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Abstract: Conventional concrete causes significant environmental problems, including resource
depletion, high CO2 emissions, and high energy consumption. Steel slag aggregate (SSA), a by-
product of the steelmaking industry, offers a sustainable alternative due to its environmental benefits
and improved mechanical properties. This study examined the predictive power of four modeling
techniques—Gene Expression Programming (GEP), an Artificial Neural Network (ANN), Random
Forest Regression (RFR), and Gradient Boosting (GB)—to predict the compressive strength (CS) of
SSA concrete. Using 367 datasets from the literature, six input variables (cement, water, granulated
furnace slag, superplasticizer, coarse aggregate, fine aggregate, and age) were utilized to predict
compressive strength. The models’ performance was evaluated using statistical measures such as
the mean absolute error (MAE), root mean squared error (RMSE), mean values, and coefficient
of determination (R2). Results indicated that the GB model consistently outperformed RFR, GEP,
and the ANN, achieving the highest R2 values of 0.99 and 0.96 for the training and testing dataset,
respectively, followed by RFR with R2 values of 0.97 (training) and 0.93 (testing), GEP with R2 values
of 0.85 (training) and 0.87 (testing), and ANN with R2 values of 0.61 (training) and 0.82 (testing).
Additionally, the GB model had the lowest MAE values of 0.79 MPa (training) and 2.61 MPa (testing)
and RMSE values of 1.90 MPa (training) and 3.95 MPa (testing). This research aims to advance
predictive modeling in sustainable construction through analysis and well-defined conclusions.

Keywords: gene expression programming; artificial neural network; random forest regression;
gradient boosting; soft computing; artificial intelligence; steel slag aggregate; sustainable construction;
compressive strength of concrete

1. Introduction

The construction industry is one of the largest natural resource consumers [1]. Con-
crete, one of the most common materials used in the construction industry, comprises
cement, water, and fine and coarse aggregate [2]. According to Mehta [3], aggregate is a
crucial concrete component since it accounts for 80% of its weight. Aggregation is a fantastic
structural material with its high compressive strength, long lifespan, and easy workability.
Unfortunately, resources are depleted, noise pollution has increased, habitats have been
lost, and CO2 emissions have increased due to the massive amount of aggregate mining,
processing, and transportation [4]. The aggregate industry was Europe’s most significant
non-energy mining sector in 2018, with a production of 3 billion tons spread over 39 na-
tions [4]. Additionally, roughly 60% of the raw materials used in building and construction
projects worldwide come from the lithosphere, which accounts for 32% of all resources,
including up to 40% of all energy used and 12% of all water [1,5,6]. Hence, the construc-
tion industry needs to reduce its carbon footprint by looking for more environmentally
friendly solutions.
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Qatar is one of the countries that adopts sustainability through its national vision. Ac-
cording to Harmon and Truby [7], sustainability and the preservation of natural resources
have been recognized as essential for national security in key documents like the Qatar
National Vision 2030 (QNV 2030) [8] and Qatar National Development Strategy (QNDS) [9].
Concrete is considered the primary building material in Qatar and most Gulf Cooperation
Countries (GCC) [10]. However, the natural resources needed to produce concrete, par-
ticularly aggregate, are in shortage locally. As a result, learning about other sustainable
options is crucial. The use of green concrete has increased in the state of Qatar in recent
years. Recycled materials like steel slag aggregate (SSA), wadi gravel aggregate, excavation
waste (EW), and construction and demolition wastes (CDW) have all been recognized as
potential materials used in construction. According to Hassan et al. and the Planning
and Statistics Authority [9,11], Qatar’s second development strategy accounted for 80% of
generated solid wastes in the country, with 80–100 Mt ending up stockpiled in landfills.
Thus, in 2022, the country established a target to recycle up to 15% of all solid waste pro-
duced. Additionally, a goal was set to use 20% of construction waste in all building projects
in 2022. Therefore, using green concrete is linked directly to the QNV 2030 [8] through
multiple aspects, including a reduction in construction wastes, a reduction in greenhouse
gas emissions, and a reduction in the cost of importing construction materials.

Steel slag, a by-product of the steel industry, is a material that can be used as an
aggregate replacement [12]. According to the Global Status Report for Building and
Construction [13], the iron and steel sector is responsible for 7.2% of the world’s greenhouse
emissions, of which 22% go to buildings, 22% to infrastructure, and 55% is used in the
built environment. There are significant financial advantages to using steel slag as a
normal aggregate substitute since it may partially replace expensive imported aggregate
like gabbro, frequently used in Qatar. Furthermore, since this is one of the largest solid
wastes produced by Qatar Steel Company, recycling or reducing these steel wastes will
reduce the need for natural aggregate and address many associated environmental issues,
such as landfills [10]. Therefore, more eco-friendly concrete can be made by employing SSA
to reduce waste, costs, and carbon dioxide emissions [2].

Furthermore, Artificial intelligence (AI) is aligned with the QNV 2030 [8] as it can
be used in multiple sectors such as healthcare, education, and cybersecurity. Similar ap-
plications exist in other branches of engineering, such as in geotechnical, water, seismic
engineering, and the construction sector is no exception [14]. In addition, with the de-
velopment of Artificial Intelligence (AI), the prediction of different structural properties
has been completely transformed, especially machine learning (ML). It has eliminated
or reduced some inefficiencies and expenses related to conventional laboratory testing,
regression, clustering, and classification. There are a few machine-learning approaches
that effectively estimate different factors and predict compressive strength. As a branch of
artificial intelligence, machine learning focuses on creating prediction algorithms to find
patterns in big datasets without manual programming. These algorithms allow comput-
ers to accomplish complicated tasks previously thought to be beyond the capabilities of
machine learning because they learn from data instead of explicit instructions. Computers
can analyze and anticipate or predict a wide range of datasets more easily because they
are trained to recognize and understand data elements relevant to specific issues. These
computing techniques can be utilized to solve complicated uncertainties and dynamic
challenges. By using machine learning and soft computing techniques (SCT), we can gain
valuable insight into the performance of different concrete mixtures [15]. This insight can
guide material selection, optimization mix design, and enhance structural performance,
leading to a more sustainable and resilient future in construction and playing a crucial role
in shaping the construction sector in Qatar. This research seeks to improve the existing
knowledge on sustainable construction by investigating the effects of SSA on concrete
compressive properties and looking into innovative methods to enhance predictive model-
ing in concrete manufacturing. This study aims to provide important data for engineers,
researchers, and policymakers working to encourage sustainable construction practices by
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connecting sustainable materials and advanced computational methods. Additionally, by
integrating SSA, the study aims to reduce environmental impact and tackle resource scarcity,
particularly in Qatar. The research aligns with Qatar’s national sustainability outlined in
the QNV 2030 [8] alongside Qatar’s national development strategy; both emphasize the
significance of recycling and minimizing construction waste.

2. Literature Review

Steel slag, a by-product of steel manufacturing, is a significant industrial waste that
includes dust and large stones [16]. As global crude steel production continues to rise,
approximately 150 kg of steel slag is generated per ton of steel, often ending up in open
areas and posing environmental hazards [17]. Despite these challenges, steel slag has
gained attention for its potential in concrete applications due to its unique properties [18].

Several studies have investigated the mechanical qualities of concrete containing
steel slag aggregates (SSA) compared to natural aggregates. For instance, Qasrawi [16]
reported that steel slag with a high Fe2O3 content enhances concrete’s compressive and
structural strength, surpassing conventional concrete’s strength development over time.
This finding aligns with Alizadeh et al. [19], which evaluated hardened concrete with SSA,
demonstrating a higher modulus of elasticity, flexural strength, and compressive strength
compared to natural aggregate concrete.

In a comprehensive study, Maslehuddin et al. [20] concluded that steel slag concrete
exhibits marginally greater compressive strength than limestone concrete when used as
an aggregate. Similarly, Wang and Zhao [21] explored the use of blast furnace steel slag as
coarse aggregate, finding enhanced properties such as higher compressive, flexural, and
bond strengths compared to conventional concrete mixes. Subathra Devi and Gnanavel [22]
examined the impact of partially substituting fine and coarse aggregates in M20 grade
concrete, recommending 40% and 30% steel slag replacement, respectively. They noted
reduced workability with increased replacement percentages.

Regarding durability assessments, Awwad et al. [23] investigated the substitution
of SSA for sand in concrete mixes with target strengths of 25 MPa. Their results showed
improved concrete strength without compromising workability, particularly notable at a
30% replacement ratio. Borole et al. [24] used M30 grade concrete to evaluate the effects of
partially substituting steel slag for natural aggregate, finding that a 25% replacement rate
optimally enhances compressive, flexural, and tensile strengths without detrimental effects.
Sinha [25] also studied the effects of replacing fine and coarse aggregates in conventional
concrete mixes with steel slag, observing increased compressive strength at 28 days along
with improved flexural and tensile strength.

Further enhancing concrete properties, Pushpakumara and Silva [26] evaluated the
effectiveness of steel slag in replacing fine and coarse aggregates, determining that con-
crete containing 75% steel slag exhibits increased unit weight, splitting tensile strength,
compressive strength, and corrosion resistance. Kumar et al. [27] researched the poten-
tial of replacing coarse aggregate with steel slag, showing significant improvements in
compressive strength, stability, and overall concrete density. Additionally, Miah et al. [28]
investigated the replacement of first-class burnt clay brick aggregate with steel slag, finding
that SSA improves compressive strength and reduces porosity.

Tarawneh et al. [29] addressed environmental considerations and compared SSA’s
physical and mechanical characteristics with conventional crushed limestone aggregate
concrete, noting higher abrasion resistance and accelerated early strength development
with steel slag. Nguyen et al. [30] focused on the compressive properties of steel slag
concrete by replacing it with coarse aggregate, observing rapid strength increases within
the first 7 days. Aparicio et al. [31] studied the effects of environmental conditions on
concrete containing recycled aggregate or SSA, confirming superior compressive strength
for SSA concrete at 28 days.

With rapid urbanization, population growth, and stricter laws governing the use of
natural resources, civil engineering faces numerous challenges that call for innovative solu-
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tions. One solution is to use machine learning (ML) and soft computing techniques (SCT).
SCT are a collection of computational methods that can tolerate partial truth, uncertainty,
and approximation to help solve complex problems, unlike hard computing techniques,
which face difficulties when dealing with such issues [32]. The main concept behind ML
and SCT is to mimic human brain functions such as intuition, reasoning, and consciousness.

In recent years, civil engineering has encountered problems requiring intuition and
learning from past experiences. SCT collect statistical, problematic, and optimization
tools to learn from past experiences and use these findings to produce new data, identify
patterns, or predict novel trends [14,33–37]. Various machine learning and soft computing
techniques, such as artificial neural networks, fuzzy logic, and genetic algorithms, can solve
these problems. Several studies have used ML and SCT to predict the structural properties
of concrete containing SSA.

Awoyera et al. [38] studied gene expression programming (GEP) to predict SSA
concrete’s compressive and splitting tensile strength. Their empirical studies indicated
that steel slag could replace conventional aggregate while yielding similar outcomes. Piro,
Mohammed, Hamad et al. [39] used various modeling techniques, including Artificial
Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), to
predict the compressive strength of mixtures, including steel slag. Their research showed
that the ANFIS model outperformed other models in prediction accuracy.

Penido et al. [40] used multiple machine learning models, such as Support Vector
Regression (SVR), ANNs, Extreme Gradient Boosting (XGBoost), and Gaussian Process
Regression (GPR), to predict the compressive strength of steel slag concrete. Their results
highlighted the ANN model’s effectiveness despite mixed experimental validation results.
Kioumarsi et al. [41] studied several machine learning models to predict the compressive
strength of concrete containing ground granulated blast furnace slag (GGBFS), developing
a simplified equation for practical application.

Mohana et al. [42] explored the application of machine learning models in predicting
the compressive strength of GGBFS concrete, using the Random Forest (RF) model with the
Support Vector Machine (SVM) model for verification. Their research demonstrated the
RF model’s excellent predictive abilities. Mai et al. [43] researched using the RF model to
address challenges related to the complexity of mix design composition, achieving high
correlation coefficients and low error rates.

Recent studies have further emphasized the role of machine learning and soft comput-
ing in predicting concrete properties. For example, Kumar et al. [44] proposed ELM, MARS,
and DNN-based prediction models for fly ash concrete, demonstrating their effectiveness
in predicting compressive strength. Similarly, Kumar et al. [45] used ANNs to predict
previous concrete’s compressive strength and permeability with GGBS.

Paudel et al. [46] investigated various ML algorithms to estimate the compressive
strength of concrete containing fly ash, confirming the robustness of these approaches.
Additionally, Albostami et al. highlighted the effectiveness of MOGA-EPR and GEP
techniques in predicting self-compacting concrete properties [33].

Overall, these studies demonstrated the effectiveness of various machine learning
and soft computing techniques in predicting the compressive strength of concrete. These
models and techniques could potentially reduce the number of experiments needed to
determine the structural factors of concrete, thus reducing expenses. The following section
will provide an insight into the general methodology used in this research and the principles
of the different models.

3. Methodology Overview

This research used ML and SCT models to predict the CS of concrete containing
steel slag aggregate (SSA). The first phase involved compiling data from the literature on
steel slag concrete’s composition and compressive strength. The literature datasets were
pre-processed in order to standardize the parameters or factors taken into consideration.
The pre-processing steps were applied to the data before analysis started by compiling a
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total of 367 datasets from various literature sources, which included values for six input
variables: cement content (C), steel slag aggregate (SSA), water (W), coarse aggregate (CA),
fine aggregate (FA), age (A), superplasticizer (SP), and the output measured compressive
strength (CS). The datasets were then examined for any inconsistencies or missing values,
and any records with missing or incomplete data were either corrected by cross-referencing
the original sources or removed if correction was not possible.

To ensure that the input variables were comparable and to improve the predictive
models’ performance, the data used Min–Max normalization, which scales the input
variables to a range of [0, 1]. The cleaned and pre-processed data were then split into
training and testing sets using an 80–20 split, with 80% of the data used for training the
models and 20% reserved for testing and validation.

Subsequently, four distinct ML and SCT models, namely an Artificial Neural Network
(ANN), Gene Expression Programming (GEP), Random Forest Regression (RFR), and
Gradient Boosting (GB), were used to develop their predictive models, using the dataset as
input and output. A validation process was then carried out using three statistical metrics
to assess the models’ prediction accuracy: coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error (MAE). Finally, a sensitivity analysis will be
carried out to determine the impact of various factors on the structural properties of steel
slag concrete. Figure 1 below showcases the general methodology followed by any ML or
SCT model in the form of a flowchart.
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This paper’s novelty lies in preprocessing experimental data sourced from the litera-
ture. Initially, the dataset comprised 1031 entries. However, through a careful preprocessing
phase, the dataset was refined to 334 entries, excluding fly ash (FA) mixes and those with
0% SSA replacement. This refined dataset allows for a more focused and accurate analysis,
enhancing the validity and relevance of the findings presented in this study.

3.1. Data Collection and Statistical Analysis

The first step was to collect data from the literature on steel slag concrete and its
strengths. Searches were conducted in scientific databases like Google Scholar and Data
Mendeley. Table 1 below shows the parameters used in this review and the statistical



Buildings 2024, 14, 2476 6 of 25

measures of the experimental data collected from [47], with 1031 datasets in total. However,
after pre-processing, the number of datasets was reduced to 334 due to removing mixes
with fly ash (FA) content and 0% SSA replacement. This table contains the minimum, maxi-
mum, average, and standard deviation of the SSA mix amounts, replacement percentage
aggregate, and compressive strength values. The input dataset shown in Table 1 comprises
the following: C, SSA, W, CA, FA, A, SP, and the output measured CS.

Table 1. Statistical measure for all data.

Statistical Measures C (Kg/m3) SSA (Kg/m3) W (Kg/m3) SP (Kg/m3) CA (Kg/m3) FA (Kg/m3) A (Kg/m3) CS (MPa)

Min 102.00 38.00 126.60 0.00 811.00 594.00 3.00 2.33

Max 475.00 359.40 228.00 32.20 1145.00 992.60 365.00 82.60

Average 278.18 169.65 184.64 6.12 947.06 758.26 52.42 40.09

STDEV 103.72 60.72 24.86 7.28 65.05 94.18 75.46 19.28

Range 373.00 321.40 101.40 32.20 334.00 398.60 362.00 80.27

The dataset, comprising 367 samples collected from various literature sources, was
designed to ensure a comprehensive and balanced representation of different experimental
conditions and concrete mix compositions. The distribution of SSA content within the
dataset ranges from 0% to 100% replacement of natural aggregates, capturing both partial
and full replacement scenarios. A roughly equal representation of low (0–30%), medium
(30–70%), and high (70–100%) SSA-content samples was included, which ensures diverse
coverage and enhances the robustness of the predictive models.

The dataset spans curing periods from 1 day to 365 days, reflecting the early, mid, and
late-age strength development of concrete. Representative samples for commonly studied
curing periods, such as 7 days, 28 days, and 90 days, were included to support the effective
learning of strength gain patterns over various curing durations.

Additionally, the dataset incorporates a variety of values for other input variables,
including cement content, water-to-cement ratio, granulated furnace slag, superplasticizer,
coarse aggregate, and fine aggregate. This diversity is crucial for capturing the complex
interactions between these variables and their combined effect on compressive strength.

3.2. Data Grouping

This study evaluated the effectiveness of four different ML and SCT methods. Gene
Expression Program (GEP) is the first method; the second is the use of an Artificial Neural
Network (ANN), the third is Random Forest Regression (RFR), and the fourth one is
Gradient Boosting (GB). Two datasets were created from the acquired data, where 80%
(267 observations) were used for model training and the remaining 20% (67 observations)
for testing to ensure accuracy. Tables 2 and 3 present the statistical metrics of the training
and testing datasets for the four different models. The statistical measures are the input and
output (CS) minimum, maximum, average, and standard deviation. Moreover, Figure 2
showcases the data frequency, while Figure 3 represents the data distribution, where the
x-axis represents the variables, and the y-axis represents the compressive strength.

Table 2. Statistical measure for training data.

Statistical Measures C (Kg/m3) SSA (Kg/m3) W (Kg/m3) SP (Kg/m3) CA (Kg/m3) FA (Kg/m3) A (Kg/m3) CS (MPa)

Min 102.00 38.00 126.60 0.00 811.00 594.00 3.00 2.33

Max 475.00 359.40 228.00 32.20 1145.00 992.60 365.00 82.60

Average 274.92 172.75 185.62 5.97 947.07 754.74 56.07 40.43

STDEV 104.29 63.04 24.66 7.48 65.05 96.82 78.79 19.30

Range 373.00 321.40 101.40 32.20 334.00 398.60 362.00 80.27
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Table 3. Statistical measure for testing data.

Statistical Measures C (Kg/m3) SSA (Kg/m3) W (Kg/m3) SP (Kg/m3) CA (Kg/m3) FA (Kg/m3) A (Kg/m3) CS (MPa)

Min 116.00 47.50 126.60 0.00 852.10 594.00 3.00 4.83

Max 475.00 316.10 228.00 23.40 1134.30 992.60 365.00 74.50

Average 291.15 157.29 180.71 6.71 946.99 772.29 37.84 38.77

STDEV 101.13 48.94 25.46 6.41 65.56 82.00 58.63 19.32

Range 359.00 268.60 101.40 23.40 282.20 398.60 362.00 69.67

This paper comprehensively assessed each input variable’s feature importance and
contribution using established methods. The permutation importance method, illustrated
in Figures 3 and 4, was initially applied. Secondly, feature importance scores were derived
using heat maps generated by ANN and tree-based models like RFR and GB, which inher-
ently provide scores based on the variables’ effectiveness in splitting data at decision nodes.
This approach quantified each input variable’s contribution to the model’s predictions.
Additionally, correlation analysis explored relationships between input variables and the
output variable, with correlation coefficients indicating the strength and direction of these
relationships. A higher coefficient signifies a stronger relationship, while coefficients close
to −1 or 0 denote weaker or negligible relationships. These techniques facilitated a thor-
ough assessment of each input variable’s feature importance and contribution, ensuring a
robust and transparent analysis of their impacts on the predictive models.
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3.3. Developing Models

In this study, four different machine learning and soft computing techniques were
used to predict the compressive strength of steel slag concrete. The development of the
different models is explained below.

The selection of Gene Expression Programming (GEP), Artificial Neural Networks
(ANN), Random Forest Regression (RFR), and Gradient Boosting (GB) is based on their
proven effectiveness and complementary strengths in predictive modeling.

Gene Expression Programming (GEP) is chosen for its ability to generate explicit
mathematical models, capturing complex relationships in the data through evolutionary
algorithms. It is particularly useful for understanding underlying patterns and interactions
in concrete properties [48,49].

Artificial Neural Networks (ANNs) are selected due to their robustness in handling
non-linear relationships and high adaptability to various datasets, making them suitable
for predicting complex behaviors in materials science [50].

Random Forest Regression (RFR) is included because of its ensemble learning tech-
nique, which improves prediction accuracy and reduces overfitting by averaging the results
of multiple decision trees. This method is known for its ability to handle large datasets
with higher dimensionality and its robustness against overfitting [48,49].

Gradient Boosting (GB) is chosen for its efficiency in building predictive models by
sequentially correcting the errors of a series of weak models, thus producing a strong
predictive performance. It is particularly effective for regression tasks, providing high
accuracy and reducing bias [50].

Together, these methods offer a comprehensive approach to predictive modeling,
leveraging their unique strengths to enhance the reliability and accuracy of predictions in
the study of concrete properties.

This paper’s hyperparameter selection and optimization process began with choosing
each model’s hyperparameter values based on recommendations from [51,52]. This pro-
vided a baseline for further refinement, and these initial values served as a starting point
for subsequent optimization steps.

For Gene Expression Programming (GEP), the parameters were set as follows: number
of chromosomes: 30; head size: 8; number of genes: 3; function set: +, −, ×, /; square root,
mutation rate: 0.00138; inversion rate: 0.00346; gene transposition rate: 0.00277; random
chromosomes: 0.0026; and gene recombination rate: 0.00277. For the Artificial Neural
Network (ANN), parameters such as the learning rate, number of hidden layers, number
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of neurons per layer, activation functions, and batch size were optimized using grid and
random search techniques. For Random Forest Regression (RFR), key parameters like the
number of trees, maximum depth, minimum samples split, and minimum sample leaf were
tuned through grid search. Similarly, for Gradient Boosting (GB), the learning rate, number
of estimators, maximum depth, and minimum sample split were optimized using grid
search and random search methodologies.

By employing these rigorous hyperparameter tuning techniques, we aimed to ensure
the reproducibility and robustness of our results. This systematic approach lays a strong
foundation for the models’ predictive performance and generalizability, ensuring that the
models are not overfitted to the training data and can perform well on unseen data.

The performance of each hyperparameter combination was evaluated using metrics
such as the mean absolute error (MAE), root mean squared error (RMSE), and the coefficient
of determination (R2). These metrics provided a comprehensive assessment of each model’s
accuracy and generalizability. The final hyperparameters for each model were selected
based on the combination that yielded the best performance metrics during cross-validation.
These values were then used to train the final models reported in the study.

3.3.1. Artificial Neural Network (ANN)

ANNs are designed to emulate the function and learning ability of the biological
nervous system in the human brain, particularly in information processing. ANNs mimic
the brain’s functionality in two primary ways: acquiring knowledge through a learning
process and storing or memorizing information via the strengths of interconnected neurons,
known as synaptic weights [32]. The structure of an ANN is characterized by a parallel
configuration of neurons, which are highly interconnected and capable of complex training.
Data are processed through a series of interconnected layers, divided into three sections:
input, hidden layers, and output, each comprising several nodes (neurons). The input
layer receives and processes data before passing it to the next nodes. The hidden layers
perform complex mathematical operations to extract useful features, while the output layer
produces the final output or prediction. An ANN’s ability to adapt to changing input and
output data, perform non-linear function mapping, and capture unknown relationships
makes it a versatile model for addressing real-world problems [14]. The general structure
of the ANN model is illustrated in Figure 5.
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During the testing phase, specific improvements were made to enhance the perfor-
mance and accuracy of the ANN model. These improvements focused on optimizing the
model architecture, adjusting hyperparameters, and implementing regularization tech-
niques to prevent overfitting. Initially, the model architecture was refined by experimenting
with different numbers of hidden layers and neurons per layer. An optimal configuration
was identified through iterative testing and evaluation, balancing complexity and perfor-
mance. It was found that increasing the number of hidden layers and neurons enhanced
the model’s ability to capture complex patterns in the data. However, care was taken to
avoid an overly complex model, which could lead to overfitting.
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Hyperparameters were systematically tuned using grid and random search techniques
to optimize the model’s performance. A range of values for key hyperparameters, includ-
ing the learning rate, batch size, and the number of epochs, were explored. The model’s
performance on a validation set was evaluated to identify the optimal combination of hy-
perparameters, resulting in the lowest validation error and highest predictive accuracy [32].

Regularization techniques were implemented to enhance the model’s generalization
capabilities and prevent overfitting. These included using dropout layers, which randomly
deactivate a proportion of neurons during training, and L2 regularization, which adds
a penalty to the loss function based on the magnitude of the model’s weights. These
techniques ensured that the model did not become overly reliant on any feature or subset
of the training data, thereby improving its performance on unseen data.

Additionally, early stopping was employed during training to prevent overfitting
and ensure good generalization to new data. By monitoring the validation loss, training
was halted when it ceased to improve, avoiding unnecessary iterations that could lead to
overfitting.

3.3.2. Gene Expression Programming (GEP)

Genetic algorithms (GA) are one of the main types of machine learning and SCT;
the main principle of this method or technique is based on the Darwinian principle of
natural selection to solve complex problems. This method has been used to solve many
problems, focusing primarily on optimization problems controlled by various variables [14].
Ferreira [53] proposed an improved form of genetic programming (GP) through the Gene
Expression Program (GEP). The GEP works as a learning algorithm focused on under-
standing relationships between different variables within datasets and creating a model
to interpret this relationship. The GEP is a type of GA that finds solutions using a combi-
nation of chromosomes and the Tree’s method. These chromosomes have mathematical
information or functions encoded into them and are then used to build the first or initial
chromosome population. Each chromosome is evaluated by checking its fitness, and the
chromosomes with the highest fitness are chosen for reproduction. The genetic operations
performed include crossover, mutation, and reproduction. The GA continues to evolve
until a satisfactory solution is found. This method produces a relatively simple estimation
equation that can be used for practical design and hand calculation [54]. The general
methodology of the GEP model can be seen in Figure 6.
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All relevant variables, such as cement content, water-to-cement ratio, granulated
furnace slag, superplasticizer, coarse aggregate, fine aggregate, and curing period, were in-
cluded during the initial stages of model development. Preliminary analysis indicated that
including all these variables led to overfitting, where the model performed exceptionally
well on training data but poorly on validation data. This prompted a closer examination of
each variable’s contribution to the model’s predictive power.

A correlation matrix was generated to examine the relationship between each input
variable and the concrete’s CS. The fine aggregate variable was found to have a weaker
correlation with CS compared to other variables. While fine aggregate contributes to the
overall mix design, its direct impact on the compressive strength was less significant in our
dataset, which primarily focused on the effects of SSA.

Feature importance techniques, such as recursive feature elimination and random
forest feature importance, were utilized to evaluate the impact of each variable on the
model’s performance. It was consistently shown that the fine aggregate variable ranked
lower in importance, indicating that its contribution to predicting compressive strength
was relatively minor compared to other variables like the SSA content, cement content, and
curing period. Less impactful variables were excluded to enhance model simplicity and
performance.

In conclusion, the exclusion of the fine aggregate variable from the GEP model was
a deliberate decision based on thorough statistical analysis, feature importance evalua-
tion, and the need to balance model complexity with predictive accuracy. This approach
ensures that the model remains robust and generalizable without unnecessary variables
contributing minimally to its predictive power.

This paper specifies the key setting parameters and adjustments in the GEP model for
predicting CS: the model utilizes 30 chromosomes with a head size of 8, each containing
three genes. The function set includes addition (+), subtraction (−), multiplication (×),
division (/), and square root (√) operations. The fitness function used is RMSE. The model
applies a mutation rate of 0.00138, an inversion rate of 0.00346, and a gene transposition rate
of 0.00277. Additionally, random chromosomes are set at 0.0026, and gene recombination
occurs at a rate of 0.00277.

The mathematical equation developed by the GEP model is provided below alongside
the expression tree (see Figure 7).

CS =

√
c1 − c2 + (2 × BFS)− (SPz)

2
]
+

(
CA
Age × c3

)
+ Age

√
C +

√
c4

+

[
SPz×Age × BFS × C

W

] 1
4

(1)

Coefficients Value Coefficients Value
c1 −521.36130971853 c3 −1.38664176403102
c2 −5.42933690146252 c4 21.1473826090919

3.3.3. Random Forest Regression (RFR)

The random forest regression ML method is known for its great ability to handle large
sets of data with different attributes and provide a precise or accurate estimation of attribute
importance. RFR works on the principle of ensemble learning, combining the predictive
power of multiple decision trees to enhance accuracy and reliability. Every tree is made
independently on a random subset of the training data, which creates variance and reduces
overfitting. Through bootstrap aggregation (bagging), RFR can build a robust model by
training on different dataset variations. The final prediction is determined by averaging
the predictions from all the individual trees in the forest. This mechanism ensures that the
collective decision of many trees is more accurate and stable than any individual tree’s [43].
This process is repeated continuously until the required degree of precision is attained.
Overall, the RFR’s unique ability is to enhance its predictive power [55]. The general
structure of the RFR model can be seen in Figure 8.
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3.3.4. Gradient Boosting (GB)

Gradient boosting is a powerful machine-learning technique with significant success
across various applications. The core idea behind gradient boosting involves sequentially
building an ensemble of weak learners, typically decision trees. Each subsequent model
attempts to correct the errors of its predecessor by focusing on the residuals, thereby
improving overall performance.

One of the seminal tutorials on gradient boosting by Natekin and Knoll [56] provides
a comprehensive introduction to its methodology, highlighting its solid machine-learning
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aspects and practical implementations [56]. This tutorial emphasizes the algorithm’s
iterative nature and the importance of choosing appropriate base learners and loss functions
to optimize performance.

Further studies by Aziz et al. [57] explore developing AI monitoring and prediction
systems using gradient-boosting algorithms. This research underscores the algorithm’s
effectiveness in predictive maintenance, where data-driven models predict equipment
failures and maintenance needs [57].

Another recent study by Guillen et al. [58] explores the application of gradient tree
boosting for estimating production functions. This study illustrates the versatility of
gradient boosting in handling various types of predictive tasks, particularly in economic
and production forecasting contexts [58].

Comparative analyses, like the one by Bentejac and Csorgo, evaluate different gradient-
boosting implementations, such as XGBoost, LightGBM, and CatBoost. These comparisons
indicate that while all variants share a common foundation, specific implementations may
offer advantages in terms of speed, accuracy, or the handling of categorical data [59].

The key concepts and steps in GB, as shown in Figure 9, begin with a simple model
to make an initial prediction, such as the mean value for regression tasks. The core of the
process involves sequentially adding new models to correct the errors made by the previous
ones. Each new model is trained on the residuals, the differences between the actual values,
and the predictions from the combined ensemble of earlier models. This correction step is
driven by gradient descent, where the new model approximates the negative gradient of
the loss function to minimize prediction errors effectively [56].
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A crucial element in GB is the learning rate, which determines the contribution of
each new model to the final prediction. Lower learning rates require more iterations but
help achieve higher accuracy and prevent overfitting by making minor adjustments at
each step. Regularization techniques, such as limiting tree depth and subsampling, further
enhance the model’s robustness and generalization capabilities. These techniques help
control the model complexity and prevent overfitting, ensuring that the model performs
well on unseen data.

GB’s iterative nature, combined with its robust handling of various data types and
missing values, makes it a powerful tool for numerous applications, including finance,
healthcare, and marketing. Each iteration’s continuous improvements and refinements
allow GB to achieve high predictive accuracy, making it a preferred choice for complex
prediction tasks [57].

Overall, GB remains a robust and versatile technique in machine learning, with
continuous advancements and applications across diverse fields.



Buildings 2024, 14, 2476 15 of 25

3.4. Statistical Indicators and Measurements

Statistical measures like the mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R2) are used to evaluate the accuracy of the
predicted model. Many of these techniques have been used before to assess the accuracy of
different models produced. The R2 indicates how well the model’s predictions match the
actual value or data. This metric shows how well the independent variables explain the
variance in the dependent variables. It goes from negative infinity to 1, with 1 being the
best score. A perfect score means the model explains all the variation in the data, while
a negative score indicates the model performs worse than just using the average value.
Essentially, R2 is useful for comparing the goodness of fit of various models on the same
dataset, and it is calculated using the following formula:

R2 = 1 − ∑n
i=1(yi − ŷι)2

∑n
i=1(yi − y)2

where yi are the actual values, ŷι are the predicted values, and y is the mean of the
actual values.

Moreover, MAE indicates how far off the predictions are from the actual values, on
average. MAE provides a simple way to assess prediction accuracy, with lower values
indicating that the model prediction is similar to actual values. It is calculated as the
average difference between predicted and actual values. MAE is more robust against
outliers compared to RMSE, which makes it a valuable measure for assessing the average
prediction error of the model. MAE is calculated using the following formula:

MAE =
1
n∑n

i |yi − ŷι|

where n is the number of observations, i represents the actual value, and ŷι is the pre-
dicted value.

RMSE calculates the square of the mean of the squared variance between predicted
and actual values. RMSE is similar to MAE but puts more emphasis on significant errors.
This is because RMSE squares the error before calculating the square root, which makes it
more responsive to outliers and significant deviations in the predictions. It is calculated
using the following formula:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷι)2

Generally, these metrics work together to provide a complete picture of the model’s
accuracy. Ideally, a high R2 close to 1 and low values for MAE and RMSE mean the model
closely matches the data with minimal prediction error.

Tables 4–6 summarize the evaluation metrics (R2, MAE, and RMSE) of the four models
created.

Table 4. Training set statistical measurements.

Model MAE (MPa) RMSE (MPa) Mean R2

GEP 5.91 7.43 1.05 0.85

ANN 9.71 12.03 1.19 0.61

RFR 2.10 3.15 1.02 0.97

GB 0.79 1.90 1.00 0.99
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Table 5. Testing set statistical measurements.

Model MAE (MPa) RMSE (MPa) Mean R2

GEP 5.65 7.02 1.08 0.87

ANN 6.70 8.29 1.12 0.82

RFR 4.17 5.34 1.07 0.93

GB 2.61 3.95 1.01 0.96

Table 6. All datasets statistical measurements.

Model MAE (MPa) RMSE (MPa) Mean R2 STDV COV (%)

GEP 5.86 7.35 1.06 0.86 0.49 46.77

ANN 8.86 11.14 1.16 0.67 0.32 31.96

RFR 2.52 3.69 1.03 0.96 0.12 11.73

GB 1.15 2.45 1.01 0.98 0.06 5.98

4. Results and Discussion

Predicting the compressive strength of steel slag aggregate (SSA) concrete was car-
ried out using four different models: Random Forest Regression (RFR), Gene Expression
Programming (GEP), an Artificial Neural Network (ANN), and Gradient Boosting (GB).
Statistical metrics such as the R2, mean values, root mean squared error (RMSE) and mean
absolute error (MAE) were employed to measure the accuracy of the predictive models.

The results in Tables 4 and 5 showcase that the MAE values range from 0.79 to 9.71
for the training dataset and 2.61 to 6.70 for the testing set. For the RMSE, the range for the
training set is 1.90 to 12.03, and for the testing set, it is 3.95 to 8.29. Moreover, the mean
values for the training dataset range from 1.00 to 1.19, and for the testing set, they vary
from 1.01 to 1.12. Furthermore, the R2 values lie between 0.61 and 0.99 for the training set
and 0.82 and 0.96 for the testing set.

The statistical analysis for the compressive strength models reveals distinct perfor-
mance differences among the models in the training dataset, as shown in Table 4. For the
MAE, the GB model significantly outperforms the others, with an MAE of 0.79, indicating
it has the slightest average error. In contrast, the ANN model exhibits the highest MAE
at 9.71, suggesting it struggles with accurate predictions compared to the other models.
Regarding RMSE, the GB model also achieves the lowest RMSE of 1.90, confirming its
superior performance in terms of error magnitude. The ANN model again fares the worst
with an RMSE of 12.03, highlighting its less reliable predictions. The mean error values
across all models are close, with GB at 1.00, showing minimal deviation from the actual
values. This suggests that all models maintain a relatively consistent prediction error
pattern. The R2 value is a crucial indicator of model fit. The GB model attains an almost
perfect fit with an R2 of 0.99, indicating that it explains nearly all the variability in the
dataset. The ANN model, with an R2 of 0.61, has the lowest explanatory power among the
models, reflecting its weaker predictive capability.

As shown in Table 5, the models demonstrate a consistent performance pattern with
slight variations when applied to the testing dataset. The GB model continues to lead with
an MAE of 2.61, though the error is higher compared to the training dataset, suggesting a
slight decrease in performance. The GEP model follows closely with an MAE of 5.65, while
the ANN model shows improvement but still lags with an MAE of 6.70. GB again achieves
the lowest RMSE of 3.95, maintaining its superior performance. Although improved from
training, the ANN model still records a higher RMSE of 8.29. The mean values are consistent
with the training dataset, with the GB model having a mean error close to 1.01, indicating
stable performance across datasets. The GB model retains high performance with an R2 of
0.96, while the RFR model shows strong performance with an R2 of 0.93. The ANN model’s
R2 value improves to 0.82, indicating a better model fit compared to the training phase.
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Analyzing the performance across the combined datasets, as shown in Table 6, offers
a comprehensive view of each model’s robustness and generalization ability. The GB
model exhibits the lowest MAE of 1.15, reaffirming its consistent accuracy. The ANN
model, despite improvements, has the highest MAE at 8.86, indicating its predictions are
less reliable overall. GB maintains its lead with an RMSE of 2.45, showing minimal error
propagation. Conversely, ANN records the highest RMSE of 11.14, reflecting its less accurate
predictions. The mean errors remain consistent, with GB showing a minimal mean error of
1.01, indicating stable and precise predictions. GB achieves the lowest standard deviation of
0.06, indicating the smallest spread in prediction errors, while ANN shows more variability
with an STDV of 0.32. The GB model, with an R2 of 0.98, demonstrates exceptional fit
and reliability across all data. The ANN model, with an R2 of 0.67, shows the smallest fit
among the models. The GB model has the lowest coefficient of variation (COV) at 5.98%,
signifying the most minor relative variability in its predictions. The ANN model, with a
COV of 31.96%, exhibits the highest variability, indicating less consistent performance.

Overall, the GB model consistently outperforms the other models across all metrics,
demonstrating high accuracy, minimal error, and robust model fit both in training and
testing datasets. This suggests that GB is the most reliable model for predicting compressive
strength in this context. While showing some improvement in the testing phase, the ANN
model generally underperforms compared to the other models. Its higher MAE, RMSE,
and lower R2 values indicate that it struggles to effectively capture the underlying patterns
in the data. Both the GEP and RFR models perform reasonably well, with the RFR model
showing solid performance in terms of R2 values and error metrics. GEP, while not as
robust as GB, still provides reasonable predictive accuracy. The GB model demonstrates
the most minor variability and highest prediction stability, as indicated by its low STDV
and COV. This makes it a reliable choice for practical applications where consistency is
crucial. The R2 values across datasets underscore the reliability of the GB and RFR models.
These models can be trusted to provide accurate predictions, with the GB model being
particularly noteworthy for its near-perfect fit.

Figures 10 and 11 provide scatter plots that compare predicted compressive strength
values against experimental values for the training and test datasets. These plots visually
represent how well each model predicts CS and the accuracy of its predictions and are
within a ±30% error range.

The GB model demonstrates the closest alignment with the ideal fit line in both
datasets, indicating its robust performance and accurate prediction of CS across different
scenarios. This model consistently produces predictions that closely match the actual
experimental values, suggesting minimal bias and high reliability.

Conversely, the ANN model shows more variability in its predictions. While some
predictions closely align with the ideal line, others deviate more significantly. This vari-
ability suggests challenges in capturing all nuances and complexities of the data using the
current ANN configuration. Further optimization or feature selection may be necessary to
improve its predictive accuracy and reduce these deviations.

Figure 12 illustrates the distribution of predicted compressive strength values around
the mean ± standard deviation (STDV). This visualization provides insights into the
consistency and spread of predictions made by each model.

The RFR model exhibits the smallest scatter around the mean, with predictions clus-
tered tightly. This indicates high precision and consistency in predicting CS values, reflect-
ing robust performance and accurate modeling of the underlying data patterns.

Similarly, the GEP model shows a concentration of predictions around the mean range,
although with slightly more spread compared to RFR. This suggests generally accurate
predictions with some variability in specific scenarios, which could be further refined
through model tuning.
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Figure 10. The relationship between the predicted and the experimental CS using the training dataset
for the models: (a) GEP, (b) ANN, (c) RFR, and (d) GB.
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Figure 11. The relationship between the predicted and the experimental CS using a testing dataset
for the models: (a) GEP, (b) ANN, (c) RFR, and (d) GB.
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In contrast, the ANN model again displays more dispersion in its predictions. The
broader spread around the mean indicates variability and less precise predictions compared
to RFR and GEP. This variability may stem from the ANN’s struggle to fully capture the
intricate relationships within the data, highlighting areas where model adjustments or
additional data preprocessing could enhance performance.

Figure 13 focuses on residual errors, depicting the differences between predicted
and actual CS values. Lower residual errors indicate closer agreement between predicted
and measured values, reflecting the model’s accuracy and ability to minimize prediction
discrepancies.
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The RFR and GEP models typically show minimal residual errors clustered around
zero, indicating substantial agreement between predicted and actual CS values. This
underscores their effectiveness in accurately predicting CS and their robust performance in
various prediction scenarios.

In contrast, the ANN model may exhibit more significant residual errors compared to
RFR and GEP. Higher residual errors suggest instances where predicted CS values deviate
more significantly from actual measurements, indicating potential areas for improvement
in model refinement or data feature selection.

The detailed analysis of Figures 10–13 provides valuable insights into how different
modeling techniques predict concrete compressive strength. The GB model emerges as
highly effective and reliable, while the ANN model shows variability and may benefit from
further optimization. Understanding these performance nuances is crucial for optimizing
predictive models and enhancing their reliability in concrete engineering applications.
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Furthermore, when looking at the R2 values, although the GEP model did not produce
the highest value compared to the RFR model, its unique advantage lies in its interpretabil-
ity. Unlike ANN and RFR, which operate as black-box models, GEP produces a mathe-
matical equation that explicitly describes the relationship between the input variables and
the target output. This makes GEP easier to interpret and understand, providing insight
into the underlying mechanics that drive the model’s prediction. By producing a clear
mathematical expression, researchers and practitioners can gain a deeper understanding of
the factors that influence the outcome of the problem. Therefore, despite a lower R2 value
compared to GB and RFR, the interpretability offered by the GEP model makes it a valuable
tool in scenarios where comprehensibility and transparency are required. However, as
shown in Equation (1), it can be seen that the FA variable was not considered, which can be
attributed to several reasons, like a limitation in dataset representations, the prioritization of
other influential variables, the consideration of the addition of FA unnecessary, the quality
of fine aggregate data, and limitations in the model architecture or training processes.

5. Sensitivity Study

A sensitivity study or analysis is crucial to many scientific investigations. This param-
eter sensitivity analysis helps to understand how a particular parameter might affect the
results or the output of the model prediction. This study provides an understanding of
which input parameters impact the results most and which have fewer effects. The GEP
model was chosen for the sensitivity study based on its simplicity, which can be utilized to
analyze the factors influencing compressive strength (CS).

5.1. The Effects of Changing Steel Slag Aggregate Content (SSA)

This sensitivity study examined the relationship between the percentage of SSA in
concrete mixes and the resulting compressive strength. As mentioned in the literature
review and shown in Figure 14a, increasing the SSA content will increase the compressive
strength. Moreover, Tarawneh et al. [29] revealed that adding SSA can improve concrete’s
abrasion factor, impact value, and compressive strength, particularly during the early
stages. Miah et al. [28] showed a notable increase in compressive strength and reduced
porosity when steel slag was utilized. Sinha [25] also confirmed the trend by observing an
increase in compressive, flexural, and split tensile strengths after replacing fine aggregate
with steel slag by a specific percentage.
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Figure 14. Relationship between CS (a) BFS and (b) age.

5.2. The Effects of Aging on the Compressive Strength of SSA Concrete

This sensitivity analysis focused on investigating the effects of ageing on SSA concrete’s
compressive strength. The study’s results showed that the CS increased over time, reflecting
the gradual development of concrete’s mechanical properties (as shown in Figure 14b).
This finding aligns with what Nguyen et al. [30] found. First, compressive strength rapidly
increased within the 7-day curing period of concrete, followed by a slower but continuous
increase. Additionally, Tarawneh et al. [29] highlighted the beneficial effects of SSA on
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enhancing concrete properties, specifically abrasion resistance and impact strength. This
suggests that this enhancement may be responsible for the observed strength. The study
demonstrated the progressive compressive strength enhancement in SSA concrete as it
ages. Moreover, Aparicio et al. [31] found that using SSA can increase compressive strength
values after 28 days of curing, increasing with the replacement percentage.

6. Conclusions

The construction industry is a significant consumer of natural resources and faces
substantial challenges related to environmental sustainability and resource depletion. This
research addresses these challenges by promoting the adoption of locally available eco-
friendly alternatives, such as steel slag aggregate concrete (SSA). The study explored the
predictive capabilities of various machine learning (ML) and soft computing techniques
(SCT), including Artificial Neural Networks (ANN), Gene Expression Programming (GEP),
Random Forest Regression (RFR), and Gradient Boosting (GB), to predict the compressive
strength (CS) of SSA concrete. Each model’s fundamental principles and advantages, limi-
tations, and similarities were elucidated. A total of 334 datasets were used, encompassing
input factors like cement content, water, fine and coarse aggregates, superplasticizers, SSA,
and age, with compressive strength as the output.

Statistical metrics such as the coefficient of determination (R2), mean absolute error
(MAE), root mean square error (RMSE), and mean values were employed to assess the
accuracy of the predictive models. The findings indicated that both the GEP and GB models
exhibited excellent R2 values, with the GB model achieving the highest R2 value of 0.98,
followed by the RFR (0.96), GEP (0.86), and ANN (0.67). Additionally, the GB model
recorded the lowest MAE and RMSE values, 1.15 MPa and 2.45 MPa, respectively. The
RFR model had values of 2.52 MPa and 3.69 MPa, while the GEP and ANN produced 5.86
MPa and 7.35 MPa, and 8.86 MPa and 11.14 MPa, respectively. The mean values further
confirmed the superior performance of the GB model, followed by RFR, GEP, and ANN.

The hyperparameter tuning for these models was crucial to achieving these results.
Parameters for each model were carefully selected and optimized using techniques such as
grid search and random search. For example, the GEP model’s parameters included a set
number of chromosomes, head size, and genes, among others. The ANN model’s parame-
ters, such as the learning rate, the number of hidden layers, and batch size, were similarly
optimized. This rigorous hyperparameter optimization ensured the models’ robustness,
reproducibility, and generalizability, providing reliable predictions for unseen data.

The developed models offer practical applications by providing a reliable method for
predicting the compressive strength of SSA concrete, which engineers and construction
professionals can use to optimize mix designs and reduce the need for extensive physical
testing. These models can serve as a decision-making tool, aiding in selecting appropriate
mix proportions to meet specific performance criteria, thereby promoting more efficient and
sustainable construction practices. The results of this study contribute significantly to un-
derstanding the mechanical behavior of SSA concrete. The developed models, particularly
GEP, demonstrated strong predictability for estimating the compressive strength of SSA
concrete, offering a mathematical framework that incorporates various critical parameters.
These findings provide a foundation for future research and practical applications in the
construction industry, promoting sustainable construction practices using SSA concrete.

Recommendation and Future Work

One of the limitations of this project is the extent of the investigation. While this study
provides essential insights into the predictive abilities of machine learning models and soft
computing techniques, there is still room for improvement. It is recommended that future
research broadens the dataset for testing. Including a wider range of parameters, such
as different compositions of SSA and various additives, can offer a more accurate picture
of the performance of this concrete. Additionally, incorporating a broader range of test
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scenarios and conditions would enhance the analysis and validate the findings, thereby
improving the reliability and usability of the predictive models created.

Notably, the fine aggregate variable was not considered in the equation developed
by GEP. Several factors could explain why the GEP model excluded fine aggregate. First,
the training data might not have adequately represented the effects of fine aggregate on
compressive strength, possibly due to insufficient variation or the lack of samples with
varied fine aggregate composition. Second, the model might have prioritized other more
significant variables for predicting compressive strength. Additionally, the model could
have determined that including fine aggregate did not improve predictive accuracy or
that other variables sufficiently captured the interaction between fine aggregate and SSA.
The quality of data regarding fine aggregate or its interaction with SSA could have also
influenced the model’s ability to capture these effects. Paixão et al. [47] noted that data
collected from 17 sources could introduce noise or errors if improperly pre-processed.
Moreover, while the GEP model can capture complex relationships, limitations or biases
in the model architecture or training process might affect its performance. This indicates
opportunities for improvement, such as optimizing parameters or including additional
relevant variables.

Furthermore, the geographical and environmental conditions under which the data
were collected should be considered, as they might influence the results. Data were
sourced from various locations with distinct climates and environmental factors, potentially
affecting SSA concrete’s material properties and performance. Differences in temperature,
humidity, and exposure to environmental stressors such as salinity or pollutants were
considered. These factors could impact SSA concrete’s compressive strength and durability,
thus influencing the predictive modeling results [60].

Future work will involve adding more experimental studies on the use of steel slag
in concrete. The database must be expanded to incorporate results from these studies to
increase the comprehensiveness and reliability of the dataset.

By addressing these recommendations, future research can enhance the understanding
and predictive accuracy of models for SSA concrete, contributing to more reliable and
comprehensive results.

Future work will also expand the dataset to incorporate more recent experimental
studies on using steel slag in concrete. This will include ensuring that data collection is
diverse and representative, covering various sources, geographical regions, environmental
conditions, and varying compositions of SSA. Thorough data preprocessing, including
normalization and standardization, will also be crucial to mitigate potential biases. Aug-
menting the dataset through synthetic data generation or controlled experiments, imple-
menting cross-validation, and regularly updating it with new data will further enhance
its comprehensiveness and reliability. By addressing these recommendations, future re-
search can improve the understanding and predictive accuracy of models for SSA concrete,
contributing to more reliable and comprehensive results.
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59. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of XGBoost. Artif. Intell. Rev. 2019, 54, 1937–1967.
[CrossRef]

60. Gu, C.; Shuang, Y.; Ji, Y.; Wei, H.; Yang, Y.; Xu, Y.; Qian, R.; Cui, D.; Zhou, H. Effect of environmental conditions on the volume
deformation of cement mortars with sewage sludge ash. J. Build. Eng. 2023, 65, 105720. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2022.119134
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.jobe.2022.105720

	Introduction 
	Literature Review 
	Methodology Overview 
	Data Collection and Statistical Analysis 
	Data Grouping 
	Developing Models 
	Artificial Neural Network (ANN) 
	Gene Expression Programming (GEP) 
	Random Forest Regression (RFR) 
	Gradient Boosting (GB) 

	Statistical Indicators and Measurements 

	Results and Discussion 
	Sensitivity Study 
	The Effects of Changing Steel Slag Aggregate Content (SSA) 
	The Effects of Aging on the Compressive Strength of SSA Concrete 

	Conclusions 
	References

