in the building energy field;
2. Compared the clustering effects of various time series clustering algorithms on occu‑

pants’ continuous power load demand behavior;
3. Introduced two specific indicators for evaluating the clustering effects of these

algorithms;
4. Analyzed the potential reasons for differences in clustering results across different

algorithms;
5. Discovered island rural residents’ behavior law for energy saving in line with sea

island geographic characteristics.
This paper is organized as follows. Section 1 introduces several investigations that

have been carried out in recent years, pointing to the shortage of current research. Section 2
indicates the clustered methods used in this paper and interprets the relative computa‑
tional theory. The third result part (Section 3) analyses the studied results with quanti‑
tative performance indicators. The Discussion section (Section 4) focuses on comparing
different algorithms and potential reasons for various approaches and typical energy vari‑
ation phenomenon of rural buildings. In the final part (Section 5), all crucial findings are
summarized as conclusions.
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2. Materials and Methods
2.1. Outline

In this paper, Figure 2 presents the basic research steps. First, the database consists
of 355 households’ time‑series energy usage data on a typical island for post‑analysis. Sec‑
ondly, in order to achieve a cluster, the data processing phase introduces two manners
of dimensionality reduction and normalization tasks. PCA and t‑SNE are used to reduce
the data dimension and realize the time‑series data visualization. Then, 14 clustering al‑
gorithms are performed on the data. These cluster methods can be classified into five cat‑
egories: k‑means, hierarchical, DBSCAN (density‑based spatial clustering of applications
with noise), machine learning model, and deep learning algorithm.
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Macro and micro level comparison is conducted on clustered results using the perfor‑
mance indicators of accuracy rate and standard deviation. These two performance indica‑
tors are defined in this paper. In line with the comparison consequences, the best advan‑
tage information is the output of cluster algorithms on rural building’s energy variation
curves. In the data analysis section, the clustered result is presented by general accuracy
rate and standard deviation data. On–off time and different periods are the twomain mea‑
sured time for clustering analysis. Finally, some advances for carbon emission reduction
could be provided for the determination of government strategies.

2.2. Data Sources
2.2.1. Island Site

Due to the precision level of the database, Yushan Island is considered the primary
data source. Yushan Island is located in the southeast sea area of Fuding City, Fujian
Province. It covers an area of 21.2 square kilometers, has a diameter of approximately
5 km, and a coastline extending 30.12 km. This region features diverse geographical char‑
acteristics and falls within the subtropical monsoon climate zone. Summers are hot and
humid, with temperatures around 25 ◦C, while winters are mild and dry, averaging 6 ◦C.
The annual average temperature is 18.8 ◦C, with the highest recorded temperature at 38 ◦C
and the lowest at minus 1.2 ◦C. The island is home to six villages, with a total population
of 5003 residents. Figure 3 illustrates the position and layout of Yushan Island.
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2.2.2. Database Condition
Yushan Island, home to 355 households, has had its electricity usage data provided by

the relevant authorities and Yushan town government for each family. This data has been
organized into a time‑series format from 1 May 2021 to 26 May 2022, resulting in a daily
energy consumption curve with 383 data points. These curves, which show variations in
energy usage, serve as the basis for clustering analysis. To further understand the energy
consumption patterns of each household, 355 questionnaires were also prepared to survey
various aspects of power load variation.

Table 2 outlines 14 specific indicators aimed at reflecting the energy consumption
habits of each family. However, not all of these indicators may significantly influence
energy usage patterns. Therefore, efficient methods are necessary to filter out irrelevant
indicators, preparing for the construction of a classifier model. After simplification, the
remaining indicators will form the variables of the classifier model.
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Table 2. Questionnaire options.

Option Explanation Option Explanation

Building Type Type of resident or public building Power Annual electricity consumption

Population Long‑term residents Power intensity Level of electricity consumption

Coast Reside near the seaside or not Insulation Presence of insulation material

Job Primary job type Equipment Cooling equipment used in summer

Island Live on island or not Age Average age of householders

Width Width of rural house Orientation Direction of building

Depth Depth of rural house Structure Type of bearing structure

2.3. Algorithms
To compare clustering algorithms as much as possible, there are 14 algorithms with

five categories, as shown in Table 3. All these manners are performed on the same dataset
to achieve the time‑series information clustered purpose. Despite the different calculation
logic for these approaches, they are evaluated by established performance indicators under
the same levels.

Table 3. All algorithms for clustering analysis.

Algorithm Type Calculation Method Abbreviation

K‑MEANS

k‑shape Km_kshape

Euclidean Km_Euclidean

DTW Km_DTW

softdtw Km_softdtw

Hierarchical

Euclidean Hi_Euclidean

manhattan Hi_Manhattan

DTW Hi_DTW

Density DBSCAN DBSCAN

Model
Hidden Markov model, HMM

Auto‑regressive model AR

Deep learning

Recurrent neural network RNN

Autoencoder Auto

Spectral clustering SC

Time‑window clustering TWC

2.3.1. PCA and t‑SNE
PCA (principal component analysis) and t‑SNE (t‑distributed stochastic neighbor em‑

bedding) are both techniques used inmachine learning and data visualization, particularly
for reducing the dimensionality of data to make it easier to explore and visualize.

PCA is a technique for reducing the dimensionality of data by transforming it into a
set of orthogonal components that capture the maximum variance. It begins by computing
the covariance matrix shown in Equation (1).

C =
1
n∑n

i=1(xi − x)(xi − x)T (1)

where xi are the data points and x is the mean vector. C is the covariance matrix of the
data. PCA then finds eigenvectors vj and eigenvalues λj of C. The principal components
uj are selected based on these eigenvalues, representing directions of maximum variance
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(Equation (2)). By projecting the data onto these components, PCA reduces its dimension‑
ality while preserving key information for efficient visualization and analysis.

uj =
1√
λj

vj (2)

t‑SNE, or t‑distributed stochastic neighbor embedding, aims tomaphigh‑dimensional
data points xi into a lower‑dimensional space yi while preserving pairwise similarities as
much as possible. Itminimizes theKullback–Leibler divergence between the joint probabil‑
ity distributions of the high‑dimensional data pij and the low‑dimensional embeddings qij:

C = ∑i ∑j pijlog
pij

qij
(3)

where pij is the similarity between data points xi and xj in the high‑dimensional space,
normalized as Equation (4). qij represents the similarity between embeddings yi and yj in
the low‑dimensional space using the Student’s t‑distribution:

Pij =
exp

(
−
∥∥xi − xj

∥∥2/2σ2
i

)
∑k ̸=l exp

(
−
∥∥xi − xj

∥∥2/2σ2
i

) (4)

qij =

(
1 +

∥∥yi − yj
∥∥2
)−1

∑k ̸=l

(
1 +

∥∥yi − yj
∥∥2
)−1 (5)

This process effectively preserves local and global structures of the data, making t‑
SNE a powerful tool for visualizing complex datasets.

Z‑score normalization, also known as standardization, is a method of scaling data so
that it has a mean of 0 and a standard deviation of 1. This process is useful in comparing
data that have different units or scales, or for preparing data for machine learning algo‑
rithms that assume data to be normally distributed.

The formula for Z‑score normalization is:

Z = (X − µ)/σ (6)

where Z is the z‑score, X is the original value, µ is the mean of the dataset, and σ is the
standard deviation of the dataset.

2.3.2. k‑Means
The k‑means clustering algorithm is widely used for clustering time‑series data, and

its effectiveness can be influenced by the distance computational method used. Based
on the different distance metrics of Euclidean distance, dynamic time warping (DTW),
and soft dynamic time warping (SoftDTW), the k‑means algorithm could be sorted into
three manners.

Euclidean distance is the most straightforward distance measure and is defined as:

deuclidean(x, y) =
√

∑n
i=1(xi − yi)

2 (7)

where x and y are two time‑series of length n.
DTW is a more flexible distance measure that allows for the alignment of the time

serieswith different lengths or nonlinear distortions. TheDTWdistance between two time‑
series x and y is defined as the minimum cumulative distance required to align them:

ddtw(x, y) =
√

minπ∑(i,j)∈π
(xi − yi)

2 (8)
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where π is a warping path that defines a mapping between indices of x and y. The DTW
distance is computed using dynamic programming. Let D(i, j) be the cumulative distance
up to point (i, j):

D(i, j) = (xi − yi)
2 +min(D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)) (9)

The final DTW distance is D(n, m) where n and m are the lengths of x and y,
respectively.

SoftDTW is a differentiable version of DTW that provides a smoother cost function,
which is useful for optimization. It replaces the minimum operation in DTW with a soft
minimum, which can be defined using a smoothing parameter γ. The SoftDTW distance
is computed similarly to DTW, but using the soft minimum:

S(i, j) = (xi − yi)
2 + so f tminγ(S(i − 1, j), S(i, j − 1), S(i − 1.j − 1)) (10)

The parameter γ controls the smoothness, with larger values making the function
smoother.

K‑Shape is a time‑series clustering algorithm that focuses on aligning and clustering
time‑series data based on their shapes. It uses a shape‑based distance measure, which is
invariant to scaling and shifting, making it particularly suitable for time‑series data. Fun‑
damentally speaking, it also belongs to the k‑means method.

The shape‑based distance measure in K‑Shape is defined using the cross‑correlation
between z‑normalized time series. For two z‑normalized time‑series X and Y, the shape‑
based distance is defined as:

SBD
(→

x ,
→
y
)
= 1 −max

w

(
CCW

(→
x ,

→
y
)

/
√

R0

(→
x ·→x

)
· R0

(→
y ·→y

)
(11)

where τ is the lag and (i + τ) mod  n ensures circularity.

2.3.3. Hierarchical Clustering Algorithm
Hierarchical clustering is a method for creating a hierarchy of clusters for time‑series

data. Unlike partitional methods like k‑means, hierarchical clustering does not require the
number of clusters to be specified in advance. Instead, it builds a dendrogram, a tree‑like
structure that represents the nested grouping of the data based on a chosen distancemetric.
Similarly, in terms of distance calculation, Euclidean distance, DTW, andManhattan could
also be used.

Manhattan distance is defined as the sum of the absolute differences between corre‑
sponding points of the two time series:

dmanhattan(X, Y) = ∑n
i=1|Xi − Yi| (12)

2.3.4. DBSCAN
DBSCAN (density‑based spatial clustering of applications with noise) is a popular

clustering algorithm that is particularly effective at identifying clusters of varying shapes
and densities in time‑series data. Unlike traditional clustering methods like k‑means, DB‑
SCAN does not require the number of clusters to be specified beforehand and can auto‑
matically identify outliers as noise. The distance metrics are also the same as the afore‑
mentioned approaches. The working theory is as follows:

For a given point p, its ε‑neighborhood Nε(P) consists of all points within a distance
ε from p, as shown in Equation (13):

Nε(P) = {q|distance(p, q) ≤ ε} (13)
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where distance is typically a metric like Euclidean distance. Point p is considered a core
point if the number of points within its ε‑neighborhood is at least a given thresholdminPts.
Therefore, p is a core point if it meets the limitation condition Equation (14):

|Nε(P)| ≥ minPts (14)

where minPts is a parameter that determines the minimum number of points required to
form a dense region. Point q is density‑reachable from a point p if there exists a chain of
core pointswhere each core point iswithin the ε‑neighborhood of the previous one, and q is
in the ε‑neighborhood of the last core point in the chain. DBSCAN starts by identifying all
core points based on the ε‑neighborhood and the minPts threshold. It then forms clusters
by connecting core points that are density‑reachable from each other.

Points that are not core points but fall within the ε‑neighborhood of core points are
added to the cluster of the core point. Finally, points that are not reachable from any core
point are labeled as noise.

2.3.5. Model
Hidden Markov models (HMMs) are probabilistic models that assume the system

being modeled is a Markov process with unobserved (hidden) states. HMMs are par‑
ticularly useful for time‑series data as they can model the temporal dependencies and
underlying structure.

Auto‑regressive (AR) models are linear models that predict future values of a time
series based on its own past values. An AR model of order p (AR(p)) is given by:

Xt = c + ∑p
i=1 ∅iXt−1 + ϵt (15)

where Xt is the value of the time series at time; t is a constant; ∅i are the parameters of the
model; ϵt is white noise (random error term).

2.3.6. Deep Learning
Recurrent neural networks (RNNs) are a class of neural networks that are particularly

well‑suited for handling sequential data such as time series. RNNs have a unique archi‑
tecture that allows them to maintain information about previous inputs in their internal
state, which makes them effective for capturing temporal dependencies. RNNs process
sequences of data one step at a time, maintaining an internal state that captures informa‑
tion about previous steps. This internal state allows the RNN to exhibit temporal dynamic
behavior, which is crucial for time‑series analysis.

Hidden state update is calculated as follows:

ht = σ(Whht−1 + WxXt + bh) (16)

where Wh is the weight matrix for the hidden state; Wx is the weight matrix for the input;
bh is the bias term, and σ is the activation function. The output calculation is

yt = Wyht + by (17)

where Wy is the weight matrix for the output and by is the bias term.
Autoencoders are a type of neural network used to learn efficient codings of input data.

They are particularly useful for dimensionality reduction and feature extraction, making
them well‑suited for clustering time‑series data. An autoencoder consists of two main
parts: an encoder that compresses the input into a latent space representation and a de‑
coder that reconstructs the input from this representation.
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In addition, spectral clustering is another technique that leverages the eigenvalues
(spectrum) of a similarity matrix derived from the data to perform dimensionality reduc‑
tion before clustering in fewer dimensions. It is particularly effective for identifying clus‑
ters in data that is not well‑separated in a traditional Euclidean space, including time‑
series data.

Apart from the above algorithms, time‑window clustering is a special approach that
divides time‑series data into smaller, moremanageable segments (timewindows) and then
performs clustering on these segments. This method is particularly useful for identifying
patterns or behaviors that vary over time within the same time series. The steps for time‑
window clustering typically include segmenting the data, extracting features from each
segment, and applying a clustering algorithm to these features.

2.4. Perform Indicators
2.4.1. Accuracy Rate

First of all, the accuracy rate is themost significant purpose of a cluster. Consequently,
this investigation first takes the manual recognized energy variation pattern as the basic
standard. This typically involves observing, analyzing, or interpreting data manually to
recognize specific trends or variations in energy over time or across different conditions.
In essence, the pattern was detected through careful examination and analysis by multiple
researchers. These recognition results are defined as the correct energy variation pattern.
All clustered results by various algorithms are compared with this defined criterion. Pa‑
rameter Aacc is defined as follows in Equation (18) to measure the clustered precision.

Aacc = (the number o f correct cluster sample)/(the number o f all samples) (18)

In this case, the larger Aacc represents a greater cluster algorithm of higher accuracy.

2.4.2. Standard Deviation
Traditionally, there are currently many methods evaluating clustering results, such

as the sum of squared errors (SSE), the silhouette coefficient (SC), the Calinski Harabasz
index (CH), the Davies Bouldin index (DB), and the Dunn index (DI). However, these met‑
rics primarily search for the k value instead of the final clustering performance. Therefore,
it is indispensable to define a new index to measure the energy curve features. Ideally, the
clustering curve should be perfectly parallel to the energy curves. That is to say, the dif‑
ference between the cluster and basic data are the same at each time. Hence, the standard
deviation of the difference between the cluster and the sample values (SD) is defined as
Equation (12) to measure the clustering result.

SD =

√√√√∑n
i=1

[
(ti − ti−cls)− (t− tcls)

]2

n
(19)

where t is the energy value for sample data, i refers to the time, tcls means the energy value
of the cluster center, and n represents the total number of time points. According to this
calculationmethod, and the smaller SD value represents the better clustering performance.

Beyond the SD being used for assessing overall clustered performance, it also needs
to observe and compare information in detail. Thus, the beginning time of the crest and
trough is also recorded to describe the clustered energy profile. It could also be called as
the energy variation starts to change time. Ton means the time the wave starts and Toff
refers to the time of the wave end, as shown in Figure 4.
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3. Results
3.1. Questionnaire Results

The questionnaire aims to gather data on building factors to analyze how each cor‑
relates with carbon emissions from buildings. Researchers investigated a total of 355 res‑
idents face‑to‑face over two months. As we surveyed these questions in person, the re‑
sponse rate was 100%. Meanwhile, the validation efficiency was also 100%. In this case,
355 records were used to analyze the clustering performance for different algorithms and
study the relationship between building attributes and clustered results.

Figure 5 presents the statistical results of the questionnaire. For the investigated sam‑
ples, the number of residences was almost equal to that of the public‑type Most families
consisted of two people because the young people lived out of island to make money. For
islanders, a large number of people work in fishing and agriculture, while the least num‑
ber of people work in secondary industries. In term of energy usage structure, as there
are many elders, the house energy consumption mainly remains at low level. In addition,
more families usually live on the island in the investigated samples.

Buildings 2024, 14, x FOR PEER REVIEW 13 of 24 
 

number of people work in secondary industries. In term of energy usage structure, as 
there are many elders, the house energy consumption mainly remains at low level. In ad-
dition, more families usually live on the island in the investigated samples. 

 
Figure 5. Questionnaire statistical results. 

3.2. Clustered Accuracy Rate 
After clustering for all energy data, the overall shape performance and accurate rate 

are shown in Table 4. All algorithms could cluster energy data into three types of M, V, 
and Line. The M type illustrates two significant wave peaks, and the V pattern shows some 
incisive waves in a short period. The line-type curve has no distinct variation throughout 
the whole year. 

The result shows that in the algorithms of the model, deep learning fails in grouping 
energy variation data (Figure 6). It can be seen that each energy consumption curve, no 
matter in what form, is clustered into the line type. No variation features are identified via 
intelligent algorithms. Therefore, these complicated methods are not suitable for time-se-
ries building power loads cluster analysis. This is because a highly complicated machine 
learning approach always requires a long-time parameter tuning procedure, which has 
bad achievement under default conditions. 

Table 4. Accuracy rate for different algorithms. 

Algorithms 
M V LINE Total 

Y N Y N Y N Y N 
Km_kshape 66.67% 33.33% 81.25% 18.75% 41.18% 58.82% 67.05% 32.95% 

Km_Euclidean 69.23% 30.77% 73.38% 26.62% 60.10% 39.90% 65.09% 34.91% 
Km_DTW 84.62% 15.38% 53.13% 46.88% 35.29% 64.71% 63.64% 36.36% 

Km_softdtw 84.62% 15.38% 53.13% 46.88% 35.29% 64.71% 63.64% 36.36% 
Hi_Euclidean 97.44% 2.56% 0.00% 100.00% 58.82% 41.18% 54.55% 45.45% 
Hi_Manhattan 89.74% 10.26% 0.00% 100.00% 41.18% 58.82% 47.73% 52.27% 

Hi_DTW 97.44% 2.56% 0.00% 100.00% 5.88% 94.12% 44.32% 55.68% 
DBSCAN 76.92% 23.08% 12.50% 87.50% 17.65% 82.35% 42.05% 57.95% 

(Km_kshape: k-shape algorithm; km_Euclidean: k-means algorithm with Euclidean distance calcu-
lation; Km_DTW: k-means algorithm with dynamic time warping distance calculation; Km_softdtw: 
k-means algorithm with soft dynamic time warping; Hi_Euclidean: hierarchical clustering algo-
rithm with Euclidean distance calculation; Hi_Manhattan: hierarchical clustering algorithm with 

Figure 5. Questionnaire statistical results.

3.2. Clustered Accuracy Rate
After clustering for all energy data, the overall shape performance and accurate rate

are shown in Table 4. All algorithms could cluster energy data into three types ofM, V, and
Line. The M type illustrates two significant wave peaks, and the V pattern shows some
incisive waves in a short period. The line‑type curve has no distinct variation throughout
the whole year.
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Table 4. Accuracy rate for different algorithms.

Algorithms
M V LINE Total

Y N Y N Y N Y N

Km_kshape 66.67% 33.33% 81.25% 18.75% 41.18% 58.82% 67.05% 32.95%

Km_Euclidean 69.23% 30.77% 73.38% 26.62% 60.10% 39.90% 65.09% 34.91%

Km_DTW 84.62% 15.38% 53.13% 46.88% 35.29% 64.71% 63.64% 36.36%

Km_softdtw 84.62% 15.38% 53.13% 46.88% 35.29% 64.71% 63.64% 36.36%

Hi_Euclidean 97.44% 2.56% 0.00% 100.00% 58.82% 41.18% 54.55% 45.45%

Hi_Manhattan 89.74% 10.26% 0.00% 100.00% 41.18% 58.82% 47.73% 52.27%

Hi_DTW 97.44% 2.56% 0.00% 100.00% 5.88% 94.12% 44.32% 55.68%

DBSCAN 76.92% 23.08% 12.50% 87.50% 17.65% 82.35% 42.05% 57.95%
(Km_kshape: k‑shape algorithm; km_Euclidean: k‑means algorithm with Euclidean distance calculation;
Km_DTW: k‑means algorithm with dynamic time warping distance calculation; Km_softdtw: k‑means algo‑
rithm with soft dynamic time warping; Hi_Euclidean: hierarchical clustering algorithm with Euclidean distance
calculation; Hi_Manhattan: hierarchical clustering algorithm with Manhattan distance calculation; Hi_DTW: hi‑
erarchical clustering algorithmwith dynamic time warping distance calculation; DBSCAN: density‑based spatial
clustering of applications with noise).

The result shows that in the algorithms of the model, deep learning fails in grouping
energy variation data (Figure 6). It can be seen that each energy consumption curve, no
matter in what form, is clustered into the line type. No variation features are identified
via intelligent algorithms. Therefore, these complicated methods are not suitable for time‑
series building power loads cluster analysis. This is because a highly complicatedmachine
learning approach always requires a long‑time parameter tuning procedure, which has bad
achievement under default conditions.
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Secondly, in general, each k‑means manner indicates an imitative effect, while hier‑
archy algorithm performances vary greatly under different distance calculation methods
(Figure 7). Combining with the accuracy rate, the k‑shape presents the highest total accu‑
racy rate, especially for the V pattern identification aspect. For k‑means with DTW and
softdtw distance computation approach, overall, Aacc is slightly lower than k‑shape, but
this rate is higher in terms of M‑type recognition. Meanwhile, adopting the Euclidean dis‑
tance calculation method of k‑means has better cluster performance. For example, the V
shape and line curve are identified correctly only with 73.38% and 60.10%, respectively.
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In terms of hierarchy clustered manners, each algorithm could cluster the M type
under a high accuracy rate (Figure 8). In contrast, in terms of V pattern recognition, these
algorithm presents the remarkably poor correct situation as shown in the table above, with
a 0.00% accuracy rate. Moreover, in terms of DBSCAN, the M type indicates a good recog‑
nition phenomenon; however, the V and Line type curves are clustered badly and have a
low rate. In consequence, k‑means series algorithms performwell in clustering time‑series
energy variation curves.
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3.3. Clustered SD Values Comparison
SD values could measure the shape‑fitting extent between samples and clustered cen‑

ters. The smaller values correspond to better grouping performance. According to the
clustered accuracy rate, four Km algorithms and the DBSCAN method could successfully
identify time‑series curves. Considering the Km_DTW and Km_softdtw have the same
results, the remaining four algorithms were analyzed via the SD indicator.

Figure 9 presents the difference value between the clustered center and sample data
for the above four algorithms. First of all, DBSCAN’s SD values are the lowest among
all the methods. However, the line and V types only contain three and four sample data
curves, respectively (Figure 9). That means the clustering generalization ability is weak
because most of the data are classified into the M type; for example, the corresponding SD
value of M reached 1.88.
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Secondly, Km_kshape and Km_DTW have the best identification result for M type
comparing other patterns. Meanwhile, Km_Euclidean indicates a good fitting effect in
terms of all three patterns, illustrating that the clustered center curve could precisely reflect
these time series information features. Thirdly, regardingV type, strikewavematching can
not be achieved by Km_DTW successfully (Figure 10). Meanwhile, for Km_kshape, better
fitting results were shown in the initial phase of the wave crest. In general, Km_kshape
had a better‑clustered performance than Km_DTW for the V pattern, which was shown by
a lower SD value.

In terms of the M type, despite the Km_kshape being similar to Km_DTW for the fit‑
ting effect with an identical SD, the matching presentation of Km_DTW was worse than
Km_kshape during the wave period, as shown in Figure 11 (green frame). It can be ob‑
served that the differences between the clustered centers and samples varied significantly
during the crest of the wave. Therefore, Km_DTW is more suitable for recognizing the
steady time‑series data compared to fluctuating data. Lastly, for the line type, Km_kshape
failed to identify the abnormal data after 7 May. Contrarily, Km_DTW could successfully
fit these exceptional data into the line type. Thus, Km_DTW has better performance in
terms of processing unusual data than Km_kshape, which presents a lower SD value.

Overall, the DBSCAN algorithm is not conducive to promote because of its bad gen‑
eralization capability. Km_Euclidean presents the best clustering effect and fitting perfor‑
mance. Other algorithms have their advantages, respectively. Km_kshape is appropri‑
ate for normal time‑series energy data; however, it is weak concerning abnormal samples.
Moreover, Km_DTW could dispose of steady and abnormal data. However, with info
varying considerably in a short time, it can not achieve a great fitting performance.
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4. Discussion
4.1. Clustering Detail Comparison for Different Algorithms

Beyond general identification accuracy evaluation, the three algorithms that success‑
fully identify time‑series curves are required to be compared in detail. Figure 12 presents
a detailed comparison of the V and line manners. The gradient block means the timeline
for power load variation. It can be clearly seen the clustered center results in differences
for various clustered types under the same period.

In terms of theV type, Km_DTWsignificantlymisidentifies the smooth as the intermit‑
tent wave from 1May to 5 June. Meanwhile, around 5 February, it also classified the single
peak wave into a steady line inaccurately. This phenomenon indicates that the Km_DTW
is poor at identifying unimodal electricity curves and is liable tomistakenly classify the less
volatile curve as a V‑shaped. On the other hand, Km_kshape and Km_Eucliean could suc‑
cessfully recognize the V type curve features. Both of them could regard the less volatile
curve as the line shape, ignoring the disturbing fluctuation points.

With respect to the M type, Km_DTW could also classify the soft waveform from 5
June to 4 September, like Km_kshape and Km_Euclidean (Figure 13). However, the clus‑
tered center performance of Km_DTW displays more intermittently than the other two
algorithms. That is to say, it magnifies some wave peaks and reduces meaningful valley
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curve information. In this matter, the continuous wave trend is clustered into intermittent
figures such as the electricity changing between 4 December and 5 March. Similarly, for
line type investigation, Km_DTW also illustrates analogous grouping performance, which
changes the soft curve into intermittent lines. This consequence is in accordance with the
latest research of [22]. It found that the Km_DTW has a better effect focusing on intermit‑
tent building energy data. While this research adds and proves that the clustering effect
using the DTW distance calculation method with k‑means on continuous energy data is
not good.
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For the other two algorithms, the M type performance shows that Km_shape has a
better identification presentation than Km_Euclidean with respect to the place of the wave
start. Km_Euclidean distinguished and ignored part wave rising information at the be‑
ginning of the wave. This is because the Euclidean distance computational approach aban‑
dons shape characteristics and only depends on numeric data calculation. The Km_kshape
disposes of this data smoothly from the remaining basic pattern information. This SBD
calculation method could capture the pattern form characteristics without considering the
data itself. Hence, Km_kshape does better in the clustered operation for the M type than
Km_Euclidean. Taking into consideration the line type, an apparent distinction between
these two algorithms concentrates on abnormal data conduct. The database used in this
research contains some outliers after 2 April. Facing this issue, the k‑shape algorithm cap‑
tures this special curve shape. However, this accurate operation breaks the clustered line
type, influencing power load law identification instead. Contrarily, Km_Euclidean closes
the outlier trend gap and classifies it into line type that successfully picks up the curve fea‑
ture. Therefore, it can be observed that Km_Euclidean is better than Km_kshape in terms
of generalization performance.

In a word, all these three algorithms could achieve the time‑series energy consump‑
tion data clusteringmission. Therein, Km_DTW is applicable to intermittent curves instead
of continuous data. It recognizes distortion in continuous information that changes dra‑
matically. Regarding the other two algorithms, Km_kshape and Km_Euclidean methods
could group the power load curve with high precision. This is consistent with the study
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by [23]. It compared k‑means, bisecting k‑means, and the Gaussian mixture model algo‑
rithms and found that k‑means was themost appropriate to investigate building electricity
load patterns based on a dataset containing 191 residential and 164 non‑residential build‑
ings. This investigation further extends this achievement, providing multiple algorithm
advantages anddisadvantages by comparing. Therein, Km_Euclidean performswith great
expression for building electricity load curves with several abnormal data; moreover, for
an accurate database without outliers, the Km_kshape could cluster the pattern features
more efficiently.
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In addition, in terms of intelligent algorithms, deep learning algorithms often struggle
with time series data clustering by default parametersmay lack adequate feature extraction
tailored for temporal patterns, fail to account for temporal dependencies without special‑
ized architectures (like RNNs or LSTMs), and may not include necessary pre‑processing
steps (e.g., normalization, smoothing). Additionally, the need for labeled data can be a lim‑
itation in clustering tasks, and integration challenges between deep learning features and
clustering algorithms can affect performance. Furthermore, the difficulty in tuning numer‑
ous hyperparameters can prevent optimal clustering results. Effective clustering typically
requires customized model architectures, proper data pre‑processing, and careful align‑
ment with clustering methods.

For models, the hidden Markov models (HMMs) and auto‑regressive models (AR)
may not achieve high performance in time series clustering due to their inherent limita‑
tions. HMMs assume a simple state‑transition structure that may not capture complex or
non‑Markovian data patterns, and their performance can be hampered by the need for pre‑
defined states and computational complexity. AR models, on the other hand, assume lin‑
ear relationships and fixed memory of past values, which can be inadequate for capturing
nonlinear patterns or long‑range dependencies in time series data, and they often require
the data to be stationary. These limitations can lead to suboptimal clustering results.
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4.2. Yushan Island Energy Usage Patterns
Table 5 presents the household type on Yushan Island. After clustering for all energy

usage curves, three types of V, M, and line are generated. Combined with user conditions,
some energy usage phenomena and characteristics were studied as follows.

Table 5. User types on the island.

Building Type Residence

Resident
Often on island

Non‑fisherman
Middle age

Aged

Fisherman ‑

Not on island frequently ‑ ‑

Public

Government
Often use ‑

Non‑use frequently

Street lamp

Processing industry

The V‑shaped energy consumption curve mainly reflects public buildings and some
temporary residential houses on the island. Staff working part‑time causes sharp peaks in
energy usage. Public construction of seafood processing buildings shows similar patterns.
Concentrating seafood production in October can reduce sharp spikes and energywastage.
The V‑shaped power load pattern corresponds to five user types in public and residential
buildings. Renewable energy solutions like solar panels or micro‑wind turbines are bene‑
ficial for infrequently used public buildings and vacant residential properties. Insulation
methods for older individuals and passive cooling strategies for younger residents can
reduce winter heat demand and summer air conditioner spikes, respectively.

The M‑type energy consumption pattern on the island suits frequent residents, with
summer peaks due to air conditioning and winter peaks from high‑intensity activities like
the spring festival. Residents show notable fluctuations from July to October and Decem‑
ber to March. Fishermen also follow this pattern but have lower consumption from Au‑
gust to December when at sea. For energy efficiency, common residences benefit from PV
systems and passive design strategies. The government should install solar PV panels or
micro‑wind generators in fishermen’s vacant homes during expeditions to generate clean
electricity efficiently.

The line‑shaped energy consumption curve reflects different architectural character‑
istics. Households with seniors (over 70) show minimal variations in usage due to frugal
habits and lack of cooling needs. Large public buildings and street lamps display steady
patterns, the former due to continuous operation and the latter indicating energy wastage.
Solutions to reduce carbon emissions include improving insulation and ventilation for se‑
nior residents, turning off certain machines in public buildings, and adjusting street lamp
usage to match daylight length.

4.3. Future Limitation
This paper compares several algorithms for clustering of building energy consump‑

tion curves. The optimal method has been found based on some performance indicators.
However, some issues should be paid for further investigation. Firstly, this research found
some advantages and disadvantages for each manner; however, the reasons behind this
were not investigated in depth. Every algorithm is constituted by complicated mathemat‑
ical logic and equations. The identification accuracy could be improved by adapting in‑
ternal parameters. In this case, future relative research should focus on the mathematical
theory of these algorithms, leading to classification mistakes.
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Secondly, unsupervised data mining methods generally contain cluster and associa‑
tion rule mining tasks. Currently, research focuses mainly on user group databases. How‑
ever, several more complex data mining missions require a synthetic working process
that integrates the advantages of cluster and association rule mining approaches. Hence,
how to combine these two missions into an entire workflow is another valuable issue for
further study.

Lastly, with the development of artificial intelligence, whether deep learning algo‑
rithms have more accurate performance after adjusting parameters. These enhancements
in performance could be attributed to fine‑tuning hyperparameters, optimizing neural net‑
work architectures, and leveraging large datasets, leading to more precise and reliable
AI models across various applications. Future related studies could assess these perfor‑
mances using different parameter‑adjusting methods.

5. Conclusions
This research aims to study the optimal cluster algorithm for building time series en‑

ergy consumption. There are 17 clustered methods that are compared and evaluated via
multiple performance indicators. Yushan island in Fujian province of China is selected as
the studied object for investigation. More than 100 household electricity data are recorded
yearly, and the basic dataset is constructed. All clustering methods are performed on this
same dataset to compare classification performance. Finally, some significant conclusions
are found as follows:
• When using data mining to cluster occupants’ energy‑using behavior patterns, K‑

means, which relies on Euclidean distance and k‑shape, has traditionally been the
primary algorithm. These two methods are the primary choice for similar tasks.

• Km_DTW is applicable to intermittent curves instead of continuous data. Km_
Euclidean performs great expression for building electricity load curves with sev‑
eral abnormal data; moreover, for an accurate database without outliers, Km_kshape
could cluster the pattern features more efficiently.

• Hierarchy and DBSCAN clustered manners fail to group the time‑series energy con‑
sumption curves, especially for unimodal curve type. Deep learning algorithms also
can not cluster time‑series building electricity usage data under default parameters in
high precision.

• When clustering using four different distance algorithms, the difference in the time
of curve condition changes in the energy pattern ranges from 0 days at the minimum
to 14 days at the maximum. This indicates that different algorithms have a similar
ability to identify the important time of condition variation.

• Accuracy rate and standard deviation introduced in this study serve as evaluation
methods for clustering analysis of continuous electricity demand. Thesemetrics effec‑
tively describe the characteristics of curve fitting extent within the clustering results.

• In terms of island carbon emission reduction, duringfishing expeditions, it is crucial to
utilize fisherman households when vacant. For non‑fisherman residents, prioritizing
heat insulation during winter is essential for the elderly, while passive design strate‑
gies are better suited for middle‑aged accommodations. Renewable techniques can
be applied to infrequently used public buildings like village committees, presenting
an opportunity for significant energy efficiency improvements.
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