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Abstract: Recently, subsea tunnel construction has developed rapidly in China. The traffic volume of
subsea metro tunnels is large. Once a safety accident occurs, economic losses and social impacts will
be extremely serious. To eliminate accidents in operational subsea metro tunnel structures, a health
risk prediction method is proposed based on a discrete Bayesian network. Detecting and monitoring
data of the tunnel structures in operation were used to evaluate the health risk by employing the
proposed method. This method establishes a Bayesian network model for the health risk prediction
of the shield tunnel structure through the dependency relationship between the health risk of the
operational tunnel structure and 13 risk factors in five aspects: the mechanical condition, material
performance, integrity state, environmental state, and deformation state. By utilizing actual detection
and monitoring data of various risk factors for the health risk of the operational subsea metro shield
tunnel structure, this method reflects the actual state of the tunnel structure and improves the accuracy
of health risk predictions. The validity of the proposed method is verified through expert knowledge
and the subsea shield tunnel structure of the Dalian Subway Line 5. The results demonstrate that the
health risk prediction outcomes effectively reflect the actual service state of the shield tunnel structure,
thus providing decision support for the control of health risks in the subsea metro shield tunnel.

Keywords: underground structure; tunnel structure; Bayesian network; health risk; risk prediction

1. Introduction

Subsea tunnels offer significant advantages such as minimal impact on the marine
environment, all-weather accessibility, and no disruption to sea traffic, becoming the main
means to cross straits, bays, and river mouths [1,2]. In recent years, Chinese subsea tunnel
construction has entered a rapid development phase, with several world-class subsea
tunnels completed, including the Xiamen Xiang’an Tunnel [3] and the Qingdao Jiaozhou
Bay Tunnel [4]. China is also constructing and actively promoting the construction of
multiple subsea tunnel projects, such as the Qingdao Jiaozhou Bay Second Tunnel, the
Bohai Sea Tunnel, and the Qiongzhou Strait Cross-Sea Passage.

With the gradual increase in the tunnel service life, structural issues such as leak-
age and deterioration are inevitable, seriously affecting the health of the tunnel structure.
Numerous operational accidents caused by the poor health status of tunnel structures
have occurred both domestically and internationally in recent years, resulting in severe
social losses [5]. Thus, the health risks prediction of tunnel structure is of great importance.
Subsea tunnels operate under a high hydraulic pressure and strong infiltration pressures,
facing greater risks of leakage. The stray electric currents arising from seawater and the
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long-term operation of subway trains’ electric traction are likely to cause electrochemical
corrosion in the steel-reinforced concrete structure of subsea tunnels, reducing their load-
bearing capacity. Therefore, risk factors such as high water pressure and strong corrosion
affecting the long-term healthy operation of subsea metro tunnels are more complex, posing
direct threats to the operational safety of the structures. Currently, operational tunnel risk
prediction is primarily focused on multifaceted risk prediction during tunnel operations.
Hou Jingyu et al. [6] utilized the Fuzzy Analytical Hierarchy Process (FAHP) method to
predict operational tunnel risks, considering various elements such as civil engineering
structures, mechanical and electrical facilities, accident prevention and management ca-
pabilities, and the traffic environment. Luo Yong et al. [7] employed the FAHP method
to evaluate operational tunnels, taking into account road network factors, tunnel-related
factors, driver factors, vehicle factors, and environmental aspects. Pan Zhengzhong et al. [8]
utilized the Analytic Hierarchy Process (AHP) method for risk assessment of operational
tunnels, considering factors such as tunnel characteristics, environmental factors, and man-
agement considerations. Wang Zhijie et al. [9] applied the AHP method for risk evaluation
of operational tunnels, focusing on elements like tunnel alignment, tunnel features, traffic
conditions, and tunnel lighting. However, there is limited prediction and evaluation of
structural health risks in subsea tunnels. Thus, it is essential to establish a predictive model
for the health risks of subsea metro tunnel structure.

Traditional risk assessment and prediction methods like the Analytic Hierarchy Pro-
cess (AHP) [10–13], Fuzzy Analytical Hierarchy Process (FAHP) [14–18], Risk Matrix [19],
Fault Tree Analysis (FTA) [20], Fuzzy Comprehensive Evaluation [21], Event Tree Anal-
ysis [22], and Monte Carlo simulations [23,24] have been widely applied and validated
in engineering practice. They have played a crucial role in engineering risk assessments.
However, with technological advancements, there has been a shift towards seeking more
accurate and intelligent methods for risk prediction. Techniques like Neural Networks and
Bayesian networks, brought forth by developments in computer technology, have been
introduced into engineering risk analysis. For instance, Bayesian networks have been used
for predicting the probability of existing pipeline failure [25], assessing underground con-
struction risks [26] and evaluating tunnel operational risks [6]. Neural Networks improve
prediction accuracy through data learning. These approaches leverage vast datasets and
algorithms to assess or predict risks, showing high flexibility and adaptability, and holding
significant potential for tunnel structural health risk prediction.

Currently, threshold warning methods, which directly utilize monitoring data, are
commonly used for the operational monitoring of tunnel structures [27,28]. While capable
of reflecting the true state of tunnel structures, this method struggles with the fluctuations
in monitoring data caused by random factors during tunnel operation, often leading to
high false alarm rates. There is an urgent need for more advanced methods to enhance
the accuracy and effectiveness of early warnings. Therefore, it is crucial to explore health
risk prediction methods for subsea metro shield tunnel structure that can fully utilize
operational detection and monitoring data patterns and integrate monitoring indicators
into the prediction.

Because of this, this article focuses on the prediction of health risks in operational sub-
sea metro shield tunnel structures. Bayesian networks are applied to predict the health risks
of operational subsea shield tunnels. The Noisy-OR gate and Noisy-MAX models [29,30]
are used to calculate the conditional probabilities of variables. With Bayesian inference, a
Bayesian network model for the prediction of health risks associated with the operational
subsea metro shield tunnel structure is established, proposing a method for health risk
prediction. This approach integrates statistical regularity from engineering site detection
and monitoring data to forecast health risks in the operation of subsea metro shield tunnels.
The rationality of the method proposed in this paper is verified by expert experience.
Furthermore, using the subsea tunnel structure of the Dalian Metro Line 5 as a basis, the
model conducts a health risk probability forecast to verify the effectiveness of the health
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risk prediction model proposed in this paper and provide decision support for health risk
management during the operation.

2. Risk Prediction Method
2.1. Discrete Bayesian Network Model

A Bayesian network, also known as a belief network or causal network, combines
probability theory with graph theory to represent a graphical structure that describes the
dependency relationships between variables. At present, Bayesian networks are considered
ideal tools for knowledge reasoning and prediction under uncertain environments [31,32].
A discrete Bayesian network is specific to handling discrete variables.

Establishing a network involves constructing the graphical structure of the discrete
Bayesian network and determining the conditional probability tables. Figure 1 shows
a discrete Bayesian network model where Figure 1a is a Directed Acyclic Graph (DAG)
consisting of nodes A1, A2, . . ., An, B, and directed edges from nodes A1, A2, . . ., An to
node B. In the graph, the originating nodes of directed edges A1, A2, . . ., and An are
deemed parent node variables, and the destination node B is the child node variable.
Directed edges from A1, A2, . . ., An to B represent the dependency relationships whereby
the parent node variables A1, A2, . . ., An each influence the occurrence of the child node
variable B. The strength of each dependency relationship expressed by a directed edge
is quantified by the conditional probability of the child node variable occurring given
that only the corresponding parent node variable occurs. If there is no direct connection
between two nodes, these node variables are conditionally independent. In the discrete
Bayesian network structure shown in Figure 1a, the parent node variable A1 has q possible
states, the parent node variable An has r states, and the child node variable B has m states.
The conditional probability table corresponding to the discrete Bayesian network structure
shown in Figure 1a is exhibited in Figure 1b.
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Figure 1. Schematic graph of discrete Bayesian network. (a) A directed acyclic graph; (b) conditional
probability table.

In the discrete Bayesian network model shown in Figure 1, the joint distribution of
the discrete variables A1, A2, . . ., An, and B is decomposed into a product of conditional
probabilities using the chain rule. Then, the product of conditional probabilities is reduced
by exploiting the conditional independence of discrete variables A1, A2, . . ., An given
discrete variable B. Consequently, the marginal probability distribution of discrete variable
B is determined, as shown in Equation (1), which can predict the likelihood of occurrence
of variable B. This article applies this formula to predict the likelihood of risk events during
the operation of engineering projects.

P(B) =
n

∑
i=1

P(A1, A2, . . . , An, B) =
n

∑
i=1

n

∏
i=1

P(B|Ai) (1)
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2.2. Conditional Probability

Due to the limited data on operational subsea shield tunnel structures of poor health
status, expert experience is used to calculate conditional probabilities. However, calculating
the conditional probability tables using expert experience can become excessively laborious.
When building a Bayesian network for a complex project, the number of items in the
conditional probability table increases exponentially with the number of parents. If the
nodes are all in two states and node C has d parents, the conditional probability table of
node C has 2d entries. When the conditional probability table is determined by experts,
every expert needs to deal with the questionnaire 2d times. The workload is huge and it is
not easy to operate. Calculating the conditional probability tables using expert experience
can become excessively laborious and the workload will increase exponentially with the
increase in the number of parent nodes. To address this, the article employs a Noisy-OR gate
model based on expert experience [29] to calculate the conditional probabilities of binary
states’ discrete variables within the Bayesian network, as shown in Equations (2) and (3).
In Equation (2), pi represents the probability solely due to the occurrence of Ai;AT denotes

the event A happening; and
¯

Ai denotes the event Ai not happening.
For multistate variables in the discrete Bayesian network, a Noisy-MAX model based

on expert experience [30] is used for calculation, as demonstrated in Equations (4) and (5).
The Noisy-MAX model also assumes the node variables to be ordinal, with the various
states of a node variable arranged in a certain sequence, such as from low to high.

P(B|A1, A2, . . . , An) = 1 − ∏
i:Ai∈AT

(1 − pi) (2)

pi = P(B
∣∣∣__
A1,

__
A2, . . . , Ai, . . . ,

__
An) (3)

P(B ≤ b|A) = ∏
i

[
∑

B≤b
P(B = b|A = ai)

]
(4)

P(B|A) =

{
P(B ≤ b|A)− P(B ≤ b − 1|A) b ̸= bmin

P(B ≤ b|A) b = bmin
(5)

The parameters in the Noisy-OR gate model and the Noisy-MAX model are de-
termined through expert elicitation, as shown in Equation (6). Here, pδ

i represents the
probability of the ith risk factor being in the δth state given B’s occurrence; ωδik denotes
the weight coefficient by the kth expert for the δth state of the ith risk factor occurring; ζ
indicates the number of states for the ith risk factor; and µ represents the number of experts
involved in the scoring process.

pδ
i =

µ

∑
k=1

ωδik/
ζ

∑
δ=1

µ

∑
k=1

ωδik (6)

This method of calculating conditional probabilities ensures that the workload of
experts increases linearly with the number of parent nodes, rather than exponentially. And
the workload of experts is significantly reduced.

3. Health Risk Prediction Process of Operational Subsea Tunnel Structure
3.1. Health Risk Prediction Steps

The modeling process for predicting operational health risks typically includes the
following steps:

(1) Identifying the risk factors that affect the health of subsea metro shield tunnel structure
in operation, and determining the state space of each risk factor. Establishing a risk
indicator system for the health risks of the operational shield tunnel structure based
on the relationships of these risk factors.
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(2) Using the probability of risk occurrence to establish the likelihood rating standards
for the operational health risks of the subsea metro shield tunnel structure.

(3) Learning the Bayesian network structure for the operational health risks of subsea
metro shield tunnel structure.

(4) Learning the parameters of the Bayesian network for the health risks of operational
subsea metro shield tunnel structure by computing the conditional probabilities of
the child nodes.

(5) Inferring the probability of health risks for the operational subsea metro shield tunnel
structure.

The construction process of the Bayesian network model is shown in Figure 2.
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Figure 2. Construction process of Bayesian network.

3.2. Risk Factors Identification

This article employs a combination of national standards, an understanding of the
stress mechanism of subsea shield tunnel structure, expert knowledge, and practical re-
search on tunnel structure detection and monitoring to identify the primary factors that
contribute to the health risk of subsea tunnel structures during their operation. Practical
research primarily involves determining the monitoring section, types and numbers of
sensors, sensor arrangement, data collection frequency, and data transmission and storage
methods, all of which are based on the geological and environmental conditions of the
tunnel structure and its structural features. These factors encompass both internal and
external influences that are encountered in the operation of subsea metro tunnel structure.

To establish a framework for analyzing these factors, they are classified into three
levels: the target level, criteria level, and index level. This classification is based on
their interdependencies and independent relationships, which are evaluated through the
application of the Analytic Hierarchy Process (AHP).

Figure 3 presents an illustrative representation of the factors that influence the health
risks associated with the operational subsea metro tunnel structure. In the structural health
risk factors shown in Figure 3, the target level represents the health risk associated with
the operational subsea metro tunnel structure. The criteria level consists of five risk factors
that include mechanical condition (X1), material performance (X2), integrity state (X3), en-
vironmental state (X4), and deformation state (X5). Furthermore, the index level comprises
13 risk factors that have been identified as internal force in steel bars (X11), concrete strain
(X12), corrosion of steel bars (X21), concrete strength (X22), concrete spalling (X31), concrete
delamination (X32), concrete cracking (X33), structural water leakage (X34), surrounding
rock pressure (X41), surrounding rock pore water pressure (X42), segment misalignment
(X51), tunnel headroom convergence (X52), and tunnel vertical displacement (X53).
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The health risk prediction model for operational subsea metro tunnel structure utilizes
a probabilistic representation for risk probability levels. These levels are categorized into
five distinct levels referring to the prevailing Chinese national standard [33]. From low to
high, the five probability levels are impossibility of occurrence (level 1), rarity of occur-
rence (level 2), occasional occurrence (level 3), potential occurrence (level 4), and frequent
occurrence (level 5) and the tunnel structure status and disposal measures corresponding
to various levels of health risk are shown in Table 1.

Table 1. Tunnel structure status and disposal measures corresponding to various levels of health risk.

Level Tunnel Structure Status Disposal Measures

Level 1 Excellent Normal operation, regular monitoring

Level 2 Good Normal operation, enhanced monitoring

Level 3 Fair Normal operation, requiring maintenance

Level 4 Poor Conducting a safety assessment to determine
whether to restrict the use

Level 5 Very poor Conducting a safety assessment to determine
whether to stop the use

3.3. Risk Prediction Based on Bayesian Networks

The method for constructing Bayesian network structures can be bifurcated into
those predicated on direct causal relationships and those reliant on data-driven learning
processes [34]. To directly formulate the architecture of discrete Bayesian networks founded
on causal relationships, it becomes imperative to delineate the causal interconnections
among the discrete variables, followed by the generation of a concomitant directed acyclic
graph to delineate these relationships. In scenarios where an explicit delineation of causal
relationships among discrete variables is absent or such relationships are exceedingly
intricate for unambiguous identification, the architecture of discrete Bayesian networks may
be synthesized through the identification of data patterns. The health risks associated with
subsea metro shield tunnel structure in operation exhibit a direct correlation to influencing
factors and the mutual dependencies among these factors. Thus, this paper delineates
the construction of a Bayesian network predicated upon the causal relationships amongst
risk factors; this involves the transmutation of the schematic derived from the Analytical
Hierarchy Process (illustrated in Figure 3) into the framework of a discrete Bayesian
network, as evidenced in Figure 4.
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structure.

In a discrete Bayesian network structure, health risk associated with the operational
subsea metro tunnel structures (R) is represented as a variable with five states, corre-
sponding to five different levels of likelihood of risk occurrences. The variables for tunnel
headroom convergence (X52) and vertical displacement (X53) are also included in the net-
work and have multiple states. Other risk factors such as internal force in steel bars (X11)
and strain in concrete (X12) are represented as variables with two states. The current Chi-
nese national standard [35] divides variables with multiple states into four different states.
Table 2 provides the specific limits for each state of the variables with multiple states.

Table 2. The limits for states of the variables with multiple states.

State Tunnel Headroom Convergence Tunnel Vertical Displacement

N <6‰ <1 mm/a

M ≥6‰, <9‰ ≥1 mm/a, <3 mm/a

L ≥9‰, <12‰ ≥3 mm/a, <10 mm/a

Y ≥12‰ ≥10 mm/a

The Noisy-OR gate model and the Noisy-MAX model are utilized to compute the
conditional probabilities of binary and multistate variables in the child nodes, respectively.
A survey questionnaire was employed to enlist experts from various stakeholders involved
in the development, design, construction, oversight, and operation of subsea metro shield
tunnel structure. In assessing the weights, considerations encompassed factors such as the
experts’ tenure, background, and competence in the pertinent domain. The participating
experts are categorized into four classes (with survey weights for experts of categories
one through four being 1, 0.9, 0.8, and 0.7, correspondingly). The first category of experts
(four individuals) incorporates distinguished professionals, the lead engineers of the de-
sign entity, and the heads of the construction entity’s civil engineering division; experts
belonging to the second category (four individuals) are specifically chosen from design or
construction organizations and typically comprise senior engineers who possess special-
ized knowledge in underground structural systems. Special emphasis is placed on their
expertise in this domain. The third category of experts (six individuals) is derived from
design or construction entities and encompasses senior engineers well-versed in under-
ground structures, structure construction supervisors, quality inspectors from construction
units, as well as technical managers from oversight units. The fourth category of experts
(six individuals) originates from design or construction establishments and consists of
engineers who specialize in underground structures, technical staff from construction units,
and technicians from supervision units. To elucidate the method of computing conditional
probabilities associated with child nodes, two demonstrative instances, respectively, high-
lighting the binary variable “Mechanical condition X1” and the multistate variable “Health
risk associated with the operational subsea metro tunnel structure R” are employed.
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The probability of the “Mechanical condition X1” being compromised due to the
adverse effects in the “Internal force in steel bars X11” is determined by experts specialized
in underground structure. A survey was conducted among 20 experts, including 3 experts
from the first category, 3 experts from the second category, 6 experts from the third category,
and 6 experts from the fourth category. These experts unanimously agreed that only when
there is excessive internal force in steel bars during operation, the mechanical condition of
the tunnel structure can become unfavorable. According to Formula (6), the probability p11
is calculated to be 0.886.

p11 = (1 × 3 + 0.9 × 3 + 0.8 × 6 + 0.7 × 6)/(1 × 4 + 0.9 × 4 + 0.8 × 6 + 0.7 × 6) = 0.886.

Similarly, the probability p12 is calculated to be 0.145 using the same approach. Based
on Formulas (2) and (3), the conditional probabilities of the “Mechanical condition X1”
node are determined as shown in Table 3. In the table, X11 = Y represents an excessive
internal force in steel bars, X11 = N represents a non-excessive internal force in steel bars,
X12 = Y represents excessive concrete strain, X12 = N represents non-excessive concrete
strain X1 = Y represents an unfavorable mechanical condition, and X1 = N represents a
favorable mechanical condition.

Table 3. Conditional probability of the node “Mechanical condition X1”.

X11 X12 X1 = Y X1 = N

Y Y 0.564 0.436

Y N 0.205 0.795

N Y 0.452 0.548

N N 0.000 1.000

The probabilities of adverse occurrence of “Mechanical condition X1” causing the
“Health risk associated with the operational subsea metro tunnel structure R” to be at levels
1 to 5 are determined by experts. The probabilities of levels 1 to 5 are denoted by p1

r1 to p1
r5

respectively.
Taking the calculation of p1

r5 as an example to illustrate the calculation process, out
of the 20 experts, 2 experts from each category (the first category to the fourth category)
believed that only when the “Mechanical condition X1” is adverse, the “Health risk associ-
ated with the operational subsea metro tunnel structure R” will be at level 5. According
to Formula (6), the probability p1

r5 is calculated to be 0.410. Using the same approach,
p1

r4 = 0.253, p1
r3 = 0.205, p1

r2 = 0.090, and p1
r1 = 0.042.

From Figure 4, it can be observed that the discrete variable R has parent nodes X1 to
X5. Similarly, the probabilities of the adverse occurrence of R at levels 1 to 5 are determined
when only a single parent node occurs. Then, using Formulas (4) and (5), the conditional
probabilities of the node R are obtained as shown in Table 4. Due to space limitations, only
the status combinations of the parent nodes X1 = Y are listed. Here, the variables X1, X2,
X3, X4, and X5 represent different aspects of the tunnel’s condition. X1 = Y represents an
unfavorable mechanical condition, X2 = Y represents poor material performance, X3 = Y
represents a compromised integrity state, X4 = Y represents adverse environmental condi-
tions, and X5 = Y represents a problematic deformation state. Conversely, X1 = N, X2 = N,
X3 = N, X4 = N, and X5 = N represent favorable conditions in each respective aspect.

Netica is a powerful and widely used Bayesian network computing software devel-
oped by NORSYS Software Company, Vancouver, BC, Canada in 1992. In this paper, Netica
software (v7.01) is used to build the Bayesian network model. According to Equation (1),
the probability of health risk of operational subsea tunnel structure is predicted.
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Table 4. Conditional probability of the node “Health risk associated with the operational subsea
metro tunnel structure R”.

Stress
State

X1

Material
Performance

X2

Integrity
State

X3

Environmental
Conditions

X4

Deformation
State

X5

Likelihood Level of Health Risk

Impossible
(r = 1)

Rare
(r = 2)

Occasional
(r = 3)

Possible
(r = 4)

Frequent
(r = 5)

Y Y Y Y Y 0.000 0.000 0.004 0.071 0.925

Y Y Y Y N 0.000 0.000 0.006 0.072 0.922

Y Y Y N Y 0.000 0.002 0.023 0.220 0.754

Y Y Y N N 0.000 0.004 0.030 0.212 0.754

Y Y N Y Y 0.000 0.001 0.009 0.097 0.893

Y Y N Y N 0.000 0.001 0.012 0.098 0.889

Y Y N N Y 0.000 0.008 0.048 0.277 0.666

Y Y N N N 0.002 0.016 0.058 0.273 0.651

Y N Y Y Y 0.000 0.001 0.019 0.107 0.873

Y N Y Y N 0.000 0.003 0.024 0.106 0.867

Y N Y N Y 0.000 0.016 0.098 0.284 0.601

Y N Y N N 0.002 0.031 0.120 0.264 0.584

Y N N Y Y 0.000 0.005 0.039 0.136 0.819

Y N N Y N 0.002 0.009 0.048 0.130 0.812

Y N N N Y 0.009 0.058 0.188 0.311 0.435

Y N N N N 0.042 0.090 0.205 0.253 0.410

4. Validation of Health Risk Prediction Model for Operational Subsea Tunnel Structures

Due to the lack of data on the poor health status of the operational subsea metro
shield tunnels, the validity of the risk prediction model proposed in this paper is verified
using expert experiential knowledge. Insight into the risk factors leading to the poor
health status of subsea metro shield tunnels is obtained through an expertly informed
survey questionnaire. The risk factors that contribute to the poor health of the subsea
tunnel structure are shown in Figure 3. The experts selected, the expert weights, and the
calculation method for prior probabilities are the same as those described in Section 3.3 of
this article.

Subsequently, the prior probabilities of each parent node are deduced via Formula (6),
as shown in Table 5. Utilizing the Noisy-OR gate model and the Noisy-MAX model, the
conditional probabilities of the child nodes are calculated, as shown in Tables 3 and 4.

Table 5. Prior probabilities of risk factors (unit: %).

Categories of risk factors X1 X2 X3 X4

Risk factor indicators X11 X12 X21 X22 X31 X32 X33 X34 X41 X42

Risk factor status Y Y Y Y Y Y Y Y Y Y

Prior probability 28 32 33 25 22 21 35 35 32 33

Categories of risk factors X5

Risk factor indicators X51 X52 X53

Risk factor status Y N M L Y N M L Y

Prior probability 42 13 20 32 35 10 21 34 35
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The health risk prediction of the Bayesian network model for the operational subsea
metro shield tunnel is constructed with Netica software (v7.01). The framework of the
discrete Bayesian network, as evidenced in Figure 4, is used to construct the structure of
the health risk Bayesian network model of the operational subsea metro shield tunnel.
Subsequently, the prior probabilities of parent nodes and the conditional probabilities of
the child nodes are allocated to each node to facilitate the formulation of the health risk
prediction model and the likelihood of health risk of the operational subsea metro shield
tunnel is inferred through Formula (1).

The calculation results are shown in Figure 5. As can be seen from the figure, the
inference made using the Bayesian network established in this paper indicates that the
probabilities of health risk occurrence for operational subsea metro shield tunnel structure
at levels 4 and 5 are the highest, at 22.9% and 32.5%, respectively, which demonstrates that
the risk prediction model established in this paper is capable of effectively predicting the
health risk of operational subsea metro shield tunnel structure.
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5. Case Study
5.1. Overview of the Structural Engineering of the Dalian Subsea Metro Tunnel

The subsea section of the Dalian subsea tunnel extends to 2310 m in length, represent-
ing the first instance globally of a large-diameter, single-bore, double-track shield tunnel
engineered through a karstic geological formation. Its geographical position is shown
in Figure 6. The construction exhibits a minimal burial depth of 12.2 m and attains a
maximal subaqueous depth of 14 m. The geological conditions encountered are intricate,
predominantly encompassing moderately weathered dolomitic limestone, karst formation,
moderately weathered calcareous slate, and moderately weathered slate formations, ac-
companied by the intrusion of diabase veins. The superincumbent layer at the zenith of
the tunnel chiefly consists of silt, silty soil, and silty clay, with certain regions interspersed
with a minor quantity of gravel strata. Engineered with an extensive shield mechanism, the
tunnel manifests an external diameter of 11.8 m, an internal diameter of 10.2 m, a segmental
thickness of 0.5 m, a ring breadth of 2 m, and a secondary lining thickness of 0.3 m. Marking
a pioneering endeavor worldwide, as the first substantial shield tunnel fabricated through
a subsea karstic zone, the excavation construction was conclusively realized successfully in
early 2021.
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5.2. General Situation of the Health Monitoring System of the Dalian Subsea Tunnel Structure

The Health Monitoring System devised for the Dalian Metro Line 5 subsea tunnel
structure represents a comprehensive online monitoring framework that integrates aspects
of structural monitoring and assessment, system identification, data integration, and early
warning mechanisms. This system adopts a synthesized strategy, utilizing both point-
specific vibrating wire sensors and spatially distributed optical fiber sensors. This combined
technique allows for a thorough and diverse examination of the tunnel infrastructure’s
performance state. Specifically, the monitoring scope includes variables such as the strain
of concrete, internal force in steel bars, steel corrosion, seismic accelerations, segment
misalignment, tunnel headroom convergence, tunnel vertical displacement, surrounding
rock pressure, surrounding rock pore water pressure, as well as thermal variances. The
positioning of some sensors is depicted in Figure 7. Furthermore, Table 6 systematically
details the monitoring content, monitoring index, and the corresponding sensor type.
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Table 6. Structure monitoring content and sensor type.

Number Monitoring Content Monitoring Index Sensor Type

1
Structural mechanical condition

Internal force in steel bars Instrumented rebar

2 Strain of concrete Concrete strain meter

3

Structural load

Surrounding rock pressure Total pressure cell

4 Surrounding rock pore water
pressure Vibrating wire piezometer

5 Durability of structure Steel corrosion Anode ladder

6 Structural vibration Acceleration Accelerometer

7 Structure leaking Leakage Distributed optical fiber

8 Structural distortion Segment misalignment, Tunnel
vertical displacement Distributed optical fiber
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5.3. Health Risk Prediction of the Dalian Subsea Tunnel Structure

The discrete Bayesian network prediction method proposed in this article is used
to predict the health status of the Dalian subsea shield tunnel structure. The occurrence
probability of each health risk factor is obtained through on-site detection and monitoring
data input as evidence into the Bayesian network model. Subsequently, the health status of
the structure is predicted by inference which is compared with the actual project status to
verify the effectiveness of the prediction model proposed in this paper from an engineering
application case.

To predict the operational health risk by applying the risk prediction model presented
in this paper, detecting and monitoring data of the subsea subway tunnel structure of
the Dalian Metro Line 5 from April 2021 to September 2023 were selected. Based on an
analysis of data validity, the occurrence probabilities of factors affecting the health risks of
the subsea tunnel structure were statistically analyzed, which is shown in Table 7. These
probabilities are used as evidence input into the Bayesian network model for predicting
the health risks of the subsea shield tunnel structure using the computing software Netica
(v7.01). The resulting inference of the health risks of the subsea tunnel structure of the
Dalian Metro Line 5 is shown in Figure 6.

Table 7. Measured probability of evidence node variables (unit: %).

Categories of risk factors X1 X2 X3 X4

Risk factor indicators X11 X12 X21 X22 X31 X32 X33 X34 X41 X42

Risk factor status Y Y Y Y Y Y Y Y Y Y

Measured probability 0 0.001 0 0 0 0 0 0 0 0

Categories of risk factors X5

Risk factor indicators X51 X52 X53

Risk factor status Y N M L Y N M L Y

Measured probability 0 1 0 0 0 0.9999 0.0001 0 0

The analysis showed that it is highly unlikely for a health risk event to occur in
the operational state of the subsea tunnel structure, with a probability of about 100%, as
shown in Figure 8. This finding is consistent with the actual operational status of the
tunnel structure, indicating the rationality of the proposed health risk prediction method in
this study.
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6. Conclusions and Suggestion

Subsea metro shield tunnels have a large volume of traffic. It is extremely difficult to
carry out rescues after an accident and the poor health status of the tunnel structure is the
main cause of tunnel structural safety accidents. To eliminate operational structural safety
accidents, reduce operational risks, and ensure the health of the structure in operation,
this paper proposes a discrete Bayesian network prediction method for the health risk of
the undersea subway shield tunnel structure in operation, utilizing a discrete Bayesian
network and expert experience, and integrating engineering detection and monitoring data.
The main conclusions are as follows:

(1) The health risk prediction method for the operational subsea metro shield tunnel
structure is proposed based on a discrete Bayesian network, Noisy-OR gate model,
and Noisy-MAX model, combining with engineering detection and monitoring data
of 13 risk factors in five aspects such as structure mechanical condition, material
properties, structural integrity state, environmental state, and structural deformation
state.

(2) The Noisy-OR gate and Noisy-MAX models are used to calculate the conditional
probabilities of variables, which ensures that the workload of experts increases linearly
with the number of parent nodes, rather than exponentially. And the workload of
experts is significantly reduced.

(3) Based on the proposed health risk prediction method and expert experience with
tunnel structures of poor health status, it is calculated that the probability of structural
health risk is at level 4 and level 5, reaching 22.9% and 32.5%, respectively. It shows
the rationality of the prediction model proposed in this paper.

(4) The proposed health risk prediction method is used to predict the health risk of
the Dalian subsea metro tunnel structure. The health risk prediction outcomes are
consistent with the actual operational status, which verifies the rationality of the
method and provides decision support for health risk management.

(5) Based on the proposed health risk prediction method, health risk prediction is carried
out by combination with engineering field detection and monitoring data, which
effectively reflect the real service state of the shield tunnel structure.

In addition, the Dalian Metro subsea tunnel structure is in the early stage of operation,
and the health condition of the structure is good. With the increase in operation time in the
future, the state space of risk factors will be more complex. The study of the health risk of
the tunnel structure will be followed up to improve the health risk prediction model. At
the same time, the risk factors need to be adjusted when the method proposed in this paper
is applied to other types of tunnel structures.
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