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Abstract: Collision accidents involving construction vehicles and workers frequently occur at con-
struction sites. Computer vision (CV) technology presents an efficient solution for collision-risk
pre-warning. However, CV-based methods are still relatively rare and need an enhancement of
their performance. Therefore, a novel three-stage collision-risk pre-warning model for construction
vehicles and workers is proposed in this paper. This model consists of an object-sensing module
(OSM), a trajectory prediction module (TPM), and a collision-risk assessment module (CRAM). In
the OSM, the YOLOv5 algorithm is applied to identify and locate construction vehicles and workers;
meanwhile, the DeepSORT algorithm is applied to the real-time tracking of the construction vehicles
and workers. As a result, the historical trajectories of vehicles and workers are sensed. The original
coordinates of the data are transformed to common real-world coordinate systems for convenient
subsequent data acquisition, comparison, and analysis. Subsequently, the data are provided to a
second stage (TPM). In the TPM, the optimized transformer algorithm is used for a real-time trajectory
prediction of the construction vehicles and workers. In this paper, we enhance the reliability of the
general object detection and trajectory prediction methods in the construction environments. With
the assistance afforded by the optimization of the model’s hyperparameters, the prediction horizon is
extended, and this gives the workers more time to take preventive measures. Finally, the prediction
module indicates the possible trajectories of the vehicles and workers in the future and provides
these trajectories to the CRAM. In the CRAM, the worker’s collision-risk level is assessed by a multi-
factor-based collision-risk assessment rule, which is innovatively proposed in the present work. The
multi-factor-based assessment rule is quantitatively involved in three critical risk factors, i.e., velocity,
hazardous zones, and proximity. Experiments are performed within two different construction site
scenarios to evaluate the effectiveness of the collision-risk pre-warning model. The research results
show that the proposed collision pre-warning model can accurately predict the collision-risk level of
workers at construction sites, with good tracking and predicting effect and an efficient collision-risk
pre-warning strategy. Compared to the classical models, such as social-GAN and social-LSTM, the
transformer-based trajectory prediction model demonstrates a superior accuracy, with an average
displacement error of 0.53 m on the construction sites. Additionally, the optimized transformer model
is capable of predicting six additional time steps, which equates to approximately 1.8 s. The collision
pre-warning model proposed in this paper can help improve the safety of construction vehicles and
workers.

Keywords: construction safety; collision prediction; computer vision; object tracking; trajectory
prediction; collision-risk factors
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1. Introduction

The construction industry is widely recognized as one of the most hazardous sectors
worldwide [1,2]. According to the Bureau of Labor Statistics (BLS), there were 5190 fatal
workplace injuries recorded in the U.S. in 2021, marking an alarming increase of 8.9%
compared to the previous year [3]. Similarly, from 2016 to 2021, more than 3000 workers in
the construction industry lost their lives annually in China [4]. Collisions between workers
and construction vehicles (e.g., dump trucks and cranes) stand out as a prominent cause of
worker casualties [5,6].

Common management methods of construction safety, which rely on the manual moni-
toring of safety management, have high labor intensity and personnel costs. These methods
are difficult to monitor continuously and are easily affected by subjectivity and human
error, i.e., misjudgments or overlooked factors [7]. The application of wearable IoT sensors
and wireless communication technologies could monitor the environments of construction
sites in real time (including radio frequency identification (RFID) [8], global positioning
system (GPS) [9], and Bluetooth [10]), which could provide continuous surveillance and
immediate alerts [11]. However, the above methods have limited data dimensions and
cannot comprehensively capture and analyze the complex information of the surrounding
environment. In recent years, computer vision (CV) technology has developed rapidly.
CV-based safety risk monitoring, characterized by rich data and the comprehensive moni-
toring of objects, has been widely applied due to its advantages of non-contact application,
continuous operation, and strong scalability and flexibility [12]. It has been utilized in the
collision-safety monitoring of construction vehicles and workers [13].

Research efforts based on CV technology primarily focus on identifying the current
safety status of workers through statistics [14]. The tracking and prediction of object trajec-
tories to pre-emptively assess risks have been proposed as a promising solution. Studies
have shown that the prediction of future accidents is a more important consideration [15].
However, the complexity and diversity of objects and environmental factors in construction
sites limit the effectiveness of general CV-based methods for collision warnings addressing
possible contact between workers and vehicles. As a result, the accuracy and efficiency of
these CV methods need further improvement. Additionally, construction sites are labor-
intensive, and collisions are often caused by multiple risk factors [16]. Thus, it is crucial
for risk warning technology development to adequately consider the multiple factors and
conduct scientific assessments of the collision risks.

To address these limitations and improve the accuracy and scientific basis of the
collision-risk warning system, this paper initially proposes a three-stage combined collision
pre-warning (3S-CCW) method for construction vehicles and workers. By employing tra-
jectory tracking and prediction techniques for the collision subjects, this method achieves
an adequate risk pre-warning. The 3S-CCW method consists of three interconnected
modules: target perception, trajectory prediction, and risk assessment. In the target per-
ception (TP) module, a YOLOv5-DeepSORT model [17] is used for object recognition and
tracking, enabling us to obtain the real-time locations and the historical trajectory data
of the construction vehicles and workers. Based on these fundamental data, we utilize
a transformer-based trajectory prediction model [18] to forecast the trajectories of these
objects. By using a custom dataset, the reliability levels of the general object detection and
trajectory prediction methods in the construction site environment are enhanced, and by
optimizing the model’s hyperparameters, the prediction duration is extended to give the
workers additional time to respond and prevent accidents. Finally, in the risk assessment
(RS) module, a set of innovative collision-risk rules is designed to integrate three key risk
factors, i.e., speed, hazardous zones, and proximity, into the risk assessment rules after
quantification. The performance of this method is validated through two field experiments,
demonstrating its practicality and effectiveness. The results show that the 3S-CCW model
accurately and swiftly tracks the workers and construction vehicles, predicts their trajec-
tories, and assesses the safety levels of workers, which could provide a new approach to
preventing the collisions on the construction sites.
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The remainder of this paper is outlined as follows: Section 2 describes the related
studies and limitations. Section 3 introduces the three modules of the proposed collision pre-
warning model, i.e., object-sensing module (OSM), a trajectory prediction module (TPM),
and a collision-risk assessment module (CRAM). Section 4 describes the experiments used
to evaluate the technical approaches and verify the effectiveness of the proposed method
using a construction case. Section 5 summarizes the study, presenting the limitations and
avenues for future research.

2. Review of Related Studies
2.1. Related Studies on Object Tracking at Construction Sites

Object tracking aims to generate the trajectories of objects over time using algorithms,
after determining the targets’ locations (e.g., workers and vehicles) in each frame of video
data. In the construction management, current research mainly applies the established
visual tracking techniques to the field of computer vision. The point and kernel tracking [19]
methods are the most common object-tracking methods. Point tracking is a feature-based
method that tracks targets by identifying and matching feature points across the consecutive
frames. For instance, Park et al. [20] used point tracking to monitor the workers and
materials at construction sites. The advantages of this method are its ability to handle
scenarios with partial occlusion and complex backgrounds. However, it heavily relies
on the feature point selection and is sensitive to the illumination variation and signal
noises. In contrast, kernel tracking is a region-based method that tracks targets by locating
their region in the consecutive frames [21]. This approach has the advantages of handling
changes in the shapes and sizes of targets. It could be applied to the tracking of multiple
workers or vehicles at a construction site [22]. The disadvantages, however, include a high
computational complexity and poor real-time performance. Considering the complexity of
the construction site environment and the rapid occurrence of accidents, object-tracking
algorithms must achieve a high level of real-time performance and accuracy.

Point and kernel tracking methods often fail to meet the above demands. Studies
showed that the deep learning-based object-tracking methods could achieve a higher
tracking accuracy [23–26]. Multi-object-tracking algorithms based on deep learning could
be divided into the Detection Free Tracking (DFT) method and the Tracking by Detection
(TBD) method. The DFT method performs an object detection and tracking simultaneously,
resulting in a higher tracking speed. For example, Zhang et al. [27] proposed a Fair MOT
multi-object-tracking algorithm, which combines detection with the re-ID feature extraction
network and tests its performance on public datasets. Examples of such algorithms include
CenterTrack [28] and Tracktor [29]. In the environment of complex constructions, however,
tracking accuracy may be lower due to the occlusions and frequent changes. TBD method
performs an object detection and tracking independently. For example, Wu et al. [30]
used YOLOv4-DeepSORT multi-target tracking algorithm to track workers and trucks on a
construction site. Although TBD is not as fast as DFT in terms of tracking speed, it relies
on a structure, separating the detection and tracking, which results in a higher accuracy.
YOLOv5-DeepSORT is a real-time object-tracking algorithm, using YOLOv5 for object
detection and DeepSORT for object tracking. It demonstrates a powerful performance on
the publicly available MOT17 dataset [31], a public object-tracking dataset. It accurately
tracks objects in a complex construction environment.

2.2. Related Studies on Deep Learning-Based Trajectory Prediction

Trajectory prediction has been extensively studied in related fields, such as those of
autonomous driving and robotics [32,33]. Most of the previous methods of trajectory predic-
tion included dynamic models. They used linear dynamic models to recursively estimate
the future locations and velocities of the targets, including Markov processes, Bayesian
models, and Gaussian regression models [34–36]. However, these methods only considered
the objects themselves, and rarely evaluated the influence on other objects’ trajectories.
Therefore, they are applicable to the specific scenarios with simple motion patterns but
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they lack generalizability in different scenarios. Data-driven deep learning methods have
recently gained popularity by simplifying the modeling of complex object motions and
demonstrating adaptability in diverse scenarios [37]. For example, Alahi et al. [38] intro-
duced a social-LSTM model for predicting pedestrian trajectories by accounting for the
social interactions among pedestrians. Xue et al. [39] proposed an LSTM-based hierarchical
network that considered both the pedestrian social interactions and scenario-specific fac-
tors among trajectories. However, it is noteworthy that LSTM-based trajectory prediction
models face challenges in handling longer-sequence data [40] despite their success on
public datasets. In collision pre-warning models at construction sites, longer-sequence data
mean longer prediction time, which could provide longer reaction times for workers and
ultimately help in avoiding accidents.

Since its proposal in 2017, the transformer has rapidly become a prominent model
in deep learning. The transformer network utilizes a unique self-attention mechanism,
surpassing LSTM in processing sequence data [41]. Transformer models show a superiority
over social-LSTM in terms of social attention, and over social-GAN in trajectory prediction
tasks [42]. Consequently, this paper uses the transformer as the trajectory prediction model
for both the construction workers and vehicles.

2.3. Related Studies on Dynamic Collision-Risk Assessment at Construction Sites

Risk assessment is crucial for the identification of potential hazards and to assess
risks. Studies indicated that the effective risk assessment could predict and prevent 84%
of construction accidents [43]. In recent years, many scholars have utilized computer
vision technology to dynamically assess the collision-risks at construction sites. Wang and
Razavi [16] extracted 118 detailed collision accident reports from the Fatality Assessment
and Control Evaluation (FACE) program [44] in the United States and identified three
representative risk factors: proximity, velocity, and blind spots. Based on these factors, a
spatiotemporal network-based dynamic risk assessment model for struck-by-equipment
hazard was proposed. Similarly, Wang and Razavi [45] introduced a network-based safety
risk analysis framework that represented the entities and their interactions as a dynamically
weighted network. The framework’s feasibility was validated through the controlled field
trials and simulation scenarios. Additionally, Wang and Razavi [46] developed a 4D contact
collision assessment model to predict the contact conflicts by considering the 3D positions,
orientations, and velocities of different entities. This approach was validated through some
simulations and real-world experiments. Future research and engineering will focus on
using the computer vision technology to enhance the data access and on analyzing the risk
factors at construction sites, aiming to achieve more comprehensive and objective dynamic
risk assessments.

2.4. Related Studies on Vision-Based Collision Prediction at Construction Sites

In recent years, computer vision has rapidly developed. It is increasingly applied to en-
hance construction safety surveillance [47,48] due to its exceptional real-time performance
and ability to monitor hazardous worker behaviors.

Some studies utilized the object detection technology to identify the workers and
construction vehicles in real-time. It estimated a proximity based on the pixel distances
between the detected objects to predict the potential collisions. For example, Yang et al. [49]
employed Convolutional Neural Networks (CNNs) to detect crane hooks and workers.
They then calculated the pixel distances between them within the detection frames to
assess the compliances with safety distance requirements. Anwar et al. [13] installed
Intel stereo imaging cameras on the engineering vehicles and embedded YOLOv5 object
detection algorithms within the cameras. The cameras recognized the objects around the
vehicles and measured the distance between the objects and the vehicles. The information
was then provided to drivers to reduce the blind spots in the view of heavy vehicles.
Acknowledging the dynamic and complex nature of the construction sites, these methods
could only monitor the real-time status of workers and construction vehicles and lacked
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the capability to predict future collisions and potentially dangerous events. Consequently,
the application of trajectory prediction techniques emerges as a viable solution to this
challenge. Several studies have applied a trajectory prediction technology to predict the
unsafe interactions and collisions between workers and vehicles at construction sites. For
instance, Kim et al. [15] improved the worker trajectory prediction by optimizing the
parameters in the social-GAN model, successfully predicting the worker trajectories in
real construction sites for conciseness and clarity. Additionally, Zhang et al. [50] used a
transformer network model to predict the trajectories of crane cargos and nearby workers,
resulting in forecasting unsafe proximities.

These methods effectively predicted the trajectories of objects at construction sites
using trajectory prediction techniques; however, fewer studies addressed the risk factors
related to the interactions between the construction vehicles and workers during collisions.
Therefore, this paper initially proposes a method that combines trajectory prediction
techniques with risk factors to provide more proactive and accurate predictions of collisions.

3. Methodology

The overall framework of this paper, shown in Figure 1, is divided into four main
steps. The first step is to track the construction vehicles and workers in the video using
the YOLOv5-DeepSORT algorithm, in order to capture their historical trajectory points.
Coordinate transformations are then applied to obtain the real-world coordinate points,
which are used to quantify three risk factors in terms of proximity, speed, and hazardous
zones in the next step. In the second step, historical trajectory points are input into the
parameter-optimized transformer model to obtain the predicted trajectory coordinate points.
The third step is to construct a collision-risk level rule by assessing collision-risks of workers
based on three risk factors. Finally, the effectiveness of the collision pre-warning model is
verified by predicting the collision-risk level of workers in two different construction-site
scenarios to verify the collision-risk assessment rule.
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3.1. Object-Sensing Module (OSM)

The YOLOv5-DeepSORT model is trained independently for the object detection
and object tracking. Object detection is performed using the YOLOv5 algorithm [51].
Similarly, object tracking is accomplished by the DeepSORT algorithm [52]. The structure
of YOLOv5-DeepSORT is presented in Figure 2.
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3.1.1. Detection Branch

YOLOv5 is one of the most advanced object detection networks in the field of deep
learning. It has been extensively validated and has demonstrated an excellent performance
across various practical applications. YOLOv5 can be combined with DeepSORT to form
the YOLOv5-DeepSORT object-tracking model, which shows a stronger performance. It
has been widely used by researchers for object-tracking tasks. In this paper, the synergy
between YOLOv5’s precise object detection and DeepSORT’s reliable tracking capabilities
provides a solid foundation for trajectory prediction. The network architecture of YOLOv5
comprises three main components: Backbone, Neck, and Head. Herein, CSPDarknet53 [53]
is used as a Backbone network, tasked with extracting features from the input images.
In the Neck section, Spatial Pyramid Pooling (SPP) [54] and Path Aggregation Network
(PAN) [55] are utilized for the multiscale fusion of features extracted in the previous steps.
Lastly, the final prediction detection frame is generated by the Head component and is
forwarded to the DeepSORT tracking algorithm.

3.1.2. Tracking Branch

DeepSORT is a multi-object-tracking algorithm, wherein eight variables are used to
describe the states of tracked objects at a given moment, i.e., (u, v, γ, q,

.
u,

.
v,

.
γ,

.
q), where

(u, v) represents the center coordinates of the detection frame, γ represents the aspect
ratio of the detection frame, q represents the height of the detection frame, and (

.
u,

.
v,

.
γ,

.
q)

represents the velocity information of the corresponding variables, i.e., (u, v, γ, q).
In the tracking process, the Kalman filter [56] predicts the position of the next detec-

tion frame based on its current position and motion state. Subsequently, the Hungarian
algorithm [57] is employed to match the detection frame with the tracking frame. The
degree of match between the detection frame and the prediction frame is described using
the Mahalanobis distance, as noted in Equation (1):

d(i, j) = (dj − yi)
TS−1

i (dj − yi) (1)

where dj represents j detection frame position, yi represents i tracking frame position, and
Si

−1 represents the covariance matrix between the position of the detection frame and
tracking frame.
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If the Mahalanobis distance is less than the specified threshold t, the correct match is
considered to have been achieved, as noted in Equation (2):

bi,j = 1[d(i, j) ≤ t] (2)

3.1.3. Coordinate Transformation

Pixel coordinates of the workers and construction vehicles in the video were obtained
by YOLOv5-DeepSORT object-tracking algorithms. The collision pre-warning model is
required to determine the distances and speed information of workers and construction
vehicles in the real world; therefore, it is necessary to convert pixel coordinates into
real-world coordinates. In our study, real-world coordinates are calculated by assuming
a proportional relationship between pixel coordinates and real-world coordinates [49].
Specifically, we use an Unmanned Aerial Vehicle (UAV) positioned 20 m above the ground
level to vertically photograph a 10-meter-long truck. Comparing the truck’s length in the
images with its actual length, we obtained the proportional relationship between the pixels
and the real-world length. This method is shown to maintain an error margin within 0.5 m,
as noted in Equation (3):

(xactual, yactual) =
La

Lp

(
xpixel, ypixel

)
(3)

Among them, (xactual, yactual) is the real-world coordinates,
(

xpixel, ypixel

)
is the pixel

coordinates, La is the actual lengths of the objects, and Lp is the measured lengths of the
objects in the pictures.

3.2. Trajectory Prediction Module (TPM)
Transformer Model

After obtaining the historical trajectories of the workers and construction vehicles,
trajectory prediction is performed by a transformer model. The transformer model mainly
includes three parts: positional encoding, encoder, and decoder. The network structure of
the transformer model is presented in Figure 3.

Buildings 2024, 14, x FOR PEER REVIEW 7 of 19 
 

[ ], 1 ( , )i jb d i j t= ≤  (2) 

3.1.3. Coordinate Transformation 
Pixel coordinates of the workers and construction vehicles in the video were obtained 

by YOLOv5-DeepSORT object-tracking algorithms. The collision pre-warning model is 
required to determine the distances and speed information of workers and construction 
vehicles in the real world; therefore, it is necessary to convert pixel coordinates into real-
world coordinates. In our study, real-world coordinates are calculated by assuming a pro-
portional relationship between pixel coordinates and real-world coordinates [49]. Specifi-
cally, we use an Unmanned Aerial Vehicle (UAV) positioned 20 m above the ground level 
to vertically photograph a 10-meter-long truck. Comparing the truck’s length in the im-
ages with its actual length, we obtained the proportional relationship between the pixels 
and the real-world length. This method is shown to maintain an error margin within 0.5 
m, as noted in Equation (6): 

( )actual actual pixel pixel( , ) ,a

p

L
x y x y

L
=  (6) 

Among them, actual actual( , )x y   is the real-world coordinates, ( )pixel pixel,x y   is the pixel 

coordinates, aL  is the actual lengths of the objects, and pL  is the measured lengths of the 
objects in the pictures. 

3.2. Trajectory Prediction Module (TPM) 
Transformer Model 

After obtaining the historical trajectories of the workers and construction vehicles, 
trajectory prediction is performed by a transformer model. The transformer model mainly 
includes three parts: positional encoding, encoder, and decoder. The network structure of 
the transformer model is presented in Figure 3. 

 
Figure 3. Network structure of the transformer model. Adapted from [18]. 

Positional encoding is a special embedding used to provide models with information 
about the relative positions in input sequences. Position vector is added to the embedding 
vector using positional encoding, which incorporates ordinal features with sin and cos 
functions, as noted in Equations (3) and (4): 

Figure 3. Network structure of the transformer model. Adapted from [18].



Buildings 2024, 14, 2324 8 of 19

Positional encoding is a special embedding used to provide models with information
about the relative positions in input sequences. Position vector is added to the embedding
vector using positional encoding, which incorporates ordinal features with sin and cos
functions, as noted in Equations (4) and (5):

PE(pos,2i) = sin(
pos

10,0002i/dmodel
) (4)

PE(pos,2i+1) = cos(
pos

10,0002i/dmodel
) (5)

where PE represents positional encoding, pos is the position of the embedding vector in
the sequence, and dmodel is the dimension of the embedding vector.

The encoder encodes input vectors into feature vectors. It consists of a multiple
encoder layer, which separately contains two types of network layers: a self-attention layer
and a feed-forward layer.

The decoder decodes the feature vector output from the encoder along with the
input. Compared to the encoder, the decoder includes a masked multi-head attention layer.
Masking means that certain input values are ignored, ensuring that they have no effects
when the parameters are updated.

Self-attention mechanism is the core module of the transformer model, which is used
to quantify the dependence of time series data. The self-attention mechanism takes the
dimensions of Queries matrix Q, Key matrix K, Value matrix K, and dimension dk of Key
matrix as input, as noted in Equation (6):

Attention(Qi, Ki, Vi) =
So f tmax(QiKiT)√

dk
Vi (6)

3.3. Collision-Risk Assessment Module (CRAM)

In our work, trucks, which are the most common construction vehicles on sites and
which pose significant safety risks [58], are employed to explain our rules. A truck, 10 m
long, 2.5 m wide, and 4.0 m high, serves as a representative construction vehicle to illustrate
the process of quantifying hazardous zones, proximity, and speed factors.

(a) When workers approach construction vehicles, they face the risk of being struck.
Therefore, it is necessary to define the hazardous zones of the trucks to aid in safety
determination. In this paper, the hazardous zones consist of two areas: blind spot
areas and warning areas. Blind spot areas of the construction vehicles vary depending
on the factors, such as the vehicle types and real-time motion directions (e.g., left
turn, right turn, or straight ahead). Dynamically adjusting these blind spots using
computer vision techniques poses significant challenges. This study initially em-
ploys a rectangular bounding box to simulate the hazardous zones of construction
vehicles with greater accuracy. The main reason of using rectangular shapes is that
most construction vehicles have a rectangular form. Thus, this method is more rep-
resentative of the actual hazardous areas associated with construction vehicles. We
define blind spots as rectangular areas around the truck’s detection frame, extending
2.5 m [59]. In addition, the truck’s warning areas are defined as a rectangular area
extending 6.3 m around its detection frame [60]. Warning areas indicate the space
where workers conduct activities near the construction vehicles (e.g., loading and
unloading goods, guiding construction vehicles). However, workers in this area are
not in any immediate danger, but they would remain highly vigilant.

(b) Proximity relates to the distance between a worker and a construction vehicle, with
closer proximity increasing the likelihood of injuries. At first, this study calculates
Euclidean distance between the workers and pixel center points of the construction
vehicles. Secondly, it estimates the actual distance between the workers and construc-
tion vehicles using the coordinate transformation given by Equation (3). As shown in
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Figure 4, in a Cartesian coordinate system, A and B represent the rectangular center
points of the trucks and workers, respectively; TA and TB represent the trajectories of
the trucks and workers, respectively. The solid line part is the historical trajectory, and
the dotted line part is the predicted trajectory based on the historical trajectory. dA

a
and dA

b , respectively, represent the distances between the truck’s rectangular detection
frames and truck’s blind areas and warning areas. The space occupied by workers is
represented by rectangular detection frames centered on point B.
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At time t = k, worker B meets the warning areas of truck A, and the distance between
the center points of the worker and truck is calculated using Equation (7):

d =

√
(xA

tk − xB
tk)

2
+ (yA

tk − yB
tk)

2 (7)

where (xA
tk, yA

tk) and (xB
tk, yB

tk) represent coordinate positions of center points of truck A
and worker B at k time, respectively. However, the collision occurs due to the contact
between the worker and the surface of the truck, so it needs to be converted to surface
distance between two objects since the distance between the center of the truck and its
surrounding surface is not fixed. This paper uses the average of the longest and shortest
distance between the center of the truck and its surface as the distance between the center
of truck and the surface. We apply a detection rectangle frame of the truck to approximate
the surface around the truck. The truck is known to have a length of 10 m and a width
of 2.5 m; it is thus easy to determine that the longest distance between the center point
and the rectangle detection frame is about 5.15 m, and the shortest distance is 1.25 m. l is
the distance between the center of the truck and its surface, which is 3.2 m. The surface
distance dk between the worker and the truck is calculated using Equation (8):

dk = d − l (8)

When dk is less than the set threshold of 6.3 m, it is judged that the workers have
entered the warning areas. This method is also applicable to judge whether the workers
have entered the blind spot areas of the trucks.
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(c) Speed is the movement speed of workers and construction vehicles, with higher speed
correlating with more severe collisions. The speed limit of construction vehicles at
the construction sites can be determined by local safety regulations. This study, by
referring to reference [15], limits the speed of construction vehicles at the construction
sites to no more than 5 km/h (about 1.4 m/s). The quantitative speed factor is
calculated using Equation (9):

v =

√
(xA

tk − xA
t )

2
+ (yA

tk − yA
t )

2

k
(9)

where
√
(xA

tk − xA
t )

2
+ (yA

tk − yA
t )

2 represents the distance traveled by the trucks from time
t to t + k, and k is the time spent on the distances traveled by the trucks.

Considering the risk factors of hazardous zones, proximity, and speed, collision-risk
assessment rules have been formulated. Based on these rules, the worker collision-risk
level would be categorized into three levels: “high hazard”, “general hazard”, and “no
alarm”. “High hazard” indicates that the workers are predicted to enter the blind spots or
warning areas of a vehicle in the future, and the vehicles’ speed exceeds a predetermined
threshold. In such situation, the workers are at risk, and even a minor mistake could result
in an accident. “General hazard” denotes the situation in which the workers are expected
to enter the blind spots or warning areas of vehicles in the future, but the vehicles’ speed
remains lower than the set threshold. For example, when the workers need to work next
to the vehicles, they are required to maintain a high level of concentration, and so the
warning level is “general hazard” at this time. Lastly, “no alarm” indicates that there are no
anticipated instances of the workers to enter the blind spots or warning areas of the vehicles
in their future movement trajectories, rendering their working conditions as relatively safe.
These rules are specifically shown in Figure 5. In the flowchart, d represents the distance
between the center point of the worker coordinates and the center point of the vehicle
coordinates in a Cartesian coordinate system; v represents the driving speed of trucks; dA

a
represents the set blind spot areas threshold of trucks; dA

b represents the set warning area
threshold of trucks; and vk represents the set speed threshold of construction vehicles.
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4. Experiment and Discussion

In this paper, the collision pre-warning model consists of object-tracking and trajectory
prediction experiments. Firstly, object-tracking experiments are the performance tests of
YOLOv5-DeepSORT in construction scenarios, and the trajectory prediction experiments



Buildings 2024, 14, 2324 11 of 19

include the optimization of transformer parameters and performance test experiments
in construction scenarios. Finally, the effectiveness of the proposed method is verified
by two different scenarios at construction sites. In terms of experimental platforms, the
running memory was 16 GB, the graphics card model was GTX1660Ti, and the processor
model was Intel Core i5-11400H CPU running at 4.50 GHz. The software environment was
Ubuntu18.0 Linux, the training model framework was PyTorch, the batch size was set to 4,
Adam was used as the optimizer, 500 epochs were trained for YOLOv5-DeepSORT, and
1000 epochs were trained for transformers.

4.1. Data Collection

To achieve a high-performance model, a substantial number of images of specific type
are necessary. The algorithm in this paper encompasses both object-tracking and trajectory
prediction; our group created datasets for each algorithm, separately. A total of 5514 objects
were annotated in the object-tracking dataset: specifically, 2661 workers, 773 excavators,
721 trucks, and 1359 cement trucks. We applied data augmentation preprocessing to
object-tracking dataset to ensure ample and high-quality data. For the trajectory prediction
dataset, we conducted object tracking on a 15-minute and 52-second video of a construction
site, resulting in 1322 trajectory coordinate points. All trajectory coordinate data were
converted to real-world coordinates. Both datasets were divided into training and testing
sets, with a division ratio of 9:1, as referenced by Zhang et al. [50].

4.1.1. Object-Tracking Dataset

We created an object tracking dataset by capturing aerial footage of construction sites
using a DJI Phantom 4 drone equipped with an optical camera. The position informa-
tion of construction vehicles and workers could be better observed with the vertically
downward-facing cameras, facilitating the prediction of their trajectories. Due to the large
size differences between construction vehicles and workers, an oblique shooting method
could block workers behind construction vehicles, invalidating the subsequent prediction
method. The footage was captured at a construction site in Wuhan, China, with a total
duration of 26 minutes and 51 seconds. We extracted 5311 images by sampling every
10 frames from the video sequences. Each image was subsequently annotated using an
open-source labeling tool LabelImg [61], annotating categories such as workers and three
typical types of construction vehicles: trucks, excavators, and cement trucks. Annotations
followed VOC format and were stored in XML files.

4.1.2. Trajectory Prediction Dataset

The trajectory prediction dataset used in this paper consists of two datasets from
different sources. One is the public trajectory prediction dataset, such as ETH [62] and
UCY [63]. These datasets are widely used in pedestrian trajectory prediction research. They
contain interaction information among pedestrian trajectories and serve as the benchmark
datasets for evaluating trajectory prediction algorithms, as shown in Figure 6a. ETH and
UCY datasets contain five sub-datasets: Zara1, Zara2, UCY, Hotel, and Univ. Each sub-
dataset consists of a series of track point data, including four pieces of information of the
current video frame number, pedestrian ID, pedestrian’s x coordinates, and pedestrian’s y
coordinates. Besides the public datasets, to enhance the applicability of trajectory prediction
at construction sites, we created a self-made trajectory prediction dataset of construction
sites, referring to the format of the public datasets ETH and UCY. Firstly, workers and
construction vehicles in the construction site videos were recognized and tracked. Secondly,
the coordinate center points of objects were transformed into real-world coordinates. Then,
the data of the objects within the video frames were converted into text files for every
10 frames, where the information of the objects was in the same form as in the public
datasets, including the current frame number, object ID, and coordinates (x, y) of objects.
The images of the construction site dataset are shown in Figure 6b.
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4.2. Experiment and Results of OSM

For accuracy evaluation, three indicators were used to evaluate the tracking perfor-
mance of YOLOv5-DeepSORT: (1) Precision, which is the correct ratio of all predicted
positive samples; (2) Recall, which is the number of the correctly predicted positive samples
as a percentage of the numbers of the actual positive samples; and (3) Average Precision
(AP), which is the integral of Precision over Recall, as noted in Equations (10)–(12):

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =
∫ 1

0
PdR (12)

where TP (true positive) signifies the accurate tracking of the worker or vehicle, FP (false
positive) represents instances where the tracked object is different from the intended target,
and FN (false negative) indicates the inability to track the worker or vehicle in the image.

Table 1 lists the results of object-tracking experiments. The average accuracy of both
workers and three types of construction vehicles exceeds 95%, although the accuracy of
workers is slightly lower compared to that of construction vehicles. This discrepancy
might be attributed to the fact that, when viewed from an overhead perspective, workers
occupy fewer pixels, resulting in occasional missed detections. Overall, the YOLOv5-
DeepSORT model exhibits an exceptional performance, with an average accuracy of 98.7%
across all classes. It is capable of accurately tracking workers and construction vehicles at
construction sites.

Table 1. Accuracy of YOLOv5-DeepSORT for tracking on the test dataset.

Class Name Precision (%) Recall (%) AP (%)

Worker 90.4 97.0 97.0
Excavator 98.9 99.3 99.5

Truck 94.1 98.7 98.8
Cement truck 98.3 99.4 99.5

Average 95.43 98.6 98.7
Note: The bold value indicates the average accuracy across all classes.
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4.3. Experiment and Results of TPM

We used average displacement error (ADE) and final displacement error (FDE) as
trajectory-prediction-accuracy evaluation indicators. ADE refers to the mean-squared
error between the predicted coordinates (x̂, ŷ) and the actual coordinates (x, y) in all time
steps; FDE is the distance between the final predicted position (x̂n, ŷn) and the final actual
position (xn, yn), as noted in Equations (13) and (14):

ADE =
1
N

N

∑
j=1

n

∑
i=1

√
(x̂j

i − xj
i)

2
+ (ŷj

i − yj
i)

2

n
(13)

FDE =
1
N

N

∑
j=1

√
(x̂j

n − xj
n)

2
+ (ŷj

n − yj
n)

2
(14)

4.3.1. Experiment of the Hyperparameter Optimization

This paper optimized the hyperparameters of the transformer models to enhance
their feasibilities in predicting the trajectories of construction vehicles and workers at
construction sites. The original models had the observation and prediction times set at 8
time steps (approximately 2.61 s) and 12 time steps (approximately 3.96 s), respectively.
These adjustments ensure that prediction time allows workers sufficient time to take
countermeasures when there is a tendency for them to collide with construction vehicles.

Previous research works have indicated that the average human reaction time was
0.627 s, and the average walking speed was 1.46 m per second [64]. Given a warning
area size of 6.3 m, it should take approximately 4.942 s for a worker to exit the warning
areas. Assuming an additional 1 s delay for the transmission of a pre-warning signal, the
prediction time should be at least 5.942 s, which corresponds to roughly 18 time steps. As the
worker’s prediction time step was determined, this paper considered 6 different observation
time steps based on 18 prediction time steps, ranging from 6 time steps (approximately
1.98 s) to 16 time steps (approximately 5.94 s), with a 2 time step interval. The group
with the highest accuracy was chosen as the optimal observation time to achieve the best
prediction performance.

Table 2 presents the training accuracy results under the parameters of original models
and different observation time steps with a prediction time step of 18. Increasing the
observation time steps does not necessarily improve the trajectory prediction accuracy.
Because the excessively long observation time can introduce noise or irrelevant trajectory
information, this negatively impacts on model accuracy and stability. Consequently, this
often leads to a decreased accuracy in the trajectory prediction, which is consistent with the
study by Kim et al. [15]. The results demonstrate that, with the observation and prediction
time steps set to 6 and 18, respectively, the average displacement error (ADE) is 0.57 m,
and the final displacement error (FDE) is 1.12 m. The accuracy of trajectory prediction has
reached its optimal level. Compared to the model’s original parameter settings, the average
error is reduced by 23%. This indicates that the improved transformer model can more
accurately predict the trajectories of workers and construction vehicles, thus enhancing the
precision and reliability of collision predictions. Consequently, the prediction time step is
set to 18, and the observation time step is set to 6 for applications in our work.

4.3.2. Comparison between Methods

To compare the performance of the transformer-based trajectory prediction model
with previous models, this paper tested the trajectory prediction model on ETH + UCY
and self-made datasets. The comparison results are shown in Table 3. It is found that the
performance of the transformer-based trajectory prediction model is better than that of
LSTM, social-LSTM, and social-GAN.
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Table 2. Accuracy of transformer on the test set with various parameters settings.

Observation
Time

Prediction
Time

ADE
(Meters)

FDE
(Meters)

Average
(Meters)

6 18 0.57 1.12 0.85
8 12 0.73 1.46 1.10
8 18 0.61 1.19 0.90
10 18 0.59 1.44 1.02
12 18 0.86 1.82 1.34
14 18 0.84 1.72 1.28
16 18 0.87 1.93 1.40

Note: The bold values indicate the best average displacement error, final displacement error, and average error,
respectively.

Table 3. Results of comparison study on trajectory prediction.

Model ETH Hotel Univ Zara1 Zara2 Self-Made Dataset

LSTM 1.07/2.94 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.76/1.44
Social-LSTM 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.93/1.70
Social-GAN 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.91/1.68
Transformer 1.05/2.04 0.25/0.45 0.50/1.08 0.39/0.84 0.29/0.63 0.53/1.34

The values in the table are the ratio of the evaluation index ADE to FDE, and the bold values indicate the best
accuracy for each dataset.

4.4. Method Validation

The effectiveness of the collision pre-warning model proposed in this paper is verified
by two different construction site scenarios. These scenarios may lead to collisions between
the workers and construction vehicles, which are categorized into the situations when both
the workers and construction vehicles are moving, and the situations when workers are
stationary and construction vehicles are moving.

4.4.1. Scene 1

In Figure 7a, two hazardous zones of a truck are highlighted. The rectangular boxes
d1, d2 with a truck as the center point indicate the distances between the truck’s vision
blind spot areas and warning areas and the truck’s detection frame, which are 2.5 m and
6.3 m, respectively. A worker label “worker1, 0.83, 1.51 m/s” indicates that the current
detection object is a worker, the tracking ID is 1, the object detection confidence is 0.83,
and the worker’s current speed is 1.51 m/s. The truck label “truck1, 0.92, 1.82 m/s”
indicates that the current detection object is a truck, the tracking ID is 1, the object detection
confidence is 0.92, and the truck’s current speed is 1.82 m/s. Historical and predicted
trajectories of workers and trucks are represented by lines connecting differently colored
coordinate points.

Based on the experimental results of the transformer parameter optimization, we set
the observation and prediction time to 2 s and 6 s. To compare the predicted and actual
future trajectories, we represent the predicted trajectories with hollow dots.

In Figure 7a, D represents the predicted distance between the worker and the center of
the truck after 6 s, which is 5.3 m. However, it is necessary to subtract the mean distance
between the truck’s center and its detection box (3.2 m) and the distance between the
truck’s center and its surface (2.1 m). In Figure 7b, D represents the actual vertical distance
between the center of worker 1 and the boundary of the truck after 6 s, which is 2.4 m. In
Figure 7a, truck 1’s speed is 1.82 m/s, exceeding the predefined threshold of 1.4 m/s. The
distance between worker 1 and truck 1 is 2.1 m, which is less than the visual field blindness
threshold of 2.5 m. According to the safety risk assessment rules, these results indicate
a high hazard warning level for worker 1. Worker 2 is stationary and does not enter the
truck’s hazardous zones, so the warning level is “no alarm”.
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Figure 7. Example of scene 1: (a) trajectory prediction of worker and truck under the present moment;
(b) position of worker and truck after 6 s.

4.4.2. Scene 2

In this scene, as shown in Figure 8a, worker 3 remains stationary, and thus the velocity
is 0. Truck 2 moves towards worker 3 at a velocity of 1.37 m/s. After 6 s of trajectory pre-
diction, the distance between worker 3 and truck 2 at the center point is 9.47 m. Subtracting
the mean distance from the center point to the detection box (3.2 m) results in 6.27 m. After
6 s, the detection frames of worker 3 and truck 2 intersect, as shown in Figure 8b. Worker
3 enters the warning areas of truck 2, which typically occurs when a worker is loading
or unloading goods near a truck. In Figure 8a, the speed of truck 2 is 1.37 m/s, which is
less than the set threshold of 1.4 m/s. The distance between worker 3 and truck 2 is 2.1 m,
which is less than the warning area threshold of 2.5 m. Therefore, the warning level of
worker 3 is ‘general hazard’.
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4.4.3. Summary

Validation of the trajectory prediction and collision-risk assessment rules is performed
through two different scenarios at a realistic construction site. For the target tracking,
YOLOv5-DeepSORT performs well, accurately identifying and tracking workers and con-
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struction vehicles. Regarding to trajectory prediction, the predicted trajectories closely
match the actual future trajectories, indicating good prediction results, as shown in Fig-
ure 6a. Scenarios 1 and 2 validate some of the rules in the proposed worker safety risk
assessment and are consistent with the actual construction site conditions. However, the
scenarios reveal some limitations of the method. In predicting the trajectories of workers
and construction vehicles, there is some discrepancy between the predicted and actual
distances. There are some errors of accuracy in the transformer model. For instance, the av-
erage value is used to approximate the distance from the center of the truck to its boundary.
Nevertheless, the error remains within an acceptable range.

5. Conclusions

Collisions between workers and construction vehicles have been a major cause of
worker injuries and fatalities. This paper proposes a three-stage collision-risk pre-warning
model for workers and construction vehicles in construction sites. The model consists
of three modules: (1) object-sensing module (OSM), which uses YOLOv5-DeepSORT to
identify and track workers and construction vehicles, obtaining their real-time locations
and historical trajectories; (2) trajectory prediction module (TPM), which uses an improved
transformer model with optimized parameters to predict the future trajectories of workers
and construction vehicles, reducing the average error of accuracy by 23% compared to
the original models and extending the prediction horizon to give workers more time to
take preventive measures; and (3) collision-risk assessment module (CRAM), in which we
propose a hierarchical worker collision-risk assessment rule, assessing risks using a multi-
factor approach considering velocity, hazardous zones, and proximity. The effectiveness of
the collision pre-warning model is validated through two different scenarios at construction
sites. The results demonstrate that the proposed collision pre-warning model can accurately
predict the collision-risk level of workers at construction sites, with effective tracking,
prediction, and collision-risk pre-warning strategies.

In addition to contributions, there are some limitations that present potential future
research directions. Firstly, diverse types of construction scenarios should be used to com-
prehensively evaluate the robustness of the proposed model. Secondly, in this paper, the
blind spots and warning areas of construction vehicles are approximately expressed as
fixed rectangular areas around the construction vehicles. However, dynamically changing
hazardous zones of construction vehicles, types, and the speeds of vehicles, surrounding
objects, the terrain, etc., are more rational and faithful to the real environment of construc-
tion sites, and will contribute to more accurate collision pre-waring decision-making [65,66].
Additionally, the collision pre-warning model proposed in this study integrates various
advanced CV technologies and deep learning algorithms. The availability of computa-
tional resources should be considered for application to the model. Therefore, end-to-end
lightweight models will be valuable topics for future research studies. Finally, since our
work focuses on the collisions between vehicles and workers at construction sites, users
should adjust the parameters when applying the model to other scenarios.
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