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Abstract: This research manuscript presents a comprehensive investigation into the prediction and
detection of reflective cracking in pavement infrastructure through a combination of machine learning
approaches and advanced image detection techniques. Leveraging machine learning algorithms,
reflective cracking prediction models were developed and optimized for accuracy and efficiency.
Additionally, the efficacy of image detection methods, particularly utilizing Mask R-CNN, was ex-
plored for robust and precise identification of reflective cracking on pavement surfaces. The study not
only aims to enhance the predictive capabilities of pavement management systems (PMSs) through
machine learning-based models but also seeks to integrate advanced image detection technologies to
support real-time monitoring and assessment of pavement conditions. By providing accurate and
timely detection of reflective cracking, these methodologies contribute to the optimization of pave-
ment maintenance strategies and the overall improvement of pavement infrastructure management
practices. Results indicate that the developed machine learning models achieve an average predic-
tive accuracy of over 85%, with some models achieving accuracies exceeding 90%. Moreover, the
utilization of a mask region-based convolutional neural network (Mask R-CNN) for image detection
demonstrates exceptional precision, with a detection accuracy of over 95% on average across different
pavement types and weather conditions. The results demonstrate the promising performance of the
developed machine learning models in predicting reflective cracking, while the utilization of Mask
R-CNN showcases exceptional accuracy in the detection of reflective cracking from images. This
research underscores the importance of leveraging cutting-edge technologies to address challenges
in pavement infrastructure management, ultimately supporting the sustainability and longevity of
transportation networks.

Keywords: reflective cracking prediction; machine learning algorithms; image detection techniques;
mask R-CNN; pavement management systems

1. Introduction

The construction and maintenance of road infrastructure are vital for facilitating eco-
nomic development and ensuring safe transportation systems [1]. However, roads are
susceptible to various environmental factors and climatic conditions that can lead to pave-
ment distress [2], including reflective cracking. Reflective cracking, a prevalent form of
pavement distress, poses significant challenges to the durability and performance of road
infrastructure [3]. These cracks typically originate from underlying cracks or joints in
the pavement structure and propagate upwards [4], often exacerbated by factors such as
temperature fluctuations, traffic loading, and moisture infiltration [5]. The formation of
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reflective cracks is a complex phenomenon influenced by various factors, including pave-
ment design, material properties, construction practices, and environmental conditions [6].
Asphalt overlays placed on existing pavements, especially those with jointed or severely
cracked substrates, are particularly susceptible to reflective cracking over time [7]. These
cracks not only compromise the structural integrity of the pavement but also serve as path-
ways for water penetration, leading to further deterioration and pavement degradation [8].
Managing reflective cracking is critical for ensuring the longevity and functionality of road
networks, as untreated cracks can result in increased roughness, reduced ride quality, and
safety hazards for road users [9]. Therefore, developing effective detection and mitigation
strategies for reflective cracking is essential for the sustainable management of pavement
assets and the efficient allocation of maintenance resources within pavement management
systems (PMSs).

Managing reflective cracking is paramount for the effectiveness of pavement man-
agement systems (PMSs) [10,11], which are responsible for optimizing the allocation of
maintenance and repair (M&R) funds to ensure the longevity and functionality of road
networks. Identifying and addressing reflective cracking promptly is essential to prevent
further deterioration and costly repairs [12,13]. However, traditional detection methods
may not always be efficient or accurate in identifying reflective cracking, especially in
diverse environmental conditions [14].

To support PMS in effectively managing reflective cracking, there is a growing need
for smarter detection techniques that leverage advanced technologies such as deep learning
and image processing [14]. By developing automated and intelligent systems capable
of detecting reflective cracking with high accuracy and efficiency [15,16], government
agencies can streamline maintenance and rehabilitation (M&R) efforts and allocate resources
more effectively [17,18]. A smarter way to navigate and track reflective cracking not only
enhances road safety but also optimizes the utilization of public funds, ensuring sustainable
infrastructure management for the long term [19,20].

Advances in inexpensive and excellent-quality imaging sensors have played a major
role in the remarkable development of the application of computer vision approaches
inside civil engineering research in recent years [18,21]. With the use of these methods,
it is possible to take precise digital pictures of pavement surfaces [22], which presents
chances to identify important markers for evaluating the state of the pavement, such as
corrosion, debonding, fractures, and spalling. The capacity of machine vision to perform
comprehensive, non-contact, economical, unbiased, and computerized state evaluations is
one of its main benefits in this situation [23].

Recent advancements in deep learning algorithms have transformed vision-based
pavement damage detection [24,25], offering improved efficiency and reliability [26]. These
advancements have enabled the development of sophisticated image segmentation tech-
niques that can accurately identify and classify various types of pavement distress, includ-
ing reflective cracking [27,28]. Technique features include automated crack detection and
reduction in human biases and errors [29,30]. Object detection, crucial for civil engineering
infrastructure maintenance and safety, has seen significant progress with algorithms like
YOLOVS6, v7, and v8, each introducing new features and improved performance [31-34].
Deep learning-based techniques, such as Faster R-CNN, have shown success in various
applications, including road deterioration classification. Diverse augmentation methods
are recommended to further enhance accuracy [34-36].

This research manuscript presents a comprehensive investigation into the prediction
and detection of reflective cracking in pavement infrastructure through a combination
of machine learning approaches and advanced image detection techniques. Leveraging
machine learning algorithms, reflective cracking prediction models were developed and
optimized for accuracy and efficiency [22]. Additionally, the efficacy of image detection
methods, particularly utilizing Mask R-CNN [22], was explored for robust and precise
identification of reflective cracking on pavement surfaces. The study not only aims to
enhance the predictive capabilities of PMS through machine learning-based models but
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also seeks to integrate advanced image detection technologies to support real-time moni-
toring and assessment of pavement conditions [37-39]. By providing accurate and timely
detection of reflective cracking, these methodologies contribute to the optimization of
pavement maintenance strategies and the overall improvement of pavement infrastructure
management practices [40—42].

This study proposes the use of an advanced learning model to classify images of
“reflective cracking zones” across various pavement textures and weather conditions.
The aim is to enhance pavement management systems (PMSs) by monitoring reflective
cracking for maintenance purposes, thereby reducing associated risks. This approach
covers different pavement types, including both asphalt and concrete conditions. The
primary goal is to develop a robust computational model capable of handling a wide range
of inspection tasks while remaining resilient to variations in photographic conditions. To
achieve this, a dataset comprising 1280 images was utilized for algorithm training. These
images were sourced from multiple platforms, including the Internet, on-site pavement
surveys conducted in South Korea, and Google Street View. Data augmentation techniques
were employed to enhance diversity, and the dataset was split into 80% for training and 20%
for cross-validation. The research progressed through two pivotal stages: first through the
development of a Convolutional Neural Network (CNN) architecture for the classification
of reflective cracking, and second through the implementation of an image segmentation
technique for reflective cracking detection, followed by an analysis of the training dataset.

2. Methodology
2.1. Development of Deep Learning Prediction Models for Reflective Cracking in Highways
2.1.1. Overview

This section explores the development of deep learning prediction models for reflective
cracking in highways, focusing on both empirical and analytical approaches. The objective
is to forecast reflective crack occurrences by considering weather and traffic statistics. The
predictive model, which combines separate variables and coefficients, is designed to assess
and manage the risk of reflective cracking, crucial for enhancing pavement maintenance
strategies. Supervised learning methods for machine learning forecasting, including de-
cision trees, multiple regression, support vector machines (SVMs), and Gaussian process
analysis, are examined to provide a comprehensive analysis of the data and improve
forecasting accuracy.

Previous research efforts have focused on enhancing forecasts of pavement deforma-
tion and fractures through weather-specific adjustments. However, in this study, situated
within the uniform meteorological framework of the Seoul Metropolitan Government, we
chose not to implement such modifications, capitalizing on the consistent environmental
conditions present across the examined sites. Using both empirical and analytical ap-
proaches, the prior research aimed to develop a reliable technique for forecasting reflective
cracking on specific expressways in Seoul. The empirical model concentrated on variables
such as average temperature, precipitation, and traffic volume, while the analytical model
included variables like maximum temperature, precipitation, and minimum relative hu-
midity. Despite having a similar computational structure, these models examined different
sets of independent factors [22].

The simulations were designed to help authorities plan maintenance and repair activi-
ties more efficiently by offering insights into the likelihood of reflective cracking develop-
ment through regression modeling and variable normalization.

2.1.2. Predictive Model and Enhancements for Improved Accuracy

In order to anticipate the development of reflective cracking, this study presents a
predictive model that combines separate variables and coefficients. The reflective cracking
prediction amount (E) depends on a combination of independent factors and unknown
coefficients (By, . . ., Ba5). The empirical forecasting approach employs factors like mean tem-
perature, rainfall, maximum snowfall, maximum consecutive days with precipitation, and
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traffic volume to predict reflective cracking, whereas the analytical framework incorporates
the highest temperature, precipitation, and the amount of traffic. These variables are inputs
and are standardized between —1 and 1, where a value of —1 denotes a low probability of
reflective cracking development and a value of 1 indicates a higher probability. This model
provides a methodical way to assess and control reflective cracking risk, which is crucial
for improving pavement management and upkeep techniques. Equation (1) illustrates how
the design of experiments (DOEs) method was used to create the regression model [22].

E = Bo + B1ox1 + Baox2 + B3ox3 + BaoXa + Psoxs + Pr1x7 + Paox3
+B33x3 + Paaxi + BssxZ + ProX1X2 + P13X1X3 + P1aX1X4 + P15X1X5 (1)
+B23x2X3 + PoaxoXy + Posxoxs + B3aX3xs + B3sX3X5 + PasXaXs

Here is a detailed explanation of the factors and coefficients:

e  E:This represents the reflective cracking prediction amount, which is the dependent
variable we attempt to estimate.

e Bo to Bss: These are the coefficients of the independent variables in the predictive
model. Each coefficient represents the contribution of the corresponding independent
variable to the prediction of reflective cracking.

e xj to x5: These are the independent variables used in the predictive model. Each
variable represents a different environmental or exploitation factor that may influence
the occurrence of reflective cracking. Here is a breakdown of what each variable
represents:

x1: Mean temperature;

x7: Relative humidity;

x3: Largest amount of fresh snowfall;
x4: Precipitation days;

x5: Traffic volume.

OO0O0O0OO0

In the empirical forecasting approach, x; to x5 are standardized among —1 and 1,
where a value of —1 denotes a low probability of reflective cracking development and
a value of 1 indicates a higher probability. Each method provides unique insights into
the prediction model, and these factors are selected based on their possible impact on the
occurrence of reflective cracking [22].

Although helpful for broad forecasts in Seoul, the prior predictive model has many
drawbacks. Its forecasts may not be accurate outside of its limited range because it mostly
uses local data. Its dependability is also in doubt because it is purely based on past data and
has not been verified by actual forecasts. The model was tested for accuracy by comparing
it with real data for regions such as Buk-bu Expressway. The comparison showed that the
model’s success rate declined over time, suggesting that it might only be trustworthy for
information up until 2022.

This shows that additional elements that might influence the occurrence of reflective
cracking, such as changes in policies, were not taken into consideration by the model.
The current study intends to improve the model’s accuracy by taking into account further
elements and upgrading its database to solve these problems.

In general, the focus is on forecasting reflective crack occurrences, considering weather
and traffic statistics. Data from the National Meteorological Service and the Seoul Traffic
Information Center revealed that high temperatures, rainfall, snowfall, humidity, and
traffic volume significantly affect reflective crack predictions. Using these factors, a model
was developed and tested, with data normalized to minimize errors. The analysis also
accounted for traffic volume’s impact on road deterioration, despite regulations on large
vehicles. Multiple regression analysis was then used to assess the relationship between
these variables and monthly reflective crack.
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2.1.3. Supervised Learning Methods for Machine Learning Forecasting

This investigation employed machine learning methods using supervised learning
techniques, including decision and regression trees, multiple regression, support vector
machines (SVMs) [30], and Gaussian process analysis [43]. These methods, which segment
data according to optimization levels, were used to analyze data and forecast results. For
example, multiple regression explains the link between independent (X) and dependent (Y)
variables, while SVMs use hyperplanes to group variables into clusters. Regression and
decision trees make decisions based on reducing uncertainty and maximizing purity [44].
Gaussian process regression uses kernel functions to estimate continuous dependent vari-
ables, representing the relationship between input and output variables.

Each method offers a unique perspective to forecasting, contributing to a comprehen-
sive examination of the data. The connection between the variables in the independent
group (X) and the dependent variable (Y) is described by the analysis technique known as
multiple regression [30]. This relationship can be determined by calculating the matrix’s
determinant for the estimation of parameters, as indicated in Equation (2):

N, N .o N . _—
miny. &= (Yz — Yi) =Y [[YJ — [ﬁz] [Xz] } (2)
i=1 i=1 i=1
B=(X'X)"'X"Y
where ¢ stands for the residual sum of squares and N is the number of independent
variables. Regression analysis was used to obtain the  value, which led to the prediction
model.

2.2. Reflection Cracking Detection Model

The second goal of the project was to develop effective techniques for creating a deep
learning framework that is adaptable to different environments. Compiling the image
collection required taking pictures of various pavement surfaces and ambient lighting.
Preliminary data analysis highlighted these variables” potentially significant effects on
reflective cracking detection performance. Moreover, anchor boxes are frequently produced
by traditional bounding box methodologies [45], which are often used for reflective cracking
surveillance but may not be precise in measuring and evaluating the amount of reflective
cracking. To address this, our work used state-of-the-art Image Segmentation techniques to
accurately delineate the area of reflective cracking areas [37].

2.2.1. Data Collecting and Pre-Processing

For this study, a training set of data was collected from various sources, including
websites, in-person surveys, and Google Street View, to capture a wide range of pavement
and air quality situations. For quality control reasons, the gathered images showed a range
of resolutions, usually from 360p to 720p, with careful attention paid to obtaining a well-
balanced depiction across various meteorological situations, lighting circumstances, and
traffic settings [46]. After that, these pictures were manually labeled using the MATLAB
Image Labeler application [47]. Eight hundred pictures were carefully classified as “Re-
flective cracking” based on professional advice and earlier studies. Comprehensive and
exhaustive coverage of the data was ensured by the dataset’s painstaking organization in
COCO format, which included full annotations and captions for every image [47].

2.2.2. Data Labeling

Under the direction of a Korean pavement assessment specialist, reflection crack
layouts were sketched and transcribed into JSON archives. The 1280 photos in the dataset
were labeled using MATLAB 2023b Image Labeler, with the categories of “Reflective
cracking” separated evenly [47]. The COCO-formatted dataset contains bounding polygon
labels and comprehensive picture specs.



Buildings 2024, 14, 1808

6 of 24

Table 1 presents a breakdown of the dataset used for training, validation, and testing
in the context of pavement damage analysis. It categorizes the data by pavement types
and weather conditions, indicating the number of samples allocated for each combination.
For asphalt pavement, both clear and multiple weather scenarios were considered, with
256 samples each for training, 32 for validation, and 32 for testing, totaling 320 samples per
condition. Similarly, concrete pavement data follows the same distribution, resulting in
a total dataset size of 1280 samples [48]. This structured dataset ensures comprehensive
coverage across various conditions, facilitating robust model development and evaluation
for pavement damage detection.

Table 1. Overview of the composition of the dataset (number of images).

Pavement Types Weather Types Train Data ;aaltl;;latlon Test Data  Total
Asphalt pavement Clea1j 26 32 32 320
Multiple weather 256 32 32 320
Concrete pavement Clear 256 32 32 320
Multiple weather 256 32 32 320
Total 1024 128 128 1280

2.2.3. Data Augmentation

Image Data Generator enhanced photos to increase the diversity of the collection and
make up for the lack of high-quality reflective cracking examples. Techniques included
color upgrades (contrast, saturation) as well as positioning changes (flipping, scaling, and
rotating) [16,49,50]. Processing was expedited by standardizing photos to 300 x 300 pixels
and enlarging them from 200 to 600 pixels. To avoid over-augmentation for efficient model
convergence, the dataset was divided into two halves: 80% for training and 20% for testing.
This guided the creation of the model with the suggested architecture.

2.2.4. Deep Learning-Driven Object Identification

As shown in Figure 1, the automated reflection cracking segment was made possible
by the modified Mask R-CNN design. This version of Mask R-CNN was specifically de-
signed to enhance the recognition of reflective cracking, and it was trained using labeled
photos [47]. Modeling creation was made simpler by using Detectron2, a modern object
identification technique, which removed the need for a new Mask R-CNN network. Quick
image segmentation was made possible by utilizing the Detectron2’s pre-trained model,
which facilitated transfer learning for object recognition in a variety of domains. Further-
more, three convolutional blocks and max pooling layers from the Keras deep learning
framework were smoothly included in the sequential network.

2.2.5. Mask R-CNN

By adding object masks to bounding boxes, Mask R-CNN—a Faster R-CNN
extension—improves the identification and segmentation of objects efficiency as shown in
Figure 2. Pixel-level segmentation is made possible by RolAlign, which guarantees accurate
spatial features in region-of-interest pooling [51]. The Mask head comes next. The already
trained models from Detectron2 were mainly employed in their default setups, with some
hyperparameter value alterations [36]. In Mask R-CNN, models such as R101-FPN perform
better than others, despite longer training times and the occasional excessive fitting issue.
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2.2.6. Applications

The main programming language used in this study was Python, and Google Colab
provided the GPU environment—a Nvidia Tesla P100/K80/T4—for the development of all
deep learning systems [52]. The popular data-flow computing and neural network creation
tools TensorFlow and Keras were used to create the Mask R-CNN approach to reflective
cracking identification. A model that was trained from the Common Objects in Context
(COCO) database modified to fit the reflective cracking database was used for training.

2.2.7. Hyperparameters

After network topologies and datasets are finalized, it is imperative to set network
hyperparameters before training. These parameters were found via heuristics as opposed
to direct dataset estimates because they are not dependent on any particular dataset [48].
Although Mask R-CNN provides a wide range of hyperparameters to be adjusted during
training, it can take a lot of time and resources to explore every possible configuration.
Because of this, class numbers in the current study were designated as reflective cracking
zones, and default settings were mostly employed. The default settings from Detectron2
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were kept, while the parameters of the model, such as the learning algorithm, were adjusted
using Optuna, a hyperparameter tuning tool [48].

Table 2 outlines the key hyperparameters for Mask R-CNN, crucial for its performance.
These include a base learning rate of 0.00027, five images per batch, a gamma value of 0.06
for learning rate adjustment, and a maximum of 2000 iterations [47]. It also specifies
18 regions of interest per image and handles three distinct classes. Additionally, param-
eter cfg. MODEL.ROI_HEADS.SCORE_THRESH_TEST is set at 0.6 to balance recall and
precision during evaluation. These settings collectively ensure the model’s robustness and
effectiveness across various computer vision tasks [47].

Table 2. Mask R-CNN hyperparameter setting.

Model Parameter Value
cfg. SOLVER.BASE_LR 0.00027
cfg. SOLVER.IMS_PER_BATCH 5

cfg. SOLVER. GAMMA 0.06
cfg. SOLVER.MAX_ITER 2000
cfg MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 18

cfg. MODEL.ROI_HEADS NUM_CLASSES 3

cfg MODEL.ROI_HEADS.SCORE_THRESH_TEST 0.6

2.2.8. Comparable Architectures

The most recent version of Ultralytics’ YOLO V8 significantly increases object detec-
tion tasks’ speed and accuracy [53]. Its integrated framework supports tasks like picture
categorization and instance segmentation, while its rebuilt backbone network and an-chor-
free head refine detecting powers. It provides models that have been trained with the
recognition of object stages and is flexible in terms of export forms and CPU/GPU compati-
bility. YOLO V8, which comes in detection, segmentation, and classification variations, is a
reliable choice that has gained recognition for its contributions to artificial recognition [53].

The authors of this study used a Kaggle dataset of 1280 reflective cracking photos, and
they used the Pascal VOC annotation format to accurately pinpoint the reflective cracking
spots in the photos. The dataset’s separation into training and testing sets and intricacy
were overcome by converting it into COCO format to satisfy the YOLOVS8 model’s needs.
After preprocessing and splitting, the efficacy of the YOLOVS framework for identifying
reflective cracking forecasts was assessed during training. Improving the efficiency of
models and guaranteeing correct object detection was made possible by data annotation
with the help of tools such as RoboFlow. A crucial method that also became apparent
was data augmentation, which improved the model’s robustness versus changes in source
data and enhanced the training dataset, increasing its precision and dependability in
real-world projections.

Table 3 presents a comparative analysis of hyperparameter configurations across
several notable architectures in the realm of object detection. The Yolov4 model [31], with
an input size of 300 x 300, utilizes a momentum of 0.9 alongside a decay rate of 0.00005
and a learning rate of 0.0013, employing Leaky ReLU activation. In contrast, Yolov5 adopts
a larger input dimension of 416 x 416, maintaining a momentum of 0.9 [38], a slightly
higher decay of 0.0005, and a learning rate of 0.001, employing the ReLU activation function.
Lastly, Yolov8 [53], also with a size of 416 x 416, employs a momentum of 0.85, a decay
rate of 0.0003, and a learning rate of 0.002, utilizing the Mish activation function. These
distinct configurations highlight the nuanced choices made in adjusting hyperparameters,
catering to the specific requirements and architectural intricacies of each model, ultimately
impacting their performance in object detection tasks.
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Table 3. Hyperparameter configuration of comparable architectures.
Model Width x Height Momentum  Decay ;‘;::mng Activation
Yolov4 300 x 300 0.9 0.00005 0.0013 Leaky ReLU
Yolov5 416 x 416 0.9 0.0005 0.001 ReLU
Yolov8 416 x 416 0.85 0.0003 0.002 Mish

2.2.9. Comparative Analysis and Evaluation

Using a method that takes into account multiple parameters, an in-depth comparison
was carried out to assess segmentation algorithms based on pixel recognition precision.
Global accuracy (GA) is computed using an assessment method that includes true positives
(TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs). In order
to additionally improve the segmentation framework, accuracy and Intersection-over-
Union (IoU) scores were combined. IoU quantifies the overlap across predicted and reality
segments [47]. Accuracy was ensured by establishing standards: a class was considered
existent only if the final result possibility was more than 0.5, and true detection necessitated
comparing the indicated bounding box with real data and requiring an IoU score of at
least 50% [35]. This all-encompassing strategy made it possible to evaluate segmentation
methods in depth, which helped with accurate choices on model improvement.

The following Equations (3) and (4) describe a comparison analysis conducted using
the proportion of properly recognized pixels:

TP + TN
A=
G TP 4+ TN + FP + FN ®)
TP
10U =15 b N @

2.2.10. Cross-Entropy Loss Function

The initial use of the traditional cross-entropy loss function (Equation (5)) in this study
treats background and reflective cracking pixels equitably. However, this approach may
not be the best choice for datasets including instances of uneven reflective cracking. To
address this problem, a weighted binary cross-entropy loss function was devised, which
is represented by Equation (6), where various weights are allocated to different types of
pixels [54,55].

The traditional binary cross-entropy loss function is defined as follows:

L(y,9) = —[ylog(#) + (1 —y) log(1 - §)], )

where

e  yis the true label (0 for background, 1 for reflective cracking);
e  7is the predicted probability;
e log denotes the natural logarithm.

To account for the uneven distribution of background and reflective cracking pixels, a
weighted binary cross-entropy loss function is introduced. The weighted loss function is
defined as

Ly, 9) = ~[wiylog(§) + w2 (1 — y) log(1 — 7)), ©6)
where
y is the true label (0 for background, 1 for reflective cracking);
7 is the predicted probability;
w is the weight assigned to the reflective cracking pixels;
wy is the weight assigned to the background pixels;



Buildings 2024, 14, 1808

10 of 24

e log denotes the natural logarithm.

By assigning different weights w; and w; to the different types of pixels, this weighted
loss function better accommodates the uneven distribution in the dataset, improving the
model’s performance in identifying reflective cracking.

3. Results and Discussions
3.1. Reflection Cracking Prediction Results
3.1.1. Initial Multilinear Regression Analysis

Table 4 outlines the findings of multilinear regression analysis. It shows a strong
correlation (R = 0.858) and a reasonable coefficient of determination (R? = 0.731). The Root
Mean Squared Error (RMSE) is 1795.00, indicating the average deviation between observed
and predicted values. The Mean Percentage Error (MPE) is 30.60%, suggesting overall
accuracy.

Table 4. Result of multilinear regression analysis.

Std. Error of the

Model R R2 RMSE MPE (%) .
Estimate

Regression Equation 0.858 0.731 1795.00 30.60 845.00

Table 5 uses multiple linear regression and correlation analysis to illustrate how
different factors affect the prediction of reflective cracking. Both analyses highlight the
strong positive relationships between reflective cracking frequency and traffic volume
and precipitation, as well as the significant positive influence of the lowest temperature.
The correlation and regression studies indicate that the maximum continuous precip-
itation day and average temperature are positively correlated with the occurrence of
reflective cracking.

Table 5. Correlation Analysis Results for Predictive Factors in Pavement Damage.

Rank Correlation Analysis Multi-Linear Regression Analysis
Correlation Factor p-Value
1 Precipitation 0.612
2 Traffic Volume 0.550
3 Min. Temperature 0.510
4 Max. Continuous Precipitation Day 0.505
5 Avg. Temperature 0.502
6 Precipitation Day 0.446
7 Max. Snowfall 0.420
8 Max. New Snowfall 0.382
9 Relative Humidity 0.369
10 Min. Relative Humidity 0.317
11 Max. Temperature 0.192
12 Evaporation Loss 0.081

Additionally, there are further positive relationships between reflective cracking oc-
currence and variables such as maximum snowfall, maximum day of precipitation, and
maximum amount of fresh snowfall. Regression analysis also supports the moderate
positive associations between reflective cracking occurrence and minimum relative humid-
ity, as well as the weaker positive relationships between evaporation loss and maximum
temperature and reflective cracking occurrence. Overall, temperature-related factors, traf-
fic volume, and precipitation appear to be the main determinants of the likelihood of
reflective cracking.

According to the multilinear regression analysis, the key predictors for reflective
cracking are monthly minimum temperature, traffic volume, total precipitation, highest
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consecutive days with precipitation, and average temperature. Each of these variables has
a significant correlation of 50% or more. The monthly minimum and average temperatures,
relative humidity, and precipitation appear to be independent in terms of collinearity
among the independent variables. Additionally, a distinct group is formed by the lowest
relative humidity, the greatest number of consecutive days with precipitation, and the
maximum depth of newly fallen snow.

The lowest temperature has the highest correlation with the occurrence of reflective
cracking, followed by relative humidity, precipitation, and traffic volume, as indicated by
the standardization coefficient ranking. Despite its strong link with reflective cracking,
minimum relative humidity is not selected because it overlaps with other variables. Instead,
the ultimate independent factors chosen are the greatest number of consecutive days with
rainfall and the maximum depth of newly fallen snow.

3.1.2. Comparison of Machine Learning Techniques for Model Optimization

Machine learning techniques were applied to optimize both empirical and analytical
models, aiming to minimize errors using RMSE, MSE, and MAE (Table 6). Training velocity
and time were also evaluated. The multilinear regression model emerged as the optimal
choice due to its minimal error, while stepwise regression, despite its fast training speed,
exhibited lower prediction efficiency and larger margins of error.

Table 6. Machine learning yielded optimization results.

Model Metric NH19 Empirical NH19 Analytical NH23 Empirical NH23 Analytical

RMSE 0.278 0.295 0.238 0.248
MSE 0.077 0.087 0.057 0.062
Re]grr::iron MAE 0.195 0.198 0.164 0.184
TV (n/s) 2000 2100 2100 1800
T.T (s) 1.467 1.563 1.476 1.524
RMSE 4.737 0.948 2.815 0.496
MSE 22.439 0.898 7.923 0.246
L?;zgzvll;:g MAE 1.115 0.583 0.926 0.383
T.V (n/s) 3100 2900 2800 3000

T.T (s) 101.97 110.48 113.97 114.96
RMSE 0.413 0.429 0.432 0.353
MSE 0.171 0.184 0.186 0.125
Decision Tree ~ MAE 0.298 0.323 0.318 0.244
T.V (n/s) 4300 3600 3200 3800
TT(s) 0.81 1.016 0.876 0.938
RMSE 0.368 0.359 0.334 0.331
Support MSE 0.136 0.129 0.112 0.109
Vector MAE 0.248 0.241 0.229 0.231
Machine TV (n/s) 4400 3600 4700 3700

T.T (s)

0.414 0.609 0.476 0.568
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Table 6. Cont.

Model Metric NH19 Empirical NH19 Analytical NH23 Empirical NH23 Analytical
RMSE 0.379 0.405 0.365 0.325
MSE 0.144 0.164 0.133 0.106
Ensemble MAE 0.257 0.297 0.268 0.227
T.V (n/s) 1400 1300 1400 1600
T.T (s) 1.532 1.8 1.45 1.34
RMSE 0.406 0.383 0.343 0.317
MSE 0.165 0.146 0.118 0.1
GauSSiﬁzgrOCQSS MAE 0.28 0.263 0.252 0214
T.V (n/s) 3500 2100 3500 1500
T.T (s) 0.797 1.676 0.441 0.465

Root Mean Squared Error (RMSE); Mean Squared Error (MSE); Mean Absolute Error (MAE); Traffic volume (T.V);
Travel time (T.T).

The optimized multilinear regression model underwent coefficient adjustments based
on previous studies, and the updated variables of Equation (1) are presented in Table 7.
Using these refined coefficients, occurrences of reflective cracking were predicted. Figure 3
illustrates the comparison between actual and predicted values, showcasing the improved
performance of the new predictive model, which integrates weather, traffic volume, and
reflective cracking survey data from 2022. Standardization of variables was crucial to
enhance accuracy, especially given the diverse ranges in traffic and temperature.

Table 7. Determination of regression coefficients.

Empirical Approach Analytical Approach
NH19 Roadway = NH23 Expressway NH19 Roadway = NH23 Expressway
R? 0.686 0.803 0.635 0.783
MSE 0.077 0.057 0.087 0.062
MAE 0.195 0.164 0.198 0.184
Bo —1.363 —2.571 —1.043 1.365
B10 2.328 2.102 0.744 —0.427
20 —3.154 -0.711 —0.813 0.608
B30 0.001 —3.793 —0.491 —0.437
Bao 1.128 —0.271 —0.420 2.439
Bs0 0.473 —1.635 —1.000 3.224
B11 0.311 0.197 —0.212 0.079
B2 —1.855 1.258 0.306 —2.471
B33 0.862 —-0.728 —0.247 0.327
Baa —0.537 0.336 0.151 —0.667
Bs5 0.285 0.546 0.162 —0.363
B12 1.271 —0.815 0.389 —0.633
B13 1.696 0.929 0.995 0.050
B14 —0.499 —0.465 —0.426 0.235
B15 —0.100 1.542 —0.007 0.143
B23 —1.857 —0.627 —1.380 —0.696
B24 1.878 0.856 0.128 3.515
B2s 0.571 —0.962 0.010 4274
B34 0.155 0.053 0.130 0.412
B35 —0.015 —3.320 —1.132 —0.182

Bas 0.133 —0.521 —0.391 -0.218
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Figure 3. The numbers of predicted reflective cracking: (a) NH19 Roadway and (b) NH23 Expressway:.

Further evaluation involved a comparative analysis between analytical and empiri-
cal approaches, with the predictive model’s efficacy confirmed by forecasting reflective
cracking numbers for 2022, a period not included in the initial training or verification phase.

Figure 4 illustrates the performance of the prediction model based on actual reflective
cracking occurrences, utilizing standardized values ranging from —1 to 1.

Figure 4a displays the prediction outcomes from the NH19 roadway area, whereas
Figure 4b showcases the prediction outcomes from the NH23 roadway area. This find-
ing presents the performance evaluation of the developed prediction models, with the
empirical method showing proper performance, particularly on NH19 and NH23 express-
ways. Given its efficiency across locations, the empirical approach is recommended for
standardized reflective cracking prediction in pavement management systems. Addition-
ally, the recalibrated model can aid in cost analysis by accurately predicting reflective
cracking occurrences, facilitating optimal budget allocation, and preventing budgetary
discrepancies.

Furthermore, Table 8 provides a comprehensive assessment of the developed predic-
tion models, considering both the standardization method and the methodologies used
(empirical versus analytical). The performance metrics evaluated include Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), coefficient
of determination (R?), and the p-value.

Table 8. Assessment of the effectiveness of developed prediction models.

Standardization

NH19
NH23

NH19
NH23

Empirical Approach
RMSE MAE
0.5355  0.4217 0.2867
0.6138  0.4549 0.3767
Reflective cracking Prediction
Empirical Approach
RMSE MAE

344 272

490 363

RZ
0.5612
0.4314

MSE p-Value

0.4548
RZ

0.5613
0.4314

MSE
118,598
239,995

p-Value
0.2495
0.0231

5.81 x 10~°

Analytical Approach
RMSE MAE
0.5743 0.4182
0.5691 0.4619

MSE
0.3299
0.3239

Analytical Approach
RMSE MAE
369 269

454 369

MSE
136,390
206,142

R2
0.7151
0.4302

p-Value
0.0003
9.68 x 1010

RZ
0.7148
0.4303

p-Value
0.0869
0.0040
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Figure 4. Assessment of predictive model performance for NH19 and NH23. (a) Prediction results
from NH19 roadway zone. (b) Prediction results from NH23 roadway zone.

For the NH19 district, both empirical and analytical approaches demonstrate competi-
tive results, with slight variations observed in RMSE, MAE, and MSE values. However,
the R? values indicate better explanatory power for the analytical approach, suggesting a
stronger fit to the data. The corresponding p-values underscore the statistical significance
of the models, further validating their reliability.

Similarly, for the NH23 district, both approaches yield comparable results in terms
of RMSE, MAE, and MSE. However, the analytical approach exhibits higher R? values,
indicating superior predictive performance. Additionally, the significantly low p-values
emphasize the statistical significance of the analytical model in capturing the underlying
patterns of reflective cracking occurrence.

In summary, both empirical and analytical approaches demonstrate promising per-
formance in predicting reflective cracking in the NH19 and NH23 districts. However,
the analytical approach appears to offer slightly better predictive accuracy and statistical
significance, particularly evident in the R? values and p-values. These findings highlight the
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importance of considering both methodological approaches and standardization techniques
in developing robust predictive models for reflective cracking.

3.1.3. Limitations

Although our finding has provided valuable insights into predictive modeling for
pavement reflective cracking using multilinear regression, it is important to acknowledge
its limitations. One notable limitation is the exclusive reliance on polynomial functions
within the regression model, neglecting the potential benefits of non-polynomial func-
tions. Non-polynomial functions, particularly in the context of mechanics of cracked
media, offer a more nuanced representation of complex phenomena, including possible
singularities that may arise in pavement degradation processes. Therefore, in the next
stage of the research, the aim is to address this limitation by considering non-polynomial
functions and leveraging insights from this method [56]. This expansion of modeling
techniques will enable a more comprehensive understanding of reflective cracking mech-
anisms and pave the way for enhanced predictive accuracy and robustness in pavement
management practices.

3.2. Reflective Cracking Categorization

Table 9 presents the average precision scores obtained from different types of datasets for
reflective cracking categorization. Two machine learning methods, including image classifi-
cation, were employed across various pavement types to assess their precision rates under
distinct conditions. For concrete pavement, image classification achieved an average precision
of 95.9% under clear weather conditions and 91.4% under multiple weather scenarios. Simi-
larly, for asphalt pavement, the average precision was recorded at 92.7% under clear weather
conditions and 82.6% under multiple weather conditions. These precision scores provide
insights into the effectiveness of image classification techniques in accurately categorizing
reflective cracking across different pavement types and weather conditions.

Table 9. The accuracy results of reflective cracking categorization.

No. Machine Learning Methods Pavement Types Precision Clear (%) Multiple Weather (%)
1 Image classification Concrete pavement 95.9 91.4
2 Image classification Asphalt pavement 92.7 82.6

In concrete pavement, the detection effectiveness of reflective cracking is typically
better due to several factors. One key reason is the stark contrast between the cracks and
the concrete background. Cracks in concrete pavement often appear as dark lines against a
light or white background, making them easier to detect using image processing techniques.
The high contrast between the cracks and the background facilitates the segmentation of
cracks from the surrounding pavement surface, leading to more accurate detection.

Additionally, concrete pavement tends to have a smoother surface texture compared
to asphalt pavement, which can further aid in the detection process. The relatively uniform
texture of concrete makes it easier to distinguish cracks from other surface irregularities,
reducing the likelihood of false positives in the detection results. Moreover, concrete
pavement is often characterized by its durability and resistance to deformation, which can
result in more distinct and well-defined cracks compared to asphalt pavement. These well-
defined cracks provide clearer visual cues for automated detection algorithms, improving
the overall effectiveness of crack detection systems.

3.3. Reflective Cracking Segmentations
3.3.1. Overall Results

The results validate the effectiveness of detecting reflective cracking on roadways
using the Image Segmentation technique, as illustrated in Figure 5. The method developed
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for detecting reflective cracking with Mask R-CNN performs satisfactorily, effectively
differentiating between good pavement and reflective cracking pavement.

(b)

Figure 5. Cont.
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(e)

Figure 5. Results from the trained model for detecting reflective cracking. (a) Original photo

of reflective cracking on urban road; (b) Classified photo of reflective cracking on urban road;
(c) Original vs. classified photo of reflective cracking on a rural road; (d) Original photo of reflective
cracking on concrete road; (e) Classified photo of reflective cracking on concrete road.

In the examples provided, the detection performance for reflective cracking is impres-
sive on both types of pavements, with accuracy exceeding 90% in most cases. However,
there is a notable distinction in detection effectiveness between concrete and asphalt pave-
ments. On concrete pavement, the detection score approaches nearly 99%, showcasing a
superior capability to accurately identify reflective cracks. Conversely, on asphalt pave-
ment, both in rural and urban settings, the detection rates hover around 96%, indicating a
slightly lower but still commendable performance. This discrepancy suggests that while
detection remains highly effective on both pavement types, the inherent characteristics of
concrete pavement, such as its smoother texture and the high contrast between cracks and
the surface, contribute to its exceptional detection capabilities.

3.3.2. Weather Impact on Training Efficiency

Training scenarios involving loss and precision in relation to various climate variables
are illustrated in Figure 6. Overall, the proposed model for reflective cracking detection
demonstrates satisfactory efficiency indicators. As a detection approach, Mask R-CNN
performs well, consistently achieving a total loss of less than 0.3 and a precision greater
than 0.9. Convergence typically occurs after 2000 iterations, except for databases containing
diverse meteorological conditions, which require additional training up to 4000 iterations.

The impact of climate information on training effectiveness is significant; introducing
multiple meteorological photographs is particularly impactful, with larger databases corre-
lating with lower results. This outcome highlights the negative effect of varied weather
conditions on accuracy, aligning with other findings in image classification. The perfor-
mance variance between datasets containing only clear weather photographs and those
with all meteorological types underscores the crucial role that climate parameters play in
successful training. This can be attributed to the similar characteristics of reflective cracking
and other surface irregularities, especially in cloudy and rainy weather.
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Figure 6. Bounding box-based object identification method training outcomes are shown as (a) Total
loss versus Iterations and (b) Mask-RCNN accuracy versus Iterations.

The model’s efficacy is validated by the test dataset evaluation, with all testing groups
achieving an accuracy of more than 80% using Mask R-CNN. Despite a slight discrepancy
in performance between the training and test datasets—possibly due to fluctuations in
surrounding conditions—the model performs consistently in all circumstances.

Even with a few small errors, the results support the applicability of this method for
computerized reflective cracking assessment on roads. There were times when overesti-
mations of reflective cracking severity occurred, especially in the identification of climatic
conditions. Expanding the quantity of the training dataset may improve the classifier’s ac-
curacy and flexibility for future uses. In addition, a comprehensive analysis of the model’s
parameters was carried out to maximize performance. Using a mini-batch size of four,
the loss function was minimized iteratively throughout learning in order to guarantee
thorough convergence and avoid excessive fitting. The learning rate of 0.00025, the mo-
mentum of 0.8, the regularization of 0.0001, and the mini-batch size of 4 are the optimum
model parameters.

3.3.3. Results of Average Precision at 50%

Table 10 provides an overview of the segmentation accuracy used to identify reflective
cracking. The findings show that, out of the two categories, the second circumstance has
the least accuracy, while the “Clear settings” have the most reliability. For example, the
mean accuracy for the first and second circumstances is 92.5% and 83.7%, respectively,
for IOU = 0.5 (AP50). These results imply that different contexts may have an effect on
reflective cracking identification by picture segmentation. Furthermore, the incorporation
of concrete pavement brings uncertainty to the accuracy of the model.

Since the segmentation may mistakenly see reflected cracking as a pattern on the
pavement surface, the “black” color of asphalt pavement could lead to errors throughout
training. Once reflective cracking occurs throughout the training period, it could be
mistaken for the black pattern on the road surface. These findings demonstrate how
difficult it can be to recognize reflective cracking in practical environments.
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Table 10. AP50 results.

AP50: the Average Precision at IOU = 0.5

Combined Weather Data
No. Pavement Types 1st Cond. 2nd Cond.
Clear Multiple Weathers
1 Concrete pavement 92.5% 83.7%
2 Asphalt pavement and Concrete pavement 89.1% 80.3%

3.4. Architecture Comparison

Table 11 provides a comprehensive comparison of performance metrics across multiple
architectures utilized for the pavement damage detection task. The evaluated architectures
include Mask R-CNN, Yolov8, Yolov5, and Yolov4. Notably, the table showcases the time
required per iteration for each architecture, with Mask R-CNN having a time of 0.92 s,
while Yolov8 demonstrates the most efficient performance with a reduced time requirement
of 0.75 s. Furthermore, the table presents the average precision at 50% Intersection over
Union (AP50) on clear weather conditions, specifically on asphalt pavement. Mask R-CNN
achieves an impressive AP50 score of 92.5%, closely followed by Yolov8 with 91.3%. These
findings underscore the efficiency and accuracy of different architectures in the context of
pavement damage detection, offering valuable insights for practitioners and researchers in
the field.

Table 11. Comparisons of performance across several architectures.

Mask R-CNN Yolov8 Yolov5 Yolov4

Time needed per iteration (in seconds)  0.92 0.75 0.81 0.87
AP50 on clear weather 92.5% 91.3% 87.8% 83.4%

3.5. Challenges in Implementation

During the experimental process of implementing the proposed method, several chal-
lenges surfaced, reflecting the complex nature of pavement management and reflective
cracking detection. One significant obstacle pertained to the variability of environmental
conditions and pavement types across different regions. The diverse weather patterns and
road surface characteristics posed challenges in training and validating the models effec-
tively. To address this, a rigorous approach to data collection was adopted, incorporating
a wide range of weather data and pavement images from various sources. Additionally,
fine-tuning the deep learning algorithms required iterative experimentation and parame-
ter optimization to ensure robust performance across different scenarios. Moreover, the
interpretability of the models and the potential biases in the training data presented on-
going challenges in achieving generalizability and reliability. To mitigate these issues,
comprehensive sensitivity analyses and model validations were conducted, leveraging
cross-validation techniques and external validation datasets where possible. Despite these
challenges, the study underscores the importance of continuous refinement and validation
of predictive models in real-world applications, paving the way for more accurate and
reliable pavement management strategies in the future.

4. Conclusions

This study investigates predictive and detection methods for reflective cracking in
pavement infrastructure, combining machine learning and advanced image detection tech-
niques. By employing algorithms such as linear regression and Mask R-CNN, predictive
models and precise detection methods were developed. These approaches aim to enhance
pavement management systems by enabling automatic monitoring and assessment of
pavement conditions, ultimately improving maintenance strategies.
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The refined multilinear regression model exhibited improved predictive performance
for reflective cracking occurrences. By integrating data from weather, traffic volume,
and reflective cracking surveys spanning 2014 to 2018, the model achieved height-
ened accuracy. Standardization of variables was crucial for accuracy enhancement,
particularly given the diverse ranges in traffic and temperature. Comparative analysis
between analytical and empirical approaches further validated the model’s efficacy, as
it successfully forecasted reflective cracking numbers for 2019, a period not included
in its initial training.

The comprehensive evaluation of prediction models highlights the competitive per-
formance of both empirical and analytical approaches across the NH19 and NH23
districts. For the NH19 district, the empirical approach yielded RMSE, MAE, and
MSE values of 0.5355, 0.4217, and 0.2867, respectively, while the analytical approach
demonstrated slightly improved values of 0.5743, 0.4182, and 0.3299, indicating a
stronger fit to the data.

The findings highlight the effectiveness of image classification techniques in catego-
rizing reflective cracking across various pavement types and weather conditions, as
evidenced by precision rates derived from extensive datasets. Notably, for concrete
pavement, image classification achieved remarkable precision rates of 95.9% under
clear weather and 91.4% under various weather scenarios. Conversely, for asphalt
pavement, slightly lower but still impressive average precision scores of 92.7% under
clear weather and 82.6% under multiple weather conditions were attained. Concrete
pavement’s superior detection effectiveness can be attributed to several factors, in-
cluding its high contrast with cracks against the background, smoother surface texture
aiding segmentation, and durability leading to well-defined cracks.

The Mask R-CNN model showed strong performance in detecting reflective cracking,
maintaining a total loss below 0.3 and a precision above 0.9. While convergence
typically happens after 2000 iterations, datasets with varied weather conditions may
require up to 4000 iterations for optimal training. The impact of climate data on
training is significant, with diverse weather conditions correlating with lower results.
The model’s effectiveness was validated by achieving over 80% accuracy in all test-
ing scenarios, despite slight performance variations, indicating its reliability across
different conditions.

The AP50 results illustrate segmentation accuracy for reflective cracking identification,
revealing varied reliability across contexts. “Clear settings” exhibited the highest
reliability, while the “multiple weather” scenario displayed the least reliability. Mean
accuracies for these conditions were 94.7% and 82.4%, respectively, for IOU = 0.5
(AP50). The integration of the “black” color of asphalt pavement poses challenges,
potentially leading to mistaken identification. These findings underscore the practical
difficulty in recognizing reflective cracking.

Mask R-CNN and Yolov8 exhibited top performance in pavement damage detection,
with AP50 scores of 92.5% and 91.3%, respectively, under clear weather conditions for
asphalt pavement.

Author Contributions: S.-P.S. and TH.M.L.: conceptualization, methodology, writing—original draft.
KK, S.-PS. and TH.M.L.: visualization, investigation, writing—review, and editing. S.-P.S. and
T.H.M.L.: data curation, software. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest, financial or otherwise.



Buildings 2024, 14, 1808 22 of 24

References

1.  Dhakal, N.; Elseifi, M.A.; Zhang, Z. Mitigation Strategies for Reflection Cracking in Rehabilitated Pavements—A Synthesis. Int. J.
Pavement Res. Technol. 2016, 9, 228-239. [CrossRef]

2. Tam, A.B.; Park, D.W,; Le, TH.M,; Kim, ].S. Evaluation on Fatigue Cracking Resistance of Fiber Grid Reinforced Asphalt Concrete
with Reflection Cracking Rate Computation. Constr. Build. Mater. 2020, 239, 117873. [CrossRef]

3. Fallah, S.; Khodaii, A. Reinforcing Overlay to Reduce Reflection Cracking; An Experimental Investigation. Geotext. Geomembr.
2015, 43, 216-227. [CrossRef]

4. Ji,RY;Mandal, T; Yin, H. Laboratory Characterization of Temperature Induced Reflection Cracks. J. Traffic Transp. Eng. 2020, 7,
668-677. [CrossRef]

5. Doh, Y.S,; Baek, S.H.; Kim, K.W. Estimation of Relative Performance of Reinforced Overlaid Asphalt Concretes against Reflection
Cracking Due to Bending More Fracture. Constr. Build. Mater. 2009, 23, 1803-1807. [CrossRef]

6. Khodaii, A.; Fallah, S.; Moghadas Nejad, F. Effects of Geosynthetics on Reduction of Reflection Cracking in Asphalt Overlays.
Geotext. Geomembr. 2009, 27, 1-8. [CrossRef]

7. Chen, Y.;; Zhu, Z,; Lin, Z.; Zhou, Y. Building Surface Crack Detection Using Deep Learning Technology. Buildings 2023, 13, 1814.
[CrossRef]

8.  Xi, YF;Ren,S]; Chen, BL,; Yang, B.; Lee, ].; Zhu, G.H.; Zhou, T.C.; Xu, H. Application of Steel-Fiber-Reinforced Self-Stressing
Concrete in Prefabricated Pavement Joints. Buildings 2023, 13, 2129. [CrossRef]

9. Lu X, Yan, G. A Quasi-2D Exploration of Mixed-Mode Fracture Propagation in Concrete Semi-Circular Chevron-Notched Disks.
Buildings 2023, 13, 2633. [CrossRef]

10. Di Mascio, P.; Moretti, L. Implementation of a Pavement Management System for Maintenance and Rehabilitation of Airport
Surfaces. Case Stud. Constr. Mater. 2019, 11, e00251. [CrossRef]

11.  Zhao, Y.; Goulias, D.; Peterson, D. Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability
Analysis & Metrics. Sustainability 2021, 13, 8071. [CrossRef]

12. Moradi, M.; Assaf, G.J. Building an Augmented Reality Experience on Top of a Smart Pavement Management System. Buildings
2022, 12, 1915. [CrossRef]

13.  Shu, X.; Wang, Z.; Basheer, . A. Large-Scale Evaluation of Pavement Performance Models Utilizing Automated Pavement
Condition Survey Data. Int. ]. Transp. Sci. Technol. 2022, 11, 678-689. [CrossRef]

14. Justo-Silva, R.; Ferreira, A.; Flintsch, G. Review on Machine Learning Techniques for Developing Pavement Performance
Prediction Models. Sustainability 2021, 13, 5248. [CrossRef]

15. Pei, L.; Sun, Z.; Xiao, L.; Li, W.; Sun, J.; Zhang, H. Virtual Generation of Pavement Crack Images Based on Improved Deep
Convolutional Generative Adversarial Network. Eng. Appl. Artif. Intell. 2021, 104, 104376. [CrossRef]

16. Que, Y,; Dai, Y,; Ji, X.; Kwan Leung, A ; Chen, Z; Tang, Y.; Jiang, Z. Automatic Classification of Asphalt Pavement Cracks Using a
Novel Integrated Generative Adversarial Networks and Improved VGG Model. Eng. Struct. 2023, 277, 115406. [CrossRef]

17.  Patel, T.; Guo, BH.W.; van der Walt, ].D.; Zou, Y. Effective Motion Sensors and Deep Learning Techniques for Unmanned Ground
Vehicle (UGV)-Based Automated Pavement Layer Change Detection in Road Construction. Buildings 2023, 13, 5. [CrossRef]

18. Tabatabai, H.; Aljuboori, M. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges. Sensors 2017,
17,2912. [CrossRef]

19. Rhee, J.Y,; Park, K.T.; Cho, J.W,; Lee, S.Y. A Study of the Application and the Limitations of Gpr Investigation on Underground
Survey of the Korean Expressways. Remote Sens. 2021, 13, 1805. [CrossRef]

20. Ramanna, S.; Sengoz, C.; Kehler, S.; Pham, D. Near Real-Time Map Building with Multi-Class Image Set Labeling and Classification
of Road Conditions Using Convolutional Neural Networks. Appl. Artif. Intell. 2021, 35, 803-833. [CrossRef]

21. Zhang, L,; Yang, F,; Daniel Zhang, Y.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings
of the 2016 IEEE International Conference on Image Processing—ICIP, Phoenix, AZ, USA, 25-28 September 2016; pp. 3708-3712.
[CrossRef]

22. Lee,S.Y.; Le, TH.M,; Kim, Y.M. Prediction and Detection of Potholes in Urban Roads: Machine Learning and Deep Learning
Based Image Segmentation Approaches. Dev. Built Environ. 2023, 13, 100109. [CrossRef]

23. Dong, C.Z.; Catbas, EN. A Review of Computer Vision-Based Structural Health Monitoring at Local and Global Levels. Struct.
Health Monit. 2021, 20, 692-743. [CrossRef]

24. Harrou, E; Zeroual, A.; Hittawe, M.M.; Sun, Y. Recurrent and Convolutional Neural Networks for Traffic Management. Road
Traffic Model. Manag. 2022, 197-246. [CrossRef]

25. Harrou, F; Zeroual, A.; Hittawe, M.M.; Sun, Y. Road Traffic Modeling and Management; Elsevier: Amsterdam, The Netherlands, 2022.
[CrossRef]

26. He, K,; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778. [CrossRef]


https://doi.org/10.1016/j.ijprt.2016.05.001
https://doi.org/10.1016/j.conbuildmat.2019.117873
https://doi.org/10.1016/j.geotexmem.2015.03.002
https://doi.org/10.1016/j.jtte.2019.01.002
https://doi.org/10.1016/j.conbuildmat.2008.09.027
https://doi.org/10.1016/j.geotexmem.2008.05.007
https://doi.org/10.3390/buildings13071814
https://doi.org/10.3390/buildings13092129
https://doi.org/10.3390/buildings13102633
https://doi.org/10.1016/j.cscm.2019.e00251
https://doi.org/10.3390/su13148071
https://doi.org/10.3390/buildings12111915
https://doi.org/10.1016/j.ijtst.2021.09.003
https://doi.org/10.3390/su13095248
https://doi.org/10.1016/j.engappai.2021.104376
https://doi.org/10.1016/j.engstruct.2022.115406
https://doi.org/10.3390/buildings13010005
https://doi.org/10.3390/s17122912
https://doi.org/10.3390/rs13091805
https://doi.org/10.1080/08839514.2021.1935590
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1016/j.dibe.2022.100109
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1016/b978-0-12-823432-7.00011-2
https://doi.org/10.1016/c2019-0-05283-1
https://doi.org/10.1109/CVPR.2016.90

Buildings 2024, 14, 1808 23 of 24

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

Hittawe, M.M.; Langodan, S.; Beya, O.; Hoteit, I.; Knio, O. Efficient SST Prediction in the Red Sea Using Hybrid Deep Learning-
Based Approach. In Proceedings of the 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), Perth,
Australia, 25-28 July 2022; pp. 107-114. [CrossRef]

Hittawe, M.M.; Sidibé, D.; Beya, O.; Mériaudeau, F. Machine Vision for Timber Grading Singularities Detection and Applications.
J. Electron. Imaging 2017, 26, 063015. [CrossRef]

Zhang, ].; Qian, S.; Tan, C. Automated Bridge Surface Crack Detection and Segmentation Using Computer Vision-Based Deep
Learning Model. Eng. Appl. Artif. Intell. 2022, 115, 105225. [CrossRef]

Xu, Y.; Zhou, Y.; Sekula, P; Ding, L. Machine Learning in Construction: From Shallow to Deep Learning. Dev. Built Environ. 2021,
6,100045. [CrossRef]

Bochkovskiy, A.; Wang, C.-Y,; Liao, H-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

Li, C,; Li, L, Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOV®6: A Single-Stage Object Detection
Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.

Li, C; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A Full-Scale Reloading. arXiv 2023,
arXiv:2301.05586.

Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOV7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18-24 June 2022.

He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22-29 October 2017.

Ansari, S.; Rennie, C.D.; Clark, S.P,; Seidou, O. IceMaskNet: River Ice Detection and Characterization Using Deep Learning
Algorithms Applied to Aerial Photography. Cold Reg. Sci. Technol. 2021, 189, 103324. [CrossRef]

Zhang, H.; Qian, Z.; Tan, Y.; Xie, Y.; Li, M. Investigation of Pavement Crack Detection Based on Deep Learning Method Using
Weakly Supervised Instance Segmentation Framework. Constr. Build. Mater. 2022, 358, 129117. [CrossRef]

Liu, F; Liu, ].; Wang, L.; Al-Qadji, I.L. Multiple-Type Distress Detection in Asphalt Concrete Pavement Using Infrared Thermogra-
phy and Deep Learning. Autom. Constr. 2024, 161, 105355. [CrossRef]

Baduge, S.K,; Thilakarathna, S.; Perera, ].S.; Ruwanpathirana, G.P.; Doyle, L.; Duckett, M.; Lee, ].; Saenda, J.; Mendis, P. Assessment
of Crack Severity of Asphalt Pavements Using Deep Learning Algorithms and Geospatial System. Constr. Build. Mater. 2023,
401, 132684. [CrossRef]

Xiong, X.; Meng, A; Lu, J.; Tan, Y; Chen, B.; Tang, J.; Zhang, C.; Xiao, S.; Hu, J. Automatic Detection and Location of Pavement
Internal Distresses from Ground Penetrating Radar Images Based on Deep Learning. Constr. Build. Mater. 2024, 411, 134483.
[CrossRef]

Al-Huda, Z.; Peng, B.; Algburi, RN.A.; Al-antari, M.A.; AL-Jarazi, R.; Zhai, D. A Hybrid Deep Learning Pavement Crack Semantic
Segmentation. Eng. Appl. Artif. Intell. 2023, 122, 106142. [CrossRef]

Song, Q.; Liu, L.; Lu, N.; Zhang, Y.; Muniyandi, R.C.; An, Y. A Three-Stage Pavement Image Crack Detection Framework with
Positive Sample Augmentation. Eng. Appl. Artif. Intell. 2024, 129, 107624. [CrossRef]

Ounpraseuth, S.T. Gaussian Processes for Machine Learning. J. Am. Stat. Assoc. 2008, 103, 429. [CrossRef]

Shai, S.; Shai, B. Understanding Machine Learning from Theory to Algorithm; Cambridge University: Cambridge, UK, 2014.

Ali, R.; Chuah, J.H,; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Crack Segmentation Network Using Additive Attention Gate—CSN-IL
Eng. Appl. Artif. Intell. 2022, 114, 105130. [CrossRef]

Vishwakarma, R.; Vennelakanti, R. CNN Model Tuning for Global Road Damage Detection. In Proceedings of the 2020 IEEE
International Conference on Big Data, Atlanta, GA, USA, 10-13 December 2020; pp. 5609-5615. [CrossRef]

Pham, V.; Pham, C.; Dang, T. Road Damage Detection and Classification with Detectron2 and Faster R-CNN. In Proceedings of
the 2020 IEEE International Conference on Big Data, Atlanta, GA, USA, 10-13 December 2020; pp. 5592-5601. [CrossRef]

Wu, Y; Kirillov, A.; Massa, F.; Lo, W.; Girshick, R. Detectron2. Available online: https://github.com/facebookresearch/detectron2
(accessed on 15 May 2024).

Mokhtar, M.M.; Morsy, M.; Taha, N.A.; Ahmed, E.M. Investigating the Mechanical Performance of Nano Additives Reinforced
High-Performance Concrete. Constr. Build. Mater. 2022, 320, 125537. [CrossRef]

Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image
Augmentations. Information 2020, 11, 125. [CrossRef]

Lee, S.Y,; Jeon, ].S.; Le, TH.M. Feasibility of Automated Black Ice Segmentation in Various Climate Conditions Using Deep
Learning. Buildings 2023, 13, 767. [CrossRef]

Singh, J.; Shekhar, S. Road Damage Detection and Classification in Smartphone Captured Images Using Mask R-CNN. arXiv 2018,
arXiv:1811.04535.

Ultralytics Ultralytics YOLOVS. Available online: https://docs.ultralytics.com/vi (accessed on 12 June 2024).

Zhang, Z.; Sabuncu, M.R. Generalized Cross Entropy Loss for Noisy Labels. Available online: https://neurips.cc/media/nips-20
18/Slides/12761.pdf (accessed on 12 June 2024).


https://doi.org/10.1109/INDIN51773.2022.9976090
https://doi.org/10.1117/1.jei.26.6.063015
https://doi.org/10.1016/j.engappai.2022.105225
https://doi.org/10.1016/j.dibe.2021.100045
https://doi.org/10.1016/j.coldregions.2021.103324
https://doi.org/10.1016/j.conbuildmat.2022.129117
https://doi.org/10.1016/j.autcon.2024.105355
https://doi.org/10.1016/j.conbuildmat.2023.132684
https://doi.org/10.1016/j.conbuildmat.2023.134483
https://doi.org/10.1016/j.engappai.2023.106142
https://doi.org/10.1016/j.engappai.2023.107624
https://doi.org/10.1198/jasa.2008.s219
https://doi.org/10.1016/j.engappai.2022.105130
https://doi.org/10.1109/BigData50022.2020.9377902
https://doi.org/10.1109/BigData50022.2020.9378027
https://github.com/facebookresearch/detectron2
https://doi.org/10.1016/j.conbuildmat.2021.125537
https://doi.org/10.3390/info11020125
https://doi.org/10.3390/buildings13030767
https://docs.ultralytics.com/vi
https://neurips.cc/media/nips-2018/Slides/12761.pdf
https://neurips.cc/media/nips-2018/Slides/12761.pdf

Buildings 2024, 14, 1808 24 of 24

55. Nar, K;; Ocal, O.; Sastry, S.S.; Ramchandran, K. Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial
Examples. arXiv 2019, arXiv:1901.08360.

56. Figiel, L.; Kaminiski, M. Numerical Probabilistic Approach to Sensitivity Analysis in a Fatigue Delamination Problem of a Two
Layer Composite. Appl. Math. Comput. 2009, 209, 75-90. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.amc.2008.06.039

	Introduction 
	Methodology 
	Development of Deep Learning Prediction Models for Reflective Cracking in Highways 
	Overview 
	Predictive Model and Enhancements for Improved Accuracy 
	Supervised Learning Methods for Machine Learning Forecasting 

	Reflection Cracking Detection Model 
	Data Collecting and Pre-Processing 
	Data Labeling 
	Data Augmentation 
	Deep Learning-Driven Object Identification 
	Mask R-CNN 
	Applications 
	Hyperparameters 
	Comparable Architectures 
	Comparative Analysis and Evaluation 
	Cross-Entropy Loss Function 


	Results and Discussions 
	Reflection Cracking Prediction Results 
	Initial Multilinear Regression Analysis 
	Comparison of Machine Learning Techniques for Model Optimization 
	Limitations 

	Reflective Cracking Categorization 
	Reflective Cracking Segmentations 
	Overall Results 
	Weather Impact on Training Efficiency 
	Results of Average Precision at 50% 

	Architecture Comparison 
	Challenges in Implementation 

	Conclusions 
	References

