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Abstract: In structural health monitoring, because the number of sensors used is far lower than
the number of degrees of freedom of the structure being monitored, the optimization problem
of the location and number of sensors in the structures is becoming more and more prominent.
However, spatial grid structures are complex and diverse, and their dynamic characteristics are
complex. It is difficult to accurately measure their vibration information. Therefore, an appropriate
optimization method must be used to determine the optimal positioning of sensor placement. Aiming
at the problem that spatial grid structures have many degrees of freedom and the fact that it is
difficult to obtain complete vibration information, this paper analyzed the typical EI method, MKE
method, and EI-MKE method in the arrangement of the measuring points, and it was verified that
the EI method was more suitable for the vibration detection of spatial grid structures through the
example of a plane truss and spatial grid structures. Measuring points under the assumption of
structural damage were explored, and it was proposed that there might have been a stable number
of measuring points that could cover the possible vibration mode changes in the structures. At the
same time, combined with the three-level improved Guyan recursive technique, in order to obtain
better complete modal parameters, the influence of the number of measuring points on the complete
vibration mode information was studied. It was concluded that MACd was better than MACn as the
quantitative target.

Keywords: spatial grid structures; layout of measuring points; vibration mode expansion; modal
identification

1. Introduction

As a kind of large-span structures, spatial grid structures have the characteristics
of a complex form and a huge volume. It is impossible and unnecessary to obtain the
response data of the structures through a large number of sensors [1–3]. The early optimal
arrangement of sensors was based on the establishment of the finite element model of
the structures and the arrangement of sensors based on experience. This method is more
practical, but it can only be used for structures with fewer degrees of freedom. In the
optimization of the number and location of sensors for complex and multi-node structures,
it is very difficult to optimize the number and location of sensors only by experience, which
makes it difficult to meet the requirements. Therefore, it is of great significance for the
effective operation of whole-health monitoring systems to study and determine the optimal
arrangement positions and reasonable number of sensors.

The optimal placement of sensors first needs to determine the objective function,
and the principle is to obtain as much structural information as possible. One class of
methods aims at the linear independence of the target mode [4,5]. For example, Kammer [6]
proposed the effective independence method (EI) in 1991. The basic idea of the algorithm
is to construct an idempotent matrix so that the measured points are linearly independent
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and orthogonal to each other as much as possible. Lim [7], combined with the eigensystem
realization method, carried out sensor placement with the minimum condition number of
the Hankel matrix. Wu et al. [8] proposed a sensor placement method based on a two-step
method from the two aspects of the number and location of the sensors. Bao [9] studied the
optimal placement of sensors for arched roofs and trussed roofs. Based on the EI method,
the optimal placement criteria or general rules of the sensors are given. The other method
of determining the objective function is to consider the arrangement of the measuring
points from the perspective of energy. The modal kinetic energy method [10] (MKE) is
used to arrange the measuring points with the maximum kinetic energy of the target
mode. Gomes [11] determined the optimal sensor placement of dynamic systems from
the perspective of parameter identification based on Fisher’s information matrix from the
perspective of obtaining structural information. In addition, the MinMAC method aims to
minimize the maximum element value of the off-diagonal element of the modal assurance
criterion matrix to select the sensor position in order to maximize the angle between the
measured modal shape vectors. Considering the advantages and disadvantages of the
EI method and the MKE method, Liu et al. [12] proposed an improved optimal sensor
placement method, namely, the effective independence–modal kinetic energy method
(EI-MKE). Li Dongsheng et al. [13] deeply analyzed the relationship between the MKE
method, EI method, MinMAC method, modal matrix method, and other methods, and
they revealed their differences and connections. The example showed that there were no
two methods to determine the sensor position that were exactly the same. Zhang et al. [14]
proposed a data-driven OSP strategy that achieves structural damage detection based on
vibration sensors by precisely reconstructing modal shapes using only a few sensors that
are incorporated into an SHM system. Zhan et al. [15] determined the optimal (and worst)
locations for AE source localization in sensor clusters with unknown material properties of
isotropic plates through a Bayesian optimal sensor placement strategy. Xu et al. [16] utilized
convolutional neural networks for an ensemble-based data assimilation optimal sensor
placement method. Guo et al. [17] proposed a new performance-based sensor optimization
configuration method based on the proposed indicators of modal observability and damage
detectability and introduced an OSP method for a single-line radar.

Damage identification is an important part of structural health monitoring [18,19]. In
practical engineering, due to the limitation of the number of sensors and the measurement
conditions, only limited measuring points can be monitored to obtain incomplete low-
order vibration modes [20–23]. Some scholars have studied the application of model order
expansion in damage identification. Xiao Feng et al. [24] studied a damage identification
stiffness separation method for large spatial truss structures based on static response. Xiao
Feng et al. [25] proposed a damage identification method for slender beam frame structures.
Liu et al. [26] proposed a direct expansion method for mode expansion by using a composite
vector composed of the measured value of the main degree of freedom and the estimated
value of the slave degree of freedom, and they used the MAC method to evaluate the
expansion results. Brincker et al. [27] used the SEREP method to expand the vibration
mode of the plate numerical model after smoothing the measured vibration mode. These
methods achieve the expansion of modal shapes by solving the transfer matrix and rely too
much on the finite element analysis mode rather than the actual engineering state. Zhao
et al. [28] used the SEREP method to expand the mode shape, established a linear system of
equations for the damage coefficient, and used the Moore–Penrose generalized inverse to
solve the equations. On the basis of the dynamic condensation method, Mousavi et al. [29]
iteratively modified the damage coefficient and the model condensation matrix using only
the translational degrees of freedom of the first mode of vibration for damage identification,
but they still needed to measure more degrees of freedom. Aiming at the problem of limited
measuring points and test noise in damage identification, Yang et al. [30] used a parametric
dynamic condensation method to expand the vibration mode. Civalek et al. [31] used the
DSC-HDQ method to solve the geometric nonlinear dynamic problem of a rectangular
plate on an elastic foundation.
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Based on the above analysis, it can be seen that in the process of modal parameter
identification of large-span spatial structures with complex shapes, numerous nodes, and
dense frequency, on the basis of the difference between the actual state of the structures
and the theoretical model, the location of the sensors, the number and order of the selected
modes, and the number of layouts still need to be further studied. At the same time,
the application of modal order expansion in spatial grid structures, especially how to
effectively link it with the arrangement of the measuring points in its inverse process and
check whether the arrangement of the measuring points in the structures is reasonable,
is still rare. In this paper, aiming at the problem that spatial grid structures have many
degrees of freedom and it is difficult to obtain complete vibration information, a method
of measuring a point arrangement that is suitable for spatial grid structures is verified
and analyzed by an example. Combined with the three-stage improved Guyan recursive
technique, the influence of the number of measuring points on obtaining the complete
vibration mode information is studied. The suggestion that the measuring point can be
preset before the dynamic detection of the spatial grid structures is put forward.

2. Applicability Analysis of Measuring Point Arrangement Method

The traditional measuring point optimization algorithm is essentially a process of
finding the optimal solution. According to the defined objective function, the iterative
optimization is carried out by using the different matrices formed. As shown in Table 1, the
different measuring point arrangement methods proposed by different scholars essentially
change the objective function of the optimization process and then search in the solution
domain according to different objective functions. The search order is divided into three
processes: gradual deletion, direct acquisition, and gradual accumulation. The suboptimal
solution found by iteration is close to the optimal solution, which can usually meet the
requirements of measuring point arrangement.

Table 1. The objective function of different measuring point arrangement methods.

Measuring Point
Arrangement

Method

Effective Independence
Method (EI)

Modal Assurance
Criterion (MAC)

Modal Kinetic Energy
(MKE) Covariance Matrix (VM)

Objective function

The estimation of the
model coordinate
estimation error
covariance is the

smallest.

The maximum element
of the non-diagonal
element of the MAC

matrix is the smallest.

The kinetic energy of
the modal degree of

freedom is the largest.

The linear unbiased
estimation error of the

modal matrix is
the smallest.

Target The contribution to the
target mode is the largest.

The spatial intersection
angle of the modal

vector of the measuring
point is the largest.

The signal-to-noise
ratio is the maximum

The ability to obtain the
vibration mode and the

signal strength are
the largest.

The above measuring point algorithm has been widely used in engineering [32,33].
From the existing research, the contribution of the measuring point to the mode and the
energy of the measuring point are the two factors that have the greatest influence on the
structure; the EI method can efficiently select the degree of freedom that contributes a
lot to the target mode shape; the MKE method improves the signal-to-noise ratio of the
measuring point with the goal of degree-of-freedom energy. Therefore, this paper chooses
the EI, MKE, and EI-MKE methods, three representative methods, to study the applicability
of measuring point arrangement in spatial grid structures.
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2.1. Principle of Measuring Point Arrangement Method
2.1.1. Effective Independence Method (EI) [34,35]

The EI method constructs the effective independence matrix E by solving the charac-
teristic equation of Fisher’s information matrix:

E = Φ
(

ΦTΦ
)−1

ΦT (1)

In the Equation (1), E is an idempotent matrix, whose diagonal elements satisfy
0 ≤ Eii ≤ 1, and the ith element represents the contribution of the ith degree of freedom to
the rank of matrix E. If Eii is close to 0, the degree of freedom contributes less to the linear
independence of the target mode and should be removed; if Eii is close to 1, the degree
of freedom contributes more to the linear independence of the target mode and should
be retained.

The starting point of constructing matrices by the EI method is that the vectors used to
construct them are orthogonal. If the constructed vectors are not orthogonal, the orthogonal
and cross orthogonal tests used in the derivation of EI method will cause large errors. For
the orthogonal vibration mode Φ = Φx Φy Φz, the orthogonal test should be conducted:

β =
[
ΦxΦyΦz

]T[
ΦxΦyΦz

]
= ΦxΦx + ΦyΦy + ΦzΦz (2)

Because the vibration mode is orthogonal, that is, β= 0, and considering the spatial
structure, it is impossible to satisfy the three directional components of the structural mode,
that is, ΦxΦx = 0, ΦyΦy = 0, ΦzΦz = 0.

Thus, E represents the effective independent distribution of the set of candidate
sensor positions, and the elements on the diagonal of E represent the linearly independent
contribution of the corresponding sensor candidate points to the modal matrix. After the
matrix E is obtained, the priority order of each candidate point is sorted according to the
diagonal element size after the matrix E is obtained. The iterative algorithm is used to
eliminate the smallest measurement point of the corresponding diagonal element each
time, and the next iteration is then carried out until the required number of measurement
points is reached. Through this iterative algorithm, the linear independence of the modal
matrix is preserved as much as possible, that is, the characteristics of the original structure
are preserved.

2.1.2. Modal Assurance Criterion (MAC) [36]

The modal confidence factor MAC is a good tool to evaluate the intersection angle of
modal vectors. It can reflect the correlation between two spatial vectors, and its calculation
formula is as follows:

MACij =

(
Φi

TΦj

)2(
Φi

TΦj

)(
Φi

TΦj

) (3)

In the Equation (3), Φi and Φj are mode vectors of order i and j, respectively.
MACij is located between 0 and 1, where 0 means that the two vectors are orthogonal,

and 1 means that the two vectors are completely related. Therefore, the larger the non-
diagonal elements of the MAC, the greater the correlation of the vectors, and the worse
the independence of the modes of each order. The smaller the non-diagonal elements
of the MAC, the better the independence of the modes of each order, and the better the
characteristics of the original structure can be reflected. Generally, when the MAC is greater
than 0.9, the two vectors are correlated, and the two vectors are indistinguishable. When it
is less than 0.25, the two vectors are approximately considered orthogonal to each other.
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2.1.3. Modal Kinetic Energy Method (MKE) [10]

The objective criterion of the MKE method is to find the set of measuring points so
that the modal kinetic energy at the measuring points is the largest when the structure has
the same number of measuring points. The modal kinetic energy expression is as follows:

MKE = ΦT MΦ (4)

In the Equation (4), M is the mass matrix obtained by the numerical modeling of the
structure.

The contribution of the p-th degree of freedom to the kinetic energy of the q-th order
mode is calculated as:

Kpq = Φpq

n

∑
s=1

MpsΦsq (5)

The total contribution of the p-th degree of freedom to the kinetic energy of all target
modes is given by:

Kp =
m

∑
q=1

Φpq

n

∑
s=1

MpsΦsq (6)

In the Equation (6), Φpq is the PTH element of the QTH mode; Mps is the PTH row and
s-th column element of the mass matrix M; and Φsq is the s-th element of the QTH mode.
The optimum test point is determined based on the degree of freedom that contributes the
most to the kinetic energy of a certain mode or the average kinetic energy of the target mode.

2.1.4. Covariance Matrix (VM) [37–39]

The covariance matrix method is based on the maximum information subset technique,
which is used to solve the sensor optimization problem. Let matrix Y =

{
YsYp

}
= [Φ]T

be the modal matrix composed of the modal vectors of all feasible measuring points, and
assume matrix Y =

{
YsYp

}
= [Φ]T, where Ys is the modal mode of s observed measuring

points, and Yp is the modal mode of p unobserved measuring points, when Ys is used to
estimate Yp linearly and without bias:

Ŷp = CppC−1
ss Ys (7)

Among them, Css and Cpp are the diagonal submatrices of the matrix covariance
matrix.

|cov(Y)| =
∣∣∣∣Css Csp
Cps Cpp

∣∣∣∣ = ∣∣∣∣cov(Ys) Csp
Cps cov

(
Yp
)∣∣∣∣ = |Css|

∣∣Dpp
∣∣ (8)

where d is the estimated error

Dpp = covŶp
(
−Yp

)
= Cpp − CpsC−1

ss Csp (9)

Minimizing Dpp ensures an unbiased estimate of the mode displacement for unob-
served measurement points using s sensors. As can be seen from Equation (9), this is
equivalent to maximizing Css, that is, maximizing |cov(Ys)|.

2.1.5. Effective Independence–Modal Kinetic Energy Method (EI-MKE)

EI-MKE method corrects EI method directly by multiplying the modal kinetic energy
vector with the effective independent vector.

The EI method is directly revised by multiplying the modal kinetic energy vectors by
the effective independent vectors.

EIMKE = diag
(

Φ
(

ΦTΦ
)−1

ΦT
)
·diag

(
ΦTΦM

)
(10)
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2.2. Evaluation Criteria of Measuring Point Arrangement Results

Commonly used evaluations of test results include the energy, MAC, and determinant
of Fisher’s information matrix. This paper also evaluates the advantages and disadvantages
of these three measuring point arrangement methods based on the energy angle, the
orthogonality of the modal vector, and the determinant value of the Fisher information
matrix. Due to the characteristics of the spatial bar structure, the extraction of the structural
stiffness matrix and the mass matrix becomes easy to realize. Therefore, this paper proposes
to improve the Guyan recursive technique and the complete modal MAC matrix of the
theoretical modal expansion of the measuring point to evaluate the measurement point
arrangement results.

2.2.1. Energy

The higher the energy of the candidate measuring points, the higher the signal-to-noise
ratio that can be obtained in the test process, which is conducive to obtaining accurate
structural parameters. The modal kinetic energy of the candidate measuring points is used
to evaluate the arrangement of measuring points. The calculation of its value is the same as
in Formula (3).

2.2.2. MAC

The MAC was originally proposed to detect structural damage and for damage lo-
cation. It is now widely used in the correlation analysis of two curves. It is the most
effective tool to judge the correlation between modes [1,2], especially test modes and
theoretical modes.

MACij =

(
Φi

TΦj

)2(
Φi

TΦj

)(
Φi

TΦj

) , j = 1, 2, 3, . . . , m (11)

According to Formula (4), the MAC matrix with the same number of output points is
obtained. The diagonal elements represent the correlation between the two test curves, and
the diagonal elements of the MAC matrix are represented by the MAC value. The higher
the correlation between the two test curves, the closer the MAC value is to 1. The closer
the MAC value of the two test curves is to 0, the more irrelevant the two test curves are.
The MAC matrix of the feature vector formed by the candidate measuring points is used to
evaluate the results of the measuring point arrangement. It is an index used to examine the
advantages and disadvantages of the selected measuring points from the perspective of the
linear independence of the modal vector. The smaller the off-diagonal element is, the larger
the space vector intersection angle of the arranged measuring points.

2.2.3. The Determinant of Fisher’s Information Matrix

F = lg

(
Fselect
Ff ull

)
(12)

According to the logarithm of the ratio of the determinant value of the Fisher informa-
tion matrix at the selected measuring point position to the determinant value of the Fisher
information matrix of the initial complete model, the information content of the selected
measuring point containing the modal parameters is evaluated. The larger the F value, the
more information about the structural modal parameters that is obtained.

2.2.4. Modal Expansion

The expansion process of the incomplete mode is based on the improved Guyan
recursive technique. The principle is as follows:
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The characteristic equation of an n-degree-of-freedom system is as follows:

Kx = λMx = f (13)

According to the principal coordinate xm and the vice coordinate xs, the characteristic
equation is divided into:

[
Km Ks

][xm
xs

]
= λ

[
Mm Ms

][xm
xs

]
(14)

In the Equation (14), Km, Mm ∈ RN,m; Ks, Ms ∈ RN,s, m + s = N

Km =

[
Kmm
Ksm

]
, Mm =

[
Mmm
Msm

]
, Ks =

[
Kms
Kss

]
, Ms =

[
Mms
Mss

]
(15)

Without considering the inertia force at the right end, the following is obtained:

[
Km Ks

][xm
xs

]
= 0 (16)

The coordinate transformation of the improved Guyan reduction is established from
the above formula:

xs = Dzxm (17)

Dz = −K+
s Km (18)

Ks+ = (KsTKs) − 1KsT (19)

Furthermore, the improved Guyan in reduced form is obtained.

x =

[
I

Dz

]
xm = Tzxm (20)

Kz = TT
z KTz = Kmm + KmsDz + DT

z Ksm + DT
z KssDz (21)

Mz = TT
z MTz = Mmm + MmsDz + DT

z Msm + DT
z MssDz (22)

Using the above improved Guyanreduced solution to approximate the right-side
inertial force of Formula (7), the k-order reduced matrix of the improved Guyan is obtained:

D(k) = Dz + K+
s (Mm + MsD(k−1))[M(k−1)]−1K(k−1) (23)

K(k−1) = Kmm + KmsD(k−1) + D(k−1)TKsm + D(k−1)TKss (24)

M(k−1) = Mmm + MmsD(k−1) + D(k−1)T Msm + D(k−1)T MssD(k−1) (25)

In the improved Guyan recursive technique, the retained principal coordinates are the
degrees of freedom of the measuring points calculated by each measuring point algorithm.
According to the obtained reduced matrix and the modes of the measuring points, the
modal matrix of the whole structure is inversely deduced, and the MAC matrix of the
calculated overall modal matrix and the theoretical modal matrix is calculated to evaluate
the effectiveness of the measuring point arrangement. Practice shows that considering
the calculation accuracy and calculation time, the three-stage improved Guyan recursive
indentation technique can meet the requirements.

2.3. Research on Search Order of Algorithm

The plane truss structure shown in Figure 1 was established by using the finite element
software Midas Gen 2024 v1.1. The chord length is 1.5 m, and the height is 1.2 m. The elastic
modulus of the bar is 2.06 × 1011 N/m2, the material density of the bar is 7.85 × 103 kg/m3,
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the cross-sectional area is 3.96 × 10−4 m2, and the additional mass of the joint is 1050 kg.
The first six natural frequencies and vibration modes of the structure were calculated as
shown in Figure 2.
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Figure 2. The first six modal frequencies and mode shapes of plane truss. (a) First mode of vi-
bration (2.883 Hz); (b) Second-order vibration mode (6.981 Hz); (c) Third-order vibration mode
(11.053 Hz); (d) Fourth-order vibration mode (13.386 Hz); (e) Fifth-order vibration mode (19.402 Hz);
(f) Sixth-order vibration mode (21.025 Hz).

The targeting of the first six patterns and the selection of the six measuring points was
achieved, and the layout schemes of the measuring points were provided according to three
different search sequences: gradual deletion, direct acquisition, and gradual accumulation,
as indicated in Table 2.

Table 2. Sensor placement using three methods.

Searching Sequence EI MKE EI-MKE

Gradually deleted 1X 2Z 6X 7Z 11Z 13Z 2Z 5Z 7Z 9Z 13Z 15Z 2X 2Z 4Z 7X 7Z 13Z
Direct acquisition 2Z 7Z 11Z 13Z 9Z 15Z 2Z 5Z 7Z 9Z 13Z 15Z 2Z 7Z 13Z 9Z 15Z 5Z

Gradually accumulated 2Z 9Z 10Z 3Z 11Z 4Z 2Z 5Z 7Z 9Z 13Z 15Z 2Z 9Z 10Z 3Z 7Z 15Z

Four evaluation criteria were used to evaluate the layout of the measuring points, as
shown in Figure 3. In order to avoid confusion, the maximum MAC of the off-diagonal
element of the autocorrelation matrix of the measuring point is MACn. MACn characterizes
the linear independence of the measuring point mode. The smaller the MACn, the better
the orthogonality of the test mode and the better the anti-noise ability of the measuring
point. The minimum diagonal element of the correlation matrix formed by the extended
complete mode and the structural theoretical mode is MACd. MACd represents the corre-
lation between the complete mode formed by the expansion of the measuring point and
the complete mode information of the structure. The larger the MACd, the higher the
correlation between the extended mode and the theoretical mode and the more complete
the extended structural information.
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From the above results, the search order had no effect on the MKE method, and the
results of the three search orders were the same. The search order had a great influence on
the EI method and the EI-MKE method; as shown in Figure 3a, the obtained measurement
points were gradually deleted, and the maximum Fisher information value was obtained;
as shown in Figure 3b, the measured point modes obtained by gradually deleting had
good orthogonality; and as shown in Figure 3c, after gradually deleting the obtained
measuring points for complete modal expansion, the structural expansion mode had the
greatest correlation with the theoretical mode. Therefore, the following algorithms in this
paper were all based on the arrangement of the measuring points obtained by the gradual
deletion process.

It can be seen from the results of the energy map shown in Figure 3d–f that the gradual
deletion process, compared with the direct acquisition and gradual accumulation processes,
obtained relatively less energy at the measuring point. However, it can be seen from the
modal expansion results that as long as the vibration mode of the measuring point could
be obtained, this lower energy did not affect the expansion of the incomplete mode of the
structure into a complete mode. Therefore, the subsequent evaluation of the measuring
point arrangement in this paper no longer considered the modal energy problem of the
measuring points.

2.4. Algorithm Optimization

The three measuring point arrangement methods of the above plane truss example
were evaluated, and the following conclusions were drawn:

(1) From the perspective of Fisher’s determinant, the information of the measuring point
arrangement obtained by the EI method was slightly higher than that obtained by
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the EI-MKE method, and the Fisher information obtained by the MKE algorithm was
the least.

(2) From the perspective of MACn, the modal orthogonality of the measuring points
obtained by the EI-MKE method was the best, followed by the EI method. The
arrangement of the measuring points obtained by the MKE method and the non-
diagonal elements of the MAC matrix reached more than 0.9, indicating that the
orthogonality of the test mode was poor and that there was a cross mode.

(3) From the perspective of MACd, the extended mode obtained by the EI method had the
best correlation with the theoretical mode of the structure, followed by the EI-MKE
method. The minimum value of the extended mode MACd of the measuring point
obtained by the MKE method reached within 0.2, indicating that the extended mode
was almost orthogonal to the theoretical mode of the order and that the expansion
result was poor.

Based on the above information, the MKE method was used to obtain the structural
modal measurement points. Compared with the EI method and the EI-MKE method, there
is a large lack of modal information, which is not suitable for the spatial grid structures
when arranging the measurement points. The EI method and the EI-MKE method have
their own advantages, so the application dimension of the algorithm should be expanded.

The structural dimension was expanded to three dimensions, and a 3 × 7 square
pyramid grid structure model was established, as shown in Figure 4. The grid length
was set as 1.5 m, the grid thickness was set as 1.2 m, and a fixed hinge support was
set on the opposite side of the lower chord. The elastic modulus of the rod was set
as 2.06 × 1011 N/m2, the cross-sectional area of the upper and lower chords was set as
1.07 × 10−3 m2, the cross-sectional area of the web member was set as 9.04 × 10−4 m2, the
material density of the rod was set as 7.85 × 103 Kg/m3, and the added mass was set as
1700 Kg. The first six theoretical frequencies and modes of the structure were obtained by
modal analysis, as shown in Figure 5.
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Two algorithms (EI and EI-MKE) were applied. The first six modes and six measuring
points were the targets. The node numbers of the grid structure are shown in Figure 6, and
the arrangement results of the measuring points are shown in Table 3. Fisher’s information,
MACn, and MACd were used to evaluate the results of the measuring point arrangement,
as shown in Figure 7.

Table 3. Sensor placement using EI and EI-MKE methods.

Measuring Point Arrangement Method Measuring Point

EI 13Y 16Y 25Z 28Z 49Z 52Z
EI-MKE 21Y 25Z 28Z 49Z 50Z 52Z
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Figure 5. The theoretical frequencies and vibration modes for the first six modes of the grid structure.
(a) First mode of vibration (4.713 Hz); (b) Second mode of vibration (5.100 Hz); (c) Third mode of
vibration (5.524 Hz); (d) Fourth mode of vibration (9.290 Hz); (e) Fifth mode of vibration (10.741 Hz);
(f) Sixth mode of vibration (12.953 Hz).
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As shown in Figure 7, the extended mode MACd value was derived from the extended
sixth-order mode. Although the EI-MKE method had good expansion results for the first
five modes, the sixth-order MACd value was very small and almost orthogonal to the
sixth-order theoretical mode, indicating that the EI-MKE method lost the sixth-order mode
during the expansion process. The EI method was better than the EI-MKE method in terms
of the amount of information at the measuring point, the orthogonality of the measuring
point, and the integrity of the extended mode. Therefore, for a three-dimensional spatial
grid structures, the EI method can obtain more measuring point arrangement information,
which is more suitable for the measuring point arrangement of the spatial grid structures.
The MAC matrix of the modal components in the three directions of the extended mode of
the structure is the output, as shown in Figure 8.
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3. Arrangement of Structural Measuring Points with Damage

In order to verify whether the damaged structure still has a high correlation with
the theoretical vibration mode of the original structure, this section performs a numerical
simulation on the above grid example so that the number of structural members varies
from zero damage to half damage, and the structural frequency and vibration mode are
calculated. At the same time, the structural vibration mode and the MAC value of the
original structure are calculated. Since the number of structural members in the example
is 168, when the damage of the members reaches half, there may be too many damage
combinations. For this reason, the concept of member sensitivity was introduced, and
the single member damage was assumed to calculate the structural sensitivity coefficient.
Then, in order to obtain the randomness of the structural vibration mode, random damage
values of 0–10%, 20–30%, and 40–50% were imposed on the structural members. In the case
of progressive damage of the rod, the MAC matrix of the first six orders of the damaged
structure vibration mode and the theoretical vibration mode was calculated successively,
and the MAC was counted as shown in Table 4.
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Table 4. Damaged structure information statistics under different vibration mode member sensitivities.

Damage
Situation No. Min(f) ∆f

MAC

>0.99 0.95–0.99 0.90–0.95 0.1–0.9 0.05–0.1 <0.05

0–10%

1 6.358 4.61% 168 0 0 0 0 0
2 6.868 4.78% 168 0 0 0 0 0
3 7.421 5.01% 168 0 0 0 0 0
4 12.475 5.04% 168 0 0 0 0 0
5 14.445 4.90% 168 0 0 0 0 0
6 17.356 5.13% 168 0 0 0 0 0

20–30%

1 5.594 16.08% 115 50 3 0 0 0
2 6.050 16.12% 67 101 0 0 0 0
3 6.537 16.32% 77 63 26 2 0 0
4 11.028 16.06% 154 14 0 0 0 0
5 12.820 15.60% 115 53 0 0 0 0
6 15.357 16.05% 152 16 0 0 0 0

40–50%

1 4.742 28.86% 63 55 17 33 0 0
2 5.132 28.84% 17 28 66 48 1 8
3 5.565 28.76% 72 12 21 63 0 0
4 9.456 28.03% 68 100 0 0 0 0
5 10.794 28.94% 26 78 54 10 0 0
6 13.006 28.91% 27 119 22 0 0 0

For this space truss, as shown in Table 4, there was a positive correlation between the
decrease in the structural frequency and the level of correlation of the structural vibration
modes. In the range of a 5% decrease in the frequency, the structural vibration mode was
highly consistent with the theoretical vibration mode. With the increase in the damage
degree, such as with a decrease in frequency to about 28%, the vibration mode of each
order of the grid structure deviated from the theoretical vibration mode of the undamaged
structure to varying degrees, especially the third-order vibration mode, and the occurrence
of MAC values below 0.9 happened 37.5% of the time.

The measurement point arrangement of the grid structure under undamaged and
damaged conditions was carried out. The node number is shown in Figure 6, and the
arrangement of the measuring points by the EI method is shown in Table 5. The theoretical
distribution of the measuring points was the union distribution of 168 kinds of measur-
ing points, which was obtained according to the damage order. MACn comes from the
MAC matrix of the modal orthogonality check of the measuring points obtained by the
non-destructive structural measuring points and the actual structural vibration mode dis-
placement, which is the most unfavorable description in all the measuring points. MACd is
derived from the MAC matrix of the extended modal correlation check of the measurement
point arrangement corresponding to MACn.

It can be seen from Table 5 that after the occurrence of damage to the structure, the
theoretical distribution of the measuring points changed, and as the damage increased, the
orthogonality of the structural test mode became worse and worse, and the extended mode
also showed a worse and worse correlation. However, the MAC values that characterized
the modal orthogonality and the extended modal correlation of the measuring points were
not much different from those of the undamaged structure. The number of combined
measuring points could reflect the demand for measuring points of the first to sixth modes
of the undamaged structures and damaged structures. In the case of damage within
10%, the number of merged elements was 18. With the increase in the damage degree,
the number of merged measuring points changed to 20. According to the distribution
of the measuring points generated by random damage, the change in the merging set
was not large and basically remained stable. This shows that these degrees of freedom
had the highest sensitivity to the first to sixth modes of the structure, and the structure
had a basically stable distribution of measuring points. While the structural members
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were damaged and the vibration modes changed, the possibility of the measuring point
distribution covering all the possible vibration modes could be basically guaranteed.

Table 5. Sensor placement information under different levels of damage.

Damage
Quantity No. Theoretical Distribution of Measuring Points MACn MACd

0 13Y 16Y 25Z 28Z 49Z 52Z 0.4507 0.9769

0–10%

1 13Y 16Y 25Z 26Y 26Z 27Y 27Z 28Z 49Y 49Z
50Z 51Y 51Z 52Y 52Z 0.4552 0.9734

2 13Y 16Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z 49Y
49Z 50Y 50Z 51Z 52Z 0.4552 0.9749

3 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Z 49Y
49Z 50Z 51Y 51Z 52Y 52Z 0.4547 0.9728

4 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z
49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z 0.4556 0.9740

5 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z
49Z 50Z 51Z 52Y 52Z 0.4574 0.9716

6 13Y 16Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z 49Y
49Z 50Y 50Z 51Y 51Z 52Y 52Z 0.4568 0.9729

Merge measuring points 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z
49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z

20–30%

1 10Y 13Y 16Y 25Y 25Z 26Z 27Y 27Z 28Y 28Z
49Y 49Z 50Y 50Z 51Y 51Z 52Z 0.4643 0.9646

2 10Y 13Y 16Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z
49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z 0.4652 0.9621

3 10Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y
28Z 49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z 0.4646 0.9640

4 8Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y
28Z 49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z 0.4648 0.9634

5 8Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y
28Z 49Y 49Z 50Y 50Z 51Z 52Y 52Z 0.4806 0.9389

6 8Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z 28Y
28Z 49Y 49Z 50Y 50Z 51Z 52Y 52Z 0.4694 0.9590

Merge measuring points 8Y 10Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z
28Y 28Z 49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z

40–50%

1 8Y 10Y 13Y 16Y 25Y 25Z 26Z 27Y 27Z 28Y
28Z 49Y 49Z 50Y 50Z 51Y 51Z 52Z 0.4689 0.9467

2 10Y 13Y 16Y 25Z 26Y 26Z 27Y 27Z 28Y 28Z
49Y 49Z 50Z 51Y 51Z 52Z 0.4769 0.9448

3 8Y 10Y 13Y 16Y 25Z 26Y 26Z 27Z 28Y 28Z
49Y 49Z 50Z 51Y 51Z 52Z 0.4688 0.9678

4 8Y 10Y 13Y 16Y 25Y 25Z 26Y 26Z 27Z 28Y
28Z 49Y 49Z 50Y 50Z 51Z 52Z 0.4731 0.9124

5 8Y 10Y 13Y 16Y 25Z 26Y 26Z 27Y 27Z 28Y
8Z 49Y 49Z 50Y 50Z 51Z 52Y 52Z 0.5114 0.8482

6 8Y 10Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z
28Y 28Z 49Y 49Z 50Z 51Z 52Y 52Z 0.4804 0.9345

Merge measuring points 8Y 10Y 13Y 16Y 25Y 25Z 26Y 26Z 27Y 27Z
28Y 28Z 49Y 49Z 50Y 50Z 51Y 51Z 52Y 52Z

4. Study on the Number of Measuring Points

In order to ensure the spatial orthogonality of the test modes, many scholars use
MACn to achieve a stable value as the upper limit of the number of measuring points,
which lacks scientific basis. The modal expansion of the structure was carried out by using
the three-stage improved Guyan recursive technique. It can be seen from Table 4 that
within 10% damage, the real vibration mode of the structure had a good correlation with
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the theoretical vibration mode, and the MAC reached more than 0.99. Therefore, for the
above grid example, the first six modes were the target modes, and the structural expansion
mode was related to the theoretical vibration mode. The MAC reached 0.99 as the goal,
and the change in the number of measuring points was studied compared with MACn, as
shown in Figure 9.
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The orthogonality of the test modes is intended to prevent the crossing of the test
modes, and if the modes of the measurement points are crossed, they can be tested. The
arrangement of these points should aim to obtain as much structural information as possible;
thus, MACd is considered superior to MACn as a numerical target. For this example, as
shown in Figure 9, a minimum MACn value was reached when the number of measuring
points reached 24; however, more than 60 measuring points were needed for the measuring
point arrangement to achieve a stable state. Yet, when the number of measuring points was
24, the MACn value was found to be smaller than that of the sufficient number of measuring
points until a stable and low MACn value was reached. Therefore, when the MACn
value is taken as the condition, it is deemed the most economical and reasonable to select
24 measuring points. For MACd, when the number of measurement points reached 21,
the correlation between the measured vibration mode and the theoretical vibration mode
was greater than 0.99. Furthermore, the MACd value at 21 measurement points differed
the least from the MACd value when the number of measurement points was sufficiently
high for the MACd value to stabilize. Therefore, it is considered the most economically
reasonable to use 21 measurement points when the MACd value is the criterion. From
the perspective of the number of measurement points, the number of measurement points
obtained with MACd as the target was found to be smaller than that with MACn as the
target.

5. Conclusions

In this paper, through the verification of plane truss and grid structure examples, the
problem of measuring point arrangement was studied. The main conclusions are as follows:

(1) The EI method, MKE method, and EI-MKE method, which have a great influence on
the arrangement of the measuring points, were compared and analyzed. When the
three methods were applied to the grid structure, the measuring points obtained by the
gradually deleted search process had the greatest correlation between the structural
extended mode and the theoretical mode. At the same time, it was concluded that the
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EI method is the most suitable method for the arrangement of the measuring points
in spatial grid structures.

(2) The effect of the search order on the MKE method was negligible, and the results for
the three search orders were identical. However, the search order greatly influenced
the EI method and the EI-MKE method. The MKE method was found to have signifi-
cant missing modal information compared to the EI method and the EI-MKE method,
making it unsuitable for measuring point layout in spatial grid structures. Both the EI
method and the EI-MKE method have their own advantages. With reference to the
extended MACd value of the sixth-order mode derived from the extended mode, it
was observed that although the EI-MKE method yielded good expansion results for
the first five order modes, the sixth-order MACd value was very small and was almost
orthogonal to the sixth-order theoretical mode, indicating that the sixth-order mode is
lost in the expansion process of the EI-MKE method. The EI method was found to be
superior to the EI-MKE method in terms of measuring point information, measuring
point orthogonality, and extended mode integrity. Therefore, the EI method can
obtain more measuring point arrangement information for three-dimensional spatial
grid structures and is considered more suitable for determining the measuring point
arrangement of spatial grid structures.

(3) The numerical analysis of the grid was carried out, and the most unfavorable situation
of structural damage was determined by the sensitivity method. The correlation of
the structural modes under various damage conditions was compared. The statistical
information shows that the structural frequency of the structure had a large loss under
the different damage degrees, and the structural vibration mode and the vibration
mode of the undamaged structure still maintained a good correlation. In particular,
when the structural frequency decrease was less than 5%, the low-order vibration
modes of the structure were still highly consistent with the theoretical vibration modes
of the undamaged structure.

(4) It was found that with the increase in the damage amount, the MAC values of the
modal orthogonality and extended modal correlation of the measuring points were
less different from those of the undamaged structures. This shows that the structure
had a basically stable distribution of measuring points that could basically cover the
possibility of the measuring point distribution of all possible vibration modes.

(5) Combined with the three-level improved Guyan recursive technique, in order to
obtain better complete modal parameters, the demand for the number of measuring
points was studied, and it was concluded that the number target of MACd is better
than that of MACn.
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