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Abstract: Wind tunnel tests and numerical simulations are the mainstream methods to study the
wind-induced vibration of structures. However, few articles use statistical parameters to point out
the differences and errors of these two research methods in exploring the wind-induced response of
membrane structures. The displacement vibration of a saddle membrane structure under the action of
wind load is studied by wind tunnel tests and numerical simulation, and statistical parameters (mean,
range, skewness, and kurtosis) are introduced to analyze and compare the displacement data. The
most unfavorable wind direction angle is 0◦ (arching direction). The error between experiment and
simulation is less than 10%. The probability density curve has a good coincidence degree. Both the test
and simulation show a certain skewed distribution, indicating that the wind-induced vibration of the
membrane does not obey the Gaussian distribution. The displacement response obtained by the test
has good stability, while the simulated displacement response has strong discreteness. The difference
between the two research methods is quantitatively given by introducing statistical parameters,
which is helpful to improve the shortcomings of wind tunnel tests and numerical simulations.

Keywords: wind tunnel test; numerical simulation; saddle membrane structure; wind-induced
dynamic response; statistical parameter

1. Introduction

The membrane structure is mainly composed of the membrane material and the
skeleton that plays a supporting and fixing role. It has the advantages of lightweight, high
tensile strength, and good seismic performance [1,2]. Because of its unique performance,
it can ensure a large rise–span ratio. It is often designed into various negative Gaussian
curvature spatial shapes [3–5], which is very ornamental and widely used in modern
large-span spatial structures. The structure will be affected by wind load, rain load, and
hail impact load in daily use [6–9]. For example, Cui et al. [10] established a reduced-
order modeling procedure to simulate the wind-induced buffeting vibration of long-span
bridges. At the same time, they used the Fokker–Planck–Kolmogorov equation to exam
the occurrence probability of vortex-induced vibration on long-span bridge decks [11].
Jacome et al. [12] optimized the aerodynamic-induced vibration of the wing based on the
uncertainty-based aerodynamic optimization method. Scholars at home and abroad have
also carried out related research on steel structures [13], high-rise buildings [14–16] and
other building structures [17–23].
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However, the scope of the above research is a rigid structure, and less research has
investigated flexible structures. The membrane structure, as a classical flexible structure,
has a large deformation amplitude under the action of wind load, and the membrane even
undergoes tearing damage under extreme conditions [24–27]. Studying and calculating the
displacement response of the membrane structure under different conditions can intuitively
understand the effect and influence of wind on the structure. Chen et al. [28] explored
the interference effects of wind load and wind-induced responses of parallel-arranged
rectangular-planed air-supported membrane structures through wind tunnel tests. He
et al. [29] used ANSYS software to explore the influence of different cable-membrane con-
nection models on the wind-induced response of the air-supported membrane structure
with an orthogonal cable net. At the same time, the introduction of appropriate statistical
parameters is helpful to analyze the distribution law of the wind-induced displacement
response of structures and then take effective measures and methods to reduce the displace-
ment vibration. Zhang et al. [30] established the finite element model of the transmission
tower-line system by ANSYS software, and they statistically analyzed the wind-induced
dynamic response.

At present, the mainstream research methods of random vibration of membrane struc-
tures under the action of wind load include theoretical formulas, actual measurements,
wind tunnel tests and numerical simulation. Among them, the theoretical formula intro-
duces more assumptions when establishing the equation, ignoring important factors such
as fluid–solid coupling, so there is a certain error between the calculation results and the
actual situation. The financial and human resources spent on the actual measurement
are too much, and the final effect can only help the next maintenance; it cannot provide
some reference for the construction in advance. However, the wind tunnel test only needs
to consider the similarity criterion and can accurately restore the wind field characteris-
tics, which is valued by scholars at home and abroad. Chen et al. [31] carried out wind
tunnel tests on the aeroelastic model of an open one-way tensioned membrane, and they
studied the aeroelastic instability mechanism of the membrane structure. Wood et al. [32]
used wind tunnel tests to study the fluid–solid coupling of flexible hemisphere-shaped
membrane structures, and they analyzed the comprehensive data set of fluid flow and
structural displacement. With the rapid development of computers, computational fluid
dynamics is widely used in numerical simulation [33–35]. Its low cost, short cycle and
strong repeatability have made it a popular research method. Kawulok et al. [36] used
RFEM software to numerically analyze the wind flow and simulated the wind tunnel in
RWIND software. Sun et al. [37] used the large eddy simulation method to explore the
wind pressure characteristics of large-span roofs under vertical wind direction fluctuations.
In addition, they also studied the effects of wind-induced vibration response and wind
pressure distribution on saddle, wavy and continuous arched roofs.

Although there are various research methods [38–41], each with its own application
scope and advantages, there are also some limitations to these methods. The wind tunnel
test uses the similarity theory but relaxes the requirements of some physical parameters, and
the real situation of the membrane structure cannot be completely restored during the test.
The numerical simulation uses the turbulence model to simplify the Navier–Stokes equation,
and the calculation accuracy is affected by the turbulence model. However, few scholars
and teams have calculated the error of the wind tunnel test and numerical simulation in
studying the wind-induced response of saddle membrane structures under the action of
wind load. At the same time, few research papers have applied statistical knowledge to
point out the differences between the two research methods. The results of the study can be
used to train machine learning [42–45] and artificial intelligence algorithms [46–48], and
these effective algorithms in turn contribute to the optimization and design of membrane
structures. The saddle is one of the most common forms of modern membrane structures,
but it has a special shape. When conducting random vibration analysis, it is necessary
to consider the influence of wind loads at different wind directions on the membrane
structure, so it is the preferred research object.
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Taking the skeleton-supported saddle membrane structure as an example, the wind-
induced dynamic response of the skeleton-supported saddle membrane structure under
the action of wind load is studied by wind tunnel tests and finite element numerical
simulations. The displacement response and wind pressure distribution of the membrane
structure at different wind direction angles (arching or vertical direction) are explored, and
the absolute error and relative error of the two research methods are discussed. The novel
aspect is the introduction of statistical parameters (skewness and kurtosis), and the reasons
for the different shapes and offsets of the curves are elaborated from the perspective of
probability density. The differences between wind tunnel tests and numerical simulations
in studying the wind-induced response of saddle membrane structures are analyzed, which
is conducive to the subsequent correction of numerical simulation methods. The technical
route is shown in Figure 1.
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2. Wind Tunnel Tests

The wind tunnel tests can well restore and reflect the load size and vibration of
the membrane structure in the actual use process [49,50]. In order to reduce the error
caused by the similarity ratio conversion process of physical parameters and keep the same
parameters with the model of numerical simulation below, the similarity theory is not
considered in the wind tunnel test.

2.1. Test Models and Equipment
2.1.1. Wind Tunnel Site

The wind tunnel is an annular reflux type, and the wind tunnel structure diagram is
shown in Figure 2. At the same time, a large number of cube roughness elements are set up
inside the wind tunnel to simulate the roughness of the ground. The gradient wind speed
and turbulence intensity required for the test can be obtained by changing the arrangement.
The test layout inside the wind tunnel is shown in Figure 3.
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Figure 3. Wind tunnel internal test layout.

2.1.2. Test Membrane Material

The membrane material used for the tests is rainproof silk fabric, and the size of the
membrane is a square with a side length of 1 m, as shown in Figure 4. Other physical
parameters of the membrane are provided by the manufacturer, as shown in Table 1. Ex
and Ey represent the modulus of elasticity in the x and y directions, respectively.
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Table 1. Mechanical property parameters of test membrane.

Parameter (Unit) Value

Areal density (kg/m2) 0.64
Thickness (mm) 1

Poisson ratio 0.4
Elastic modulus (Ex and Ey) (kN/m2) 5 × 104

2.1.3. Model Skeleton

The design prototype of the skeleton-supported membrane structure’s model skeleton
comes from the actual engineering membrane structure. According to the boundary of
the actual project, it is simply supported on four sides. The size of the skeleton and the
boundary support technique are the key characteristics that affect the dynamic response of
the membrane structure. The model skeleton of the test is composed of four short straight
steel tubes, which are spliced by the upper four bending steel tubes and the bottom light
steel plate. The vertical projection is a square with a side length of 1.0 m. The heights of
the four corner points are all 0.3 m, the spans are 1/8 in both the arch direction and the
vertical direction, and the schematic diagram of the model skeleton is shown in Figure 5.
The actual project size can be obtained by similarity ratio conversion. The length similarity
ratio between the prototype and the model is 10:1, so the size of the actual membrane
structure project is 10 m × 10 m.
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2.1.4. Data Acquisition Device

The laser displacement sensor is used to obtain the vibration of the membrane, as
shown in Figure 7. The displacement data of the membrane can be measured by adjusting
the laser emitter of the sensor to the monitoring point on the membrane. The wind speed
data are obtained by the wind speed measuring instrument, as shown in Figure 8. The
wind speed measuring instrument is placed 20 cm above the center point of the membrane,
and the wind speed data above the membrane can be monitored.
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2.2. Test Procedure
2.2.1. Wind Field Characteristics

The class B ground roughness (hills and townships with relatively sparse houses)
of the Chinese building structure load code is selected as the test condition. Before the
formal test, the arrangement of the ground roughness elements is continuously adjusted
to meet the wind field characteristics corresponding to the class B ground roughness. It
can be seen from Figure 9 that the wind field characteristics required for the test well meet
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the requirements of wind speed profile and turbulence intensity (Equations (1) and (2)).
The Davenport wind spectrum is representative due to its simplicity of definition. The
conservative assumptions of the Davenport wind speed spectrum are also taken into
account, so the Davenport wind speed spectrum is adopted. It can also be seen from
Figure 10 that the fluctuating wind speed spectrum of the wind tunnel test satisfies the
Davenport spectrum (Equation (3)), so the test wind field satisfies the required atmospheric
boundary layer. The turbulence integral scale is a measure of the average vortex size in
the airflow. The estimation results of the turbulence scale mainly depend on the length of
the records used in the estimation analysis and the smoothness of the records. Different
experiments generally differ significantly. Therefore, this feature is not considered.

V = 12(h/0.3)0.15 (1)

I = 0.14(h/10)−0.15 (2)

f · Su( f )
u2∗

=
4 f

2

(1 + f
2
)

4
3

(3)

where V represents wind speed; h represents height from the ground; I represents turbu-
lence intensity. Su(f ) represents wind speed spectrum; u∗ represents the flow shear velocity;
f = ( f L)/V10; f represents the frequency of fluctuating wind; L = 1200 m; V10 indicates the
wind speed at a height of 10 m.
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2.2.2. Test Conditions and Schemes

The membrane material is trimmed with rain-proof silk cloth. At the same time, the
marker pen is used to mark seven monitoring points on the intersection of the vertical and
horizontal lines of the membrane material. The specific layout is shown in Figure 11.
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In this test, 0◦ (arching direction) and 90◦ (vertical direction) wind direction angle
blowing model structures are set up. The target wind speed is adjusted, and the response
signal is collected after the wind speed and the membrane vibration are stabilized. This
stage is the steady-state response data of the membrane.

2.3. Test Result Analysis

In this test, seven monitoring points are marked on the membrane, which can better
observe the change in displacement of each point and reveal the wind-induced dynamic
response law of membrane structure for us. However, due to the large amount of data
collected, we only show the vibration of two monitoring points, and the displacement
response of the remaining points only shows the mean and extreme values (maximum
positive values and minimum negative values).

Point 2 is a monitoring point on the windward surface of different wind direction
angles, which is worthy of attention and discussion. At the same time, considering that
the center point 4 of the membrane is the farthest from the edge of the model skeleton, the
binding force is the smallest, and the vibration amplitude of the membrane is the largest.
Therefore, this point is the most noteworthy monitoring point, which should be analyzed
and discussed. Therefore, the displacement response curves of monitoring points 2 and 4 at
0◦ and 90◦ wind direction angles are given. At the same time, the mean displacement and
the range of displacement change are indicated in each diagram, as shown in Figure 12.

The data set is processed, and the time of 0 s is not the starting point of the test but
rather the starting point of the steady-state vibration of the membrane. Since the laser
displacement sensor is installed below the membrane, when the displacement response is
negative, it indicates that the membrane is far away from the laser displacement sensor,
which represents the upward movement of the membrane. Conversely, it means that
the membrane moves downward. It can be seen from the group diagram 12 that the
steady-state vibration of the membrane is characterized by irregular vibration at a new
equilibrium position deviating from the initial state, whether it is under the action of a 0◦

or 90◦ wind angle.
For the sake of brevity, only the dynamic displacements of points 2 and 4 have been

presented. The displacement response of the remaining monitoring points is similar to that
of points 2 and 4, and the membrane is also irregularly vibrated near the mean value. The
mean value can represent the characteristics of the overall data, and it can also intuitively
describe the central trend of the data. At the same time, to further understand the stability
of the data, the maximum positive values and minimum negative values can be introduced
on the basis of the mean value. In the dynamic response analysis, the statistical parameters
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of the membrane can better reflect the vibration law, focusing on the mean and extreme
values of displacement. In order to obtain accurate statistical data as much as possible and
reduce the randomness and uncertainty in the wind tunnel test process, the displacement
mean and displacement extreme value of 30 s in the steady-state stage are calculated.
Table 2 shows the mean displacement of each monitoring point at 0◦ and 90◦ wind direction
angles in the wind tunnel test. Table 3 shows the displacement extreme values of each
monitoring point under 0◦ and 90◦ wind direction angles in the wind tunnel test.
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Table 2. The mean displacement of each point under wind tunnel test (mm).

Wind Direction Angle: Displacement Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

0◦ −0.42 0.52 −0.76 −0.81 0.58 −0.61 0.51
90◦ −0.56 −0.67 −0.41 −0.49 −0.64 0.32 0.28

Table 3. The displacement extreme value of each point under wind tunnel test (mm).

Wind Direction Angle: Displacement Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

0◦: maximum positive values 0.45 1.55 0.52 0.53 1.62 0.39 1.72
90◦: maximum positive values 0.12 0.05 0.38 0.59 0.51 0.47 0.58
0◦: minimum negative values −1.46 −0.81 −1.66 −2.15 −1.20 −1.54 −0.51

90◦: minimum negative values −1.53 −1.26 −1.58 −1.36 −1.64 −0.94 −0.77
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According to the above two tables, the displacement mean value diagram and displace-
ment variation range diagram of each monitoring point at the 0◦ and 90◦ wind direction
angles in the wind tunnel test can be made, as shown in Figure 13.
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It can be seen from Figure 13a that the average displacements of points 2, 5 and 7
are greater than 0 at the 0◦ wind direction angle, which means that the three monitoring
points produce the overall downward displacement vibration. The average displacement
of the remaining monitoring points is less than 0, which means that each monitoring
point generates an overall upward displacement vibration. At the wind direction angle
of 90◦, the average displacements of points 6 and 7 are greater than 0; that is, the overall
downward displacement vibration is generated. The average displacement of the remaining
monitoring points is less than 0, which means that each monitoring point generates an
overall upward displacement vibration.

It can be seen from Figure 13b that the maximum displacement of each monitoring
point changes greatly under the action of the 0◦ wind direction angle, and the maximum
displacement of each monitoring point changes smoothly under the 90◦ wind direction
angle. Comparing the variation range of 0◦ and 90◦ wind direction angle displacement, it
can be seen that the vibration amplitude of different regions of the saddle membrane struc-
ture is quite different under the 0◦ wind direction angle. Especially in the large membrane
structure of practical engineering, this difference will be more significant, so we should be
more vigilant about the influence of the flow in this direction on the membrane structure.

3. Numerical Simulations
3.1. Numerical Simulation Process
3.1.1. Simulation Condition Setting

The wind-induced vibration response of membrane structures involves geometric
nonlinearity and fluid–solid coupling calculation. In the ANSYS finite element software,
the Mechanical module can solve the geometric nonlinearity, and the FLUENT module can
solve the fluid dynamics problem. The calculation data of different modules are transmitted
through the System Coupling module, so the ANSYS finite element software can solve
the wind vibration response of the membrane structure. Large eddy simulation is selected
as the turbulence model. Large eddy simulation refers to the establishment of models
for small-scale turbulence pulsations, which can obtain richer turbulence information. If
the turbulence model is too simplified, only the average information of turbulence can be
obtained, which will affect the subsequent fluid–solid coupling calculation accuracy. It is
proposed to use the working conditions consistent with the test model for finite element
simulation, and the specific working conditions are shown in Table 4.
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Table 4. Numerical simulation condition table.

Working Condition Simulation Model Size Turbulent Flow Model Wind Direction Angle Wind Field

1 Consistent with the
size of the test model

Large eddy simulation 0◦ Equation (1)
2 90◦ Equation (2)

3.1.2. Fluid Domain and Grid Division Settings

The fluid computational region and model size for numerical simulations are consis-
tent with the test dimensions. The size of the fluid domain in the downstream, vertical and
spreading directions are 25.0 m, 3.6 m and 6.0 m, respectively, and the arch span length,
vertical span length and rise–span ratio of the model are 1 m, 1 m and 1/8, respectively. In
order to reduce the waste of computing resources caused by grid update and reconstruction
in fluid–solid coupling calculation, the basin is divided into blocks. The basin containing
the membrane structure involves the update and reconstruction of the grid. This part
adopts tetrahedral grid division, and the grid near the junction of the membrane and the
flow field is properly encrypted, and the rest of the basin is divided by the hexahedral
grid. ICEM software is used to divide the basin into grids, and the total number of grids is
about 650,000. The basin size and grid division are shown in Figure 14, and the specific
grid division parameters are shown in Table 5.
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Table 5. Meshing parameters.

Type Grid Control Parameters Parameter Value

Grid reconstruction
area

Mesh type Unstructured tetrahedral grid

Maximum unit size
Basin: 0.25 m

Membrane: 0.05 m

Near-wall grid
Thickness of the first layer unit: 0.05 m

Growth rate: 1.2
Expansion number of layers: 15

General area

Mesh type Structured hexahedral mesh

Maximum unit size Basin: 0.25 m

Near-wall grid
Thickness of the first layer unit: 0.08 m

Growth rate: 1.2
Expansion number of layers: 8

3.1.3. Boundary Condition Setting

In the fluid domain calculation simulation, the velocity inlet boundary condition and
the pressure outlet boundary condition are used. Equations (1) and (2) are compiled into
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the velocity inlet boundary conditions of FLUENT by UDF programming, and the Vortex
method is used to generate turbulent pulsation at the inlet boundary. The top and side
of the flow field are set as the symmetrical boundary of the free slip wall, and the lower
surface is set as a non-slip wall boundary condition. The tetrahedral mesh region is updated
and reconstructed by remeshing technology and diffusion smoothing technology, and the
interface between the membrane structure and the flow field is defined as the fluid–solid
coupling surface. For the structural module, the membrane is discretized by the SHELL181
element, and the boundary conditions are set to be consistent with the boundary conditions
in the test model, that is, the four-sided fixed support boundary conditions. The flow
field and structural boundary settings are shown in Figure 15, and the specific parameter
settings of FLUENT are shown in Table 6.
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Table 6. Basic parameters and boundary conditions.

Type Parameter Setting

Type of solver Pressure-based transient solution
Turbulent flow model Large eddy simulation

Inflow boundary condition Vortex method generates turbulent pulsation
Outlet boundary condition Pressure outlet
Wall boundary condition Non-slip wall

Dynamic grid settings Diffusion smoothing; mesh rezoning
Numerical solution algorithm SIMPLE

Convection term solution format Second-order upwind scheme
Convergence residual standard 10−3

3.1.4. Fluid-Solid Coupling Parameter Setting

Data transmission in fluid–solid coupling refers to the exchange and transmission
of fluid and solid calculation results through the fluid–solid interface. Mapping and
interpolation calculation are indispensable links to complete data exchange. In ANSYS,
System Coupling is the main module to control the iterative parameters of fluid–solid
coupling and interface data exchange settings, and its combination analysis process is
shown in Figure 16.

In the System Coupling module, the solution order of the flow field is set to 1, and
the solution order of the structure is set to 2. Under this setting, the system first solves the
flow field, then the pressure of the flow field is mapped to the solid surface to cause solid
deformation, and finally the solid deformation causes the flow field to change, and the
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solution is solved in this iterative order. The fluid–solid coupling iteration frequency in the
simulation is set to be consistent with the data acquisition frequency in the wind tunnel
test, both of which are 0.005 s. The total calculation time is set to 30 s, and the result output
frequency is selected as All Step for subsequent data analysis.

Buildings 2024, 14, x FOR PEER REVIEW 17 of 27 
 

  
(a) Flow field (b) Boundary 

Figure 15. Boundary condition setting. 

Table 6. Basic parameters and boundary conditions. 

Type Parameter Setting 
Type of solver Pressure-based transient solution 

Turbulent flow model Large eddy simulation 
Inflow boundary condition Vortex method generates turbulent pulsation 
Outlet boundary condition Pressure outlet 
Wall boundary condition Non-slip wall 

Dynamic grid settings Diffusion smoothing; mesh rezoning 
Numerical solution algorithm SIMPLE 

Convection term solution format Second-order upwind scheme 
Convergence residual standard 10−3 

3.1.4. Fluid-Solid Coupling Parameter Setting 
Data transmission in fluid–solid coupling refers to the exchange and transmission of 

fluid and solid calculation results through the fluid–solid interface. Mapping and interpo-
lation calculation are indispensable links to complete data exchange. In ANSYS, System 
Coupling is the main module to control the iterative parameters of fluid–solid coupling 
and interface data exchange settings, and its combination analysis process is shown in 
Figure 16. 

 
Figure 16. Fluid–solid coupling module in Workbench. Figure 16. Fluid–solid coupling module in Workbench.

3.2. Simulation Result Analysis

Figure 17 presents the flow velocity profile and wind pressure distribution near the
structure at a certain moment in the steady-state vibration stage under the wind direction
angles of 0◦ and 90◦. When the wind blows to the membrane structure along the 0◦ wind
direction angle, the wind field is divided into two parts at the leading edge of the structure.
The wind speed of the upper flow field is larger, the wind direction changes along the
curvature of the membrane and the wind speed of the leeward side of the flow field is larger
than that of the windward side. The lower flow field is less disturbed by the incoming
flow and the flow velocity is slower. At this time, the windward side and the center of
the membrane are negative wind pressure, and the leeward side is positive wind pressure,
and the farther away from the front of the structure, the greater the wind pressure. When
the wind blows to the membrane structure along the 90◦ wind direction angle, the flow
velocity on the membrane is opposite to the 0◦ direction angle. At this time, most of the
windward surface is negative wind pressure, and the rest of the membrane is positive wind
pressure distribution, and the farther away from the front of the structure, the greater the
wind pressure.

As discussed in the wind tunnel test section, the amount of data collected by the
numerical simulation is large. At the same time, in order to compare and analyze the wind
tunnel test and numerical simulation, the displacement response curves of monitoring
points 2 and 4 at 0◦ and 90◦ wind direction angles are given, as shown in Figure 18. The
displacement responses of the remaining points only show the mean and extreme values
(maximum positive values and minimum negative values). Compared with the data of the
wind tunnel test, the data of numerical simulation have great volatility and strong disorder.
One of the reasons for this phenomenon is that fluid–solid coupling involves the updating
and reconstruction of element grids, which will inevitably make the quality of grids uneven
and affect the calculation accuracy. In addition, another reason is that in the fluid–solid
coupling calculation, the data mapping between the structural solver and the fluid solver is
not convergent, resulting in a large fluctuation of the calculation results.

Similarly, in order to obtain accurate statistical data as much as possible and reduce the
randomness and uncertainty in the numerical simulation process, the displacement mean
and displacement extreme value of 30 s in the steady-state stage are calculated. Table 7
shows the average displacement of each monitoring point at 0◦ and 90◦ wind direction
angles in numerical simulation. Table 8 shows the displacement extreme values of each
monitoring point under 0◦ and 90◦ wind direction angles in numerical simulation.
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Table 7. Mean values of displacement at each point under numerical simulation (mm).

Wind Direction Angle: Displacement Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

0◦ −0.47 0.56 −0.66 −0.73 0.51 −0.54 0.46
90◦ −0.61 −0.75 −0.46 −0.54 −0.69 0.35 0.31

Table 8. Displacement extremes at each point under numerical simulation (mm).

Wind Direction Angle: Displacement Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

0◦: maximum positive values 0.58 1.57 0.31 0.61 1.45 0.22 1.15
90◦: maximum positive values 0.31 −0.08 0.61 0.49 0.64 0.53 0.64
0◦: minimum negative values −1.14 −0.59 −1.65 −2.01 −0.94 −1.50 −1.31

90◦: minimum negative values −1.50 −1.58 −1.59 −1.63 −1.67 −1.02 −0.76

According to Tables 7 and 8, the mean displacement and displacement range of
each monitoring point in the numerical simulation can be made, as shown in Figure 19.
Comparing Figure 13, it can be seen that the mean value of displacement and the trend of
displacement change in the numerical simulation are not much different from those in the
wind tunnel test. This phenomenon also proves that the fluid–solid coupling numerical
calculation results of the membrane structure have high reliability and are more in line
with the actual engineering situation.
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4. Comparison of Wind Tunnel Test and Numerical Simulation Results

In order to explore the errors between the wind tunnel test and numerical simulation,
this section first analyzes the absolute error and relative error, and then it analyzes the
curve shape of the two from the perspectives of probability density, skewness and kurtosis,
and points out the problems existing in the wind tunnel test and numerical simulation, so
as to facilitate the optimization of subsequent research.

4.1. Absolute Error of Mean and Range

In order to quantitatively compare the results of the wind tunnel test and numerical
simulation, the calculation formula of absolute error is defined as follows:

∆ae = |dt − ds| (4)

dt represents the mean displacement of a monitoring point under a certain wind
direction angle in the wind tunnel test. ds represents the mean displacement of a monitoring
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point under a certain wind direction angle in numerical simulation. Therefore, according
to Tables 2 and 7, the absolute error of the mean displacement of each monitoring point in
the wind tunnel test and numerical simulation can be calculated, as shown in Table 9.

Table 9. Absolute error of mean displacement between wind tunnel test and numerical simulation (mm).

Wind Direction Angle Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Average of Each Point

0◦ 0.05 0.04 0.10 0.08 0.07 0.07 0.05 0.07
90◦ 0.05 0.08 0.05 0.05 0.05 0.03 0.03 0.05

Tables 3 and 8 give the maximum positive values and minimum negative values of
displacement under the wind tunnel test or numerical simulation. In order to evaluate the
error between the two methods by using these two extreme values, and taking into account
the degree of dispersion of the data, the range is introduced for analysis. The formula of
the range is as follows:

r = ∆d = dmax − dmin (5)

By introducing Equations (4) and (5) to the presented results in Tables 3 and 8, the
absolute error of the displacement range can be readily obtained, as given in Table 10.

Table 10. Absolute error of displacement range between wind tunnel test and numerical simulation (mm).

Wind Direction Angle Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Average of Each Point

0◦ 0.19 0.20 0.22 0.06 0.43 0.21 0.23 0.22
90◦ 0.16 0.19 0.24 0.17 0.16 0.14 0.05 0.16

To further vividly observe the pattern of absolute error more, the presented results in
Tables 9 and 10 have been depicted in a graph as illustrated in Figure 20.
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It can be seen from Figure 20a that the absolute error of the mean displacement
of the wind tunnel test and numerical simulation under different direction angles and
different monitoring points is less than 0.10 mm. It can be seen from Figure 20b that the
absolute error of the displacement range of the wind tunnel test and numerical simulation
at different direction angles and different monitoring points is less than 0.45 mm. Because
the range is the relationship between the maximum positive values and the minimum
negative values, which reflects the range of displacement response, the results are within
the acceptable range.
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At the same time, focusing on the common trend of the two subgraph curves, it can
be seen that there are obvious peaks at points 3, 4 and 5, which also correspond to the
central area of the membrane. The central area of the membrane is less constrained, and
the wind-induced response under the action of wind load is more complex. Therefore, the
error obtained by the two methods is larger here. Subsequently, more monitoring points
can be arranged in the central area of the membrane to collect as much data as possible to
take the average value and reduce the occurrence of errors.

4.2. Relative Error of Mean and Range

At the same time, in order to further understand the degree of change in the displace-
ment difference relative to the test value and the simulated value, the calculation formula
of the relative error is defined as follows:

∆re =
|dt − ds|

|dt|
× 100% (6)

According to the above formula, the relative error of displacement mean and displace-
ment range between the wind tunnel test and numerical simulation at each point can be
calculated. The results are shown in Tables 11 and 12.

Table 11. Relative error of mean displacement between wind tunnel test and numerical simulation (%).

Wind Direction Angle Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Average of Each Point

0◦ 11.90 7.69 13.16 9.88 12.07 11.48 9.80 10.85
90◦ 8.93 11.94 12.20 10.20 7.81 9.37 10.71 10.17

Table 12. Relative error of displacement range between wind tunnel test and numerical simulation (%).

Wind Direction Angle Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Average of Each Point

0◦ 9.95 8.47 10.09 2.24 15.25 10.88 10.31 9.60
90◦ 9.70 14.50 12.24 8.72 7.44 9.93 3.70 9.46

To further vividly observe the pattern of relative error more, the presented results in
Tables 11 and 12 have been depicted in a graph as illustrated in Figure 21.

Buildings 2024, 14, x FOR PEER REVIEW 22 of 27 
 

At the same time, focusing on the common trend of the two subgraph curves, it can 
be seen that there are obvious peaks at points 3, 4 and 5, which also correspond to the 
central area of the membrane. The central area of the membrane is less constrained, and 
the wind-induced response under the action of wind load is more complex. Therefore, the 
error obtained by the two methods is larger here. Subsequently, more monitoring points 
can be arranged in the central area of the membrane to collect as much data as possible to 
take the average value and reduce the occurrence of errors. 

4.2. Relative Error of Mean and Range 
At the same time, in order to further understand the degree of change in the displace-

ment difference relative to the test value and the simulated value, the calculation formula 
of the relative error is defined as follows: 

100%t s
re

t

d d
d
−

Δ = ×  (6)

According to the above formula, the relative error of displacement mean and dis-
placement range between the wind tunnel test and numerical simulation at each point can 
be calculated. The results are shown in Tables 11 and 12. 

Table 11. Relative error of mean displacement between wind tunnel test and numerical simulation 
(%). 

Wind Direction Angle Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Average of Each Point 
0° 11.90 7.69 13.16 9.88 12.07 11.48 9.80 10.85 

90° 8.93 11.94 12.20 10.20 7.81 9.37 10.71 10.17 

Table 12. Relative error of displacement range between wind tunnel test and numerical simulation 
(%). 

Wind Direction Angle Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Average of Each Point 
0° 9.95 8.47 10.09 2.24 15.25 10.88 10.31 9.60 

90° 9.70 14.50 12.24 8.72 7.44 9.93 3.70 9.46 

To further vividly observe the pattern of relative error more, the presented results in 
Tables 11 and 12 have been depicted in a graph as illustrated in Figure 21. 

  
(a) Mean displacement (b) Displacement range 

Figure 21. The relative error of each monitoring point. 
Figure 21. The relative error of each monitoring point.

From Figure 21a, it can be seen that the relative error of the mean displacement of
point 3 is the largest at the 0◦ wind direction angle, and the error reaches 13.16%. When
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the wind direction angle is 90◦, the relative error of the mean displacement of point 3 also
reaches the maximum, and the error reaches 12.20%. The average relative error between the
test and the simulated displacement mean value of each monitoring point is about 10.85%.
The relative error of the displacement mean value of all monitoring points is less than 15%.
This phenomenon proves that the overall reduction degree of the numerical simulation
results is good.

From Figure 21b, it can be seen that the maximum relative error of the displacement
range occurs at point 5 at the 0◦ wind direction angle, and the error reaches 15.25%. When
the wind direction angle is 90◦, the maximum relative error of the displacement range
occurs at point 2, and the error reaches 14.50%. The average relative error between the test
and the simulated displacement range for each monitoring point is less than 10%, while
the maximum relative error for all monitoring points is less than 20%. This reveals that
the simulation model has a strong capability to capture the maximum amplitude of the
wind-induced vibration response of the membrane structure.

4.3. Skewness and Kurtosis

Due to the large amount of data on vibration response, it is difficult to intuitively
analyze the difference between the test results and the simulation results only by means
of statistics such as mean value and range. Therefore, the capture ability of numerical
simulation to real results is discussed from the perspective of probability density. Figure 22
presents the displacement statistical curve of monitoring points 2 and 4 at the 0◦ wind
direction angle. Each point in the diagram represents the probability of corresponding
displacement, and the curve is the result of Gaussian fitting of the actual displacement
value. It can be seen from this set of figures that the coincidence degree of the probability
density curve between the test and the simulation is high, indicating that the statistical
results of the vibration response of the numerical simulation are less different from the test.
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At the same time, skewness and kurtosis are introduced to study the distribution of
data. Both skewness and kurtosis are the characteristic numbers describing the distribution
shape of the curve. The skewness, also known as the skewness coefficient, is defined
as follows:

Sk(X) = E[(
X − µ

σ
)

3
] (7)

where µ is the mean value and σ is the standard deviation. Skewness is a measure of the
skew direction and degree of statistical data distribution, and it is a digital feature of the
asymmetry degree of statistical data distribution. For the normal distribution, the skewness
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is 0, and the tail lengths on both sides are symmetrical. If the skewness of the distribution
is less than 0, it indicates that the distribution has a negative deviation, that is, the left
skewness. At this time, the data on the left side of the mean are less than that on the right
side. The tail on the left side is longer than that on the right side, because there are a few
variables with very small values, which makes the tail on the left side of the curve drag
very long. If the skewness of the distribution is greater than 0, it is right skewed. At this
time, the data on the right side of the mean are less than that on the left side, and the tail
on the right side is longer than that on the left side. Because there are a few variables with
large values, the tail on the right side of the curve is dragged very long.

Observing the shape and distribution of the curve, whether it is the probability density
curve of the test or simulation, the probability density curve of the vibration response of
point 2 has a certain left bias, and point 4 has a certain right bias. This shows that the
wind-induced vibration of the membrane does not obey the Gaussian distribution but
has a certain bias, which is determined by the unsteady nature of the wind field and the
geometric nonlinearity of the structural vibration.

Kurtosis, also known as the kurtosis coefficient, is defined as follows:

Ku(X) = E[(
X − µ

σ
)

4
]− 3 (8)

Kurtosis is a characteristic number that characterizes the peak value of the probability
density curve at the average value, which can be used to measure the outlier of the data.
Kurtosis is a measurement of the flat peak or peak degree of data distribution. Intuitively,
kurtosis reflects the sharpness of the peak of the wind-induced displacement response curve.
When the kurtosis coefficient is greater than 0, the distribution of data is more concentrated.
When the kurtosis coefficient is less than 0, the distribution of the data is more dispersed.
Comparing the kurtosis of the probability density curves of the two monitoring points, it
is found that the kurtosis of the simulation results is smaller than that of the test, indicating
that the dispersion degree of the simulation results is larger than that of the test results.

5. Conclusions

The dynamic response of the saddle membrane structure under the action of wind
load is studied by wind tunnel tests and numerical simulations. The novel aspect is to
introduce parameters such as statistics to compare and analyze the results obtained by tests
and simulations. The following conclusions are obtained:

1. The maximum displacement of each monitoring point at the 0◦ wind direction angle
(arching direction) changes greatly, and the maximum displacement of each monitor-
ing point at the 90◦ wind direction angle (vertical direction) changes more smoothly.
Therefore, it is necessary to be alert to the influence of the 0◦ wind direction an-
gle (arching direction) on the membrane structure. When the actual engineering
structure is arranged, the arching direction of the saddle membrane structure can be
along the main direction of the local wind. Furthermore, the wind-induced vibration
displacement of the membrane structure is reduced at the design level.

2. Both wind tunnel tests and numerical simulations are the main methods to study the
wind-induced vibration of membrane structures. The absolute errors of the mean
displacement and the displacement range obtained by the two methods are less than
0.10 mm and 0.45 mm, respectively, and the relative errors of the mean displacement
and the displacement range are about 10%. Therefore, it can be explained that the
data obtained from the wind tunnel test and numerical simulation are reliable, which
is conducive to the introduction of statistical parameters for analysis.

3. The central area of the membrane is less constrained, and the wind-induced response
under the action of wind load is more complicated. Therefore, the error obtained by
the two methods here is large. Subsequently, more monitoring points can be arranged
in the central area of the membrane to collect as much data as possible to take the
average value and reduce the occurrence of errors. In actual engineering structures,
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the displacement response is greater in the center of the membrane. A reinforcing
material can be added to the center area, or a thicker membrane can be used overall.

4. Comparing the displacement response probability density curve fitted by wind tunnel
tests and numerical simulations, it can be found that the two have a good coincidence
degree. However, it can be seen from the skewness data that both of them show a
certain skewed distribution, indicating that the wind-induced vibration displacement
of the membrane does not obey the Gaussian distribution. If the performance function
established by displacement as a variable does not conform to the normal distribution
in the subsequent study of membrane structure reliability, it is necessary to select an
appropriate method to solve it, such as the ‘equivalent normalization’ method. At
the same time, by analyzing the kurtosis parameters, it can be seen that the results
obtained by the wind tunnel test have good stability, while the displacement response
of numerical simulation is more discrete. If the numerical simulation method is
continued, the number of computational grids can be increased and more accurate
results can be obtained. For the actual engineering structure, the structure size is
larger and more complex, and the numerical simulation parameter setting can provide
a reference. However, the number of computational grids should be further increased
to achieve higher accuracy.
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