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Abstract: To effectively combat environmental challenges, it is necessary to evaluate urban residential
building carbon emissions and implement energy-efficient, emission-reducing strategies. The lack
of a specialized carbon emission monitoring system complicates merging macro- and micro-level
analyses to forecast urban residential emissions accurately. This study employs a system dynamics
(SD) model to examine the influence of social, economic, energy, and environmental factors on
carbon emissions in urban residences in Kunming, China. The SD model forecasts household carbon
emissions from 2022 to 2030 and establishes three scenarios: a low-carbon scenario (LCS), a medium
low-carbon scenario (MLCS), and a high low-carbon scenario (HLCS) to assess emission reduction
potentials. It predicts emissions will climb to 4.108 million tons by 2030, significantly surpassing the
2014 baseline, with economic growth, urbanization, residential energy consumption, and housing
investment as key drivers. To curb emissions, the study suggests enhancing low-carbon awareness,
altering energy sources, promoting research and development investment, and expanding green areas.
The scenarios indicate a 5.1% to 16.1% emission reduction by 2030 compared to the baseline. The
study recommends an 8.3% to 11.4% reduction in MLCS as a practical short-term target for managing
urban residential emissions, offering a valuable SD approach for optimizing carbon strategies and
aiding low-carbon development.

Keywords: carbon emissions; urban residential buildings; system dynamics modeling; Kunming;
low-carbon scenarios

1. Introduction

The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
highlights the significant contribution of urban areas to global carbon emissions [1]. Cur-
rently, over half of the global population resides in urban regions, which are responsible
for approximately 71–76% of global end-use energy consumption and 67–76% of CO2
emissions attributable to energy use in cities [2]. This trend suggests an ongoing and
likely increase in energy consumption and carbon emissions from residential buildings,
particularly considering the growing urban population.

Residential carbon emissions can be categorized into five key phases: manufacturing
of building materials, construction, usage, maintenance, and finally, demolition and dis-
posal [3]. For instance, in 2020, the residential building sector of China accounted for 45.5%
of the total national energy consumption and 50.9% of its carbon emissions. The production
of building materials and building operation phases are the most significant contributors,
accounting for 28.2% and 21.7% of emissions, respectively [4]. Notably, the operational
phase tends to increase its emissions proportionally over time, eventually becoming the
dominant source over the lifecycle of the building [5]. Therefore, it is crucial to study the
carbon emissions of urban residential buildings during the use phase and, on this basis,
formulate energy-saving and emission reduction strategies for urban residential buildings
during the operation phase to reduce carbon emissions.
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A deeper look shows that various macro factors, including urbanization, demograph-
ics, climate parameters, economic development, and energy consumption, have been
identified as significant drivers of emissions from urban residential buildings. Studies,
such as those by Burleyson et al. [6], Wang et al. [7], and Huo et al. [8], highlight how
urbanization affects household energy patterns and thereby impacts carbon emissions, with
noticeable regional variations. Climate conditions also play a crucial role in influencing
construction intensity and energy consumption [9,10].

On the micro-level, research presents a more nuanced picture. There is evidence sug-
gesting that higher household incomes may lead to increased energy consumption [11,12],
while other studies propose that wealthier households tend to adopt energy-saving prac-
tices [13,14]. Notably, household energy use patterns in China differ significantly between
urban and rural areas and across different regions [15], depending on things like building
types, heating systems, population density, and educational levels [16,17]. However, much
of the existing research tends to isolate these factors, overlooking their interconnected and
cumulative effects.

In framing emission reduction strategies, it becomes clear that variations in lifestyle
and usage patterns can lead to significant disparities in household energy consumption,
with differences of up to 300% [18]. This highlights the importance of considering both
micro- and macro-level factors, like income, consumption habits, urban expansion, and pop-
ulation dynamics [19,20], in designing low-carbon pathways. Additionally, building design
and usage patterns have important influences on carbon abatement outcomes. For instance,
regarding heating mode selection, centralized heating entails higher energy use [21]. How-
ever, after accounting for per capita metrics, centralized systems demonstrate superior
energy savings over distributed heating alternatives. To address these complexities, some
scholars have incorporated policy effects like carbon trading into their analyses [22,23].

In this context, Kunming, as Yunnan Province’s political, economic, and cultural center,
emerges as a focal point in China’s low-carbon initiative. Despite setting explicit targets
for carbon emission reduction, Kunming faces ongoing challenges with high residential
carbon emissions, exacerbated by its growing population and economic growth. Current
research on the residential carbon footprint of Kunming predominantly adopts a static
approach, neglecting the dynamic evolution of emissions and the underlying mechanisms
that drive these changes. This study proposes the development of a system dynamics (SD)
model to forecast future emission patterns dynamically, delving into the intricate interplay
between various factors—economy, society, energy, and environment—at both macro- and
micro-levels. This approach marks a departure from traditional static analysis, highlighting
the dynamic interactions within complex systems and offering fresh insights into the
mechanisms underlying residential carbon emission trends. Such insights are crucial for
enhancing the accuracy of emission predictions and the efficacy of emission reduction
strategies. Moreover, this research is poised to inform policy formulation, providing a
solid foundation for crafting low-carbon development strategies in Kunming and beyond,
thereby underscoring its significance for informed planning and policymaking.

2. Methodology
2.1. Research Framework

To construct an SD model to simulate the residential carbon emissions system in
Kunming, China, this study adhered to the methodology illustrated in Figure 1. Initially, it
delineated the boundaries of the system to match the research scope, pinpointed crucial
factors within the residential carbon emissions framework, and explained the interrelation-
ships among these factors. Subsequently, feedback loops among subsystem variables were
established as the foundation for crafting both the causal loop diagram and the system flow
diagram. To complete the construction of the model, this stage involved creating system
equations using database data and then conducting rigorous testing and calibration. The
next phase entailed devising four experimental scenarios: the baseline, low-carbon scenario
(LCS), medium low-carbon scenario (MLCS), and high low-carbon scenario (HLCS), each
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reflecting the status of Kunming and the long-term strategic vision of the government.
Finally, the study executed these scenarios, analyzed the simulation outcomes, and derived
relevant conclusions.
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2.2. Study Area

Kunming, the capital of southwest China (Figure 2), is experiencing rapid urbanization.
In 2021, its population reached 8,873,500, with an urbanization rate of 79.6%, and this
urban expansion has led to a residential area growth of 105 million square meters [24].
Kunming has a plateau monsoon climate at an elevation of around 2000 m. It experiences
ample sunshine year-round, substantial diurnal temperature variations yet minor seasonal
differences, four distinct seasons without frigid winters or sweltering summers [25], an
annual average temperature of 16.5 ◦C, as well as adequate and suitable sunlight exposure,
which has earned it the nickname “Spring City” [26]. The energy consumption patterns of
the city are heavily influenced by its climate, which is characterized by mild winters and
cool summers. This climate allows for natural ventilation in summer and minimal heating
in winter, with electricity, rather than air conditioning, being the primary energy consumer.
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The geographical location and climatic conditions of Kunming have shaped a dis-
tinctive energy consumption pattern and residential building energy use. As a national
low-carbon pilot city of China, Kunming has made notable early achievements in reducing
carbon emissions and has established ambitious objectives for the future. This achievement
underlines the necessity for well-thought-out strategies for continued carbon reduction
efforts. Moreover, the endeavors in carbon reduction in Kunming offer invaluable insights
for other Chinese cities with analogous climates, such as Guiyang and Zunyi, that are on
a similar low-carbon journey. However, despite the benefits derived from its geographic,
climatic, and policy framework, Kunming faces challenges due to an increasing demand for
energy-intensive home appliances and rapid urbanization, which have escalated domestic
energy usage. This situation highlights the critical need for a detailed investigation into the
urban residential carbon emissions in Kunming. Such an analysis is essential to crafting
effective local low-carbon strategies, aiming to achieve broader zero-carbon targets.

2.3. Carbon Emission Accounting Method

In the building industry of China, the lack of a dedicated carbon emission monitoring
system necessitates the use of various computational techniques for carbon emission es-
timation. Among these, micro-methods, notably the computer simulation technique and
actual measurement technique, are commonly employed. The actual measurement method
is apt for industries with significant emissions and intricate emission characteristics [27],
and computer simulation predominantly focuses on micro-level studies of specific systems
and processes, often struggling with the complexity of macro-level objects [28,29]. There-
fore, life cycle assessment (LCA) methods can be used to provide in-depth analysis at the
individual level and scale up to assess larger systems. However, despite its comprehensive
approach, LCA is constrained by the challenges of data acquisition and workload [30,31].

Alternatively, the IPCC carbon emission factor method is widely embraced in the
construction sector for its simplicity, accessibility of data, and broad applicability [32,33]. It
adeptly addresses both macro- and micro-level analysis requirements. This study adopts
the IPCC method for macro-level carbon emission assessment, utilizing the statistical data
available in the regional yearbooks of Kunming. The IPCC coefficients are calculated using
Equation (1):

C = ∑ Ei × µi (1)

where C denotes total carbon emissions; Ei denotes the consumption of the ith energy
source; and µi denotes the carbon emission factor of the ith energy source.

As shown in Table 1, data from the Kunming Statistical Yearbook [34] and Energy
Statistical Yearbook (2014–2021) [35] form the basis of this study analysis, with conversion
coefficients for various energy sources normalized to standard coal equivalents as per
the 2020 China Energy Statistical Yearbook. The electricity emission factor is sourced
from [36,37], and this study applied an emission factor of 0.5271 kg CO2/kWh for Kunming.

Table 1. Standard coal coefficient of various energy sources (reference value). [34,35].

Energy Source Average Status Heat
Generation

Conversion Factor of
Standard Coal

Raw coal 20,934 kJ/kg (5000 kcal/kg) 0.7143 kgce/kg
Petroleum 38,979 kJ/kg (9310 kcal/kg) 1.3300 kgce/m3

Liquefied petroleum gas 50,242 kJ/kg (12,000 kcal/kg) 1.7143 kgce/kg
Coke oven gas 18,003 kJ/kg (4300 kcal/kg) 0.6143 kgce/m3

Figure 3 illustrates the trend in urban residential carbon emissions in Kunming
from 2014 to 2021, highlighting a continual upward trajectory from 1.839 million tons
to 3.102 million tons. This represents an average annual growth rate of 18.6%. The escala-
tion in emissions is closely linked to the enhancement of living standards and the rapid
pace of urbanization. Notably, a decline in emissions was observed in 2017 and 2018,
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aligning with significant changes in the city’s energy infrastructure. This period marked
the extensive substitution of piped artificial gas with natural gas, signaling a transition
to more environmentally friendly energy sources. Despite the adoption of natural gas, a
cleaner energy alternative, aggregate carbon emissions continued to escalate, driven by
factors such as population growth, heightened living standards, and an increasing demand
for energy services.
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The findings also indicate a shift in the composition of carbon emission sources. Prior
to 2017, gas and electricity constituted about 90% of the total residential carbon emissions
in Kunming. After 2018, the share of natural gas and electricity exceeded 95%, highlighting
a continuous decline in emissions from coal, liquefied petroleum gas (LPG), and gas. This
trend underscores the importance of energy structure in emission reduction strategies,
although the ongoing rise in emissions suggests that improvements in energy structure
alone may not fully offset the environmental impact of other factors driving increased
energy demand.

2.4. Influencing Factors

In this study, the SD model was used to conduct an in-depth analysis of carbon
emissions from residential buildings. Central to this analysis is the identification of key
influencing factors. By sorting and summarizing the literature [8–10], a preliminary set
of influencing factors was determined. Grey correlation analysis [38] is then employed to
further refine and validate these factors. The grey correlation analysis method is mainly
used to judge the degree of correlation through the similarity of the trend of the data
series, identify the advantages and disadvantages of the judged object, and does not reflect
the absolute level [39]. This technique directly calculates using original data without
normalization, thus offering strong reliability [40]. By calculating the grey correlation
coefficients between diverse factors and carbon emissions, the correlation between each pair
can be determined. The results reveal that only residential floor area completed, urban road
area per capita, and annual technology contract transaction amount have low correlations,
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while the grey correlations of other factors exceed 0.7, indicating strong correlations [40,41].
Therefore, this meticulous approach enables the identification of 22 distinct influencing
factors, categorized across four subsystems, which are detailed in Appendix A. Prominent
among these are the energy consumption expenditures of residents, energy prices, and
heating degree days (Figure 4). Each of these factors plays a significant role in impacting
carbon emissions. A significant positive correlation exists between Figure 4a,c, revealing
the energy consumption of residents and heating degree days as key drivers of carbon
emissions. Figure 4b shows energy prices and per capita emissions negatively correlating
short-term; however, long-term trends demonstrate decoupling between the two. This
decoupling suggests energy price reforms alone have limited efficacy to improve efficiency
and mitigate emissions. Therefore, a combination of other regulatory, technical, and
economic policy tools is necessary to effectively achieve the set carbon reduction targets.

2.5. Model Building

Forrester invented SD modeling in 1956, which uses structural function analysis based
on computer simulation technology to address complex dynamic feedback systems [42].
Combining cybernetics, information theory, and system theory, SD modeling is a way
to look at problems in social, economic, ecological, and other complex systems that are
dynamic, nonlinear, and have feedback at more than one level. Recent applications [43–45]
in urban energy consumption and building carbon dioxide emissions have been noted.
Notably, Murray et al. [46] and Liu et al. [47] utilized this methodology for analyzing energy
usage and carbon emissions in Changsha City, underscoring its utility in supporting policy
decision-making by unraveling the complex mechanisms driving building carbon emissions.
Future expansions of this model could encompass a broader range of influencing factors,
improved spatial and temporal resolution, and integration with statistical and econometric
models for enhanced accuracy. However, research on building carbon emissions using this
approach remains relatively limited.
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This research conducts a thorough analysis of the intricate framework underlying resi-
dential carbon emissions through the lens of SD. It aims to unravel the multitude of factors
that drive residential carbon emissions and investigates their interconnections. Identifying
key variables, the study leverages feedback mechanisms inherent in the subsystems to
construct causal loop diagrams and stock flow diagrams. These diagrams elucidate the
mechanisms through which each factor impacts residential carbon emissions.

Regression fitting enabled the calibration of the model parameters, allowing for the
simulation of the urban residential carbon emissions trajectory of Kunming for the years
2022–2030. This simulation process is not static; it involves meticulous adjustments to
the parameters and influencing factors to accurately reflect the evolving trends of carbon
emissions under a variety of potential scenarios. Subsequently, the article provides a
detailed analysis of the most effective mitigation strategies. By changing the parameters and
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contributing factors of the model, the paper puts forward feasible suggestions for reducing
emissions. These recommendations are further substantiated through simulations that
project the trends of household carbon emissions under diverse scenarios. The structural
framework of the SD model in this study is shown in Figure 5, which provides a visual
representation of the model’s complexity and its operational dynamics.
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For this study, the temporal boundary spans from 2014 to 2030. Among them,
2014–2021 is the historical benchmark period of the model. Kunming carried out the
natural gas replacement project from 2014 to 2017, and the energy structure changed, thus
affecting residential carbon emissions. The data in this stage are representative and typical
and can provide a basis for the estimation and calibration of model parameters; 2022–2030 is
the simulation prediction stage. The year 2030 is a key node in the realization of the carbon
peak goal of China, and the selection of this period is helpful to evaluate the low-carbon
transformation process of Kunming’s residential sector and provide decision-making ref-
erence for formulating relevant policies. From 2014 to 2030, the time span is relatively
long, considering the short- and medium-term development trend, which is conducive to a
comprehensive analysis of the dynamic effects of various influencing factors. The model
operates with an annual time step, offering a detailed yet manageable temporal resolution.
Spatially, the model focuses on urban residences within Kunming City, specifically target-
ing the carbon emissions generated during the use phase of these residences. This spatial
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boundary ensures that the model remains focused on urban residential emissions while
capturing the relevant dynamics within the specified geographical context.

The causal loop diagram (Figure 6) is a key component in this study because it
demonstrates how various elements of Kunming’s residential carbon emission system
interact and affect one another. This study has categorized this system into four distinct
subsystems: economic, social, energy, and environmental. Each subsystem encompasses
a set of variables and relationships, which are meticulously analyzed and synthesized to
delineate the causal dynamics of residential carbon emissions.
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In terms of economic subsystems, the study explores how factors like industry in-
vestment and economic growth influence residential carbon emissions, along with the
associated feedback loops. For instance, Figure 6a traces the path from gross domestic
product (GDP) growth to increased social fixed assets and residential investments, leading
to an expansion in the total residential land area and per capita residential area. This
expansion correlates with an increase in per capita residential energy consumption and,
consequently, total residential energy consumption, which in turn impacts carbon emissions
and environmental quality. The feedback loop continues with the costs of carbon reduc-
tion influencing GDP. Similarly, GDP boosts educational investment, enhancing public
education levels and awareness of low-carbon practices, thereby influencing per capita
residential energy consumption and total residential energy consumption, which further
affects carbon emissions and environmental quality. Another critical aspect involves GDP
driving investment in scientific research, leading to an increase in patent applications and
the impact factor of technological progress, which also feeds back into the GDP through its
influence on carbon emissions and environmental quality.

The primary causative relationship observed is that economic growth not only stimu-
lates societal development and the expansion of residential areas, contributing to increased
carbon emissions from residential houses, but also promotes investments in science and
education. These investments, in turn, are instrumental in devising strategies to reduce
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carbon emissions through various avenues, where modifications in any of the variables
can exert a direct influence on others, potentially reducing carbon emissions favorably.
This reasoning is also used in the feedback loops shown in Figure 6b–d, which show the
social, energy, and environmental subsystems, respectively. This shows a complete way to
understand and deal with the changes in Kunming, China, residential carbon emissions.

Creating a stock–flow diagram is an important part of this study because it shows
exactly how the different parts of the system are connected logically and how dynamic
feedback works. This diagrammatic representation is crucial for facilitating a compre-
hensive analysis and enabling an effective simulation of the system’s behavior. In the
context of the SD model in this study, the flows within the system act as catalysts, triggering
changes in the stocks. Figure 7 presents the stock flow diagram specifically for residential
carbon emissions. This diagram was created using the knowledge obtained from the causal
loop diagram presented in Figure 5. It meticulously maps out the flow of variables and
their cumulative impact on the stock of carbon emissions, thereby offering a visual and
analytical tool to understand and predict the patterns and trends of carbon emissions in
residential settings.
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The stock and flow diagram in the SD model serves to depict the interplay and causal
connections among variables within a system. Here, stock variables, such as population
and GDP, are defined by state equations and illustrated as rectangular boxes. Flow pipes,
denoted by arrows or valve symbols, connect flow variables to these stocks, such as
the population growth rate and economic growth rate. Feedback loops, which are in
turn influenced by a variety of external factors, control the size of these flows. This
approach underscores the complex dynamics at play, enabling a deeper understanding of
the system’s behavior.

This research adopts three foundational methodologies to craft the equations that
determine the initial values and variable parameters, forming the crux of the model under
investigation, with comprehensive details provided in Appendix B.

The first method, constant determination, leverages an extensive array of sources,
including existing research, the Kunming City Development Strategy Plan [48], and the
Kunming City Statistical Yearbook [34], among others. This technique anchors the model
in the empirical reality of Kunming, China, ensuring it accurately mirrors the city’s current
development trajectory.

Secondly, the study employs table function entries to systematically gather variable
data over time, introducing a vital temporal element to the analysis. This approach is
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instrumental in capturing the dynamic evolution of variables. During the mathematical
formulation phase, the study judiciously selects the most fitting function type—whether log-
arithmic, exponential, or linear—based on data trends and patterns. This careful selection
is crucial for precisely depicting the interrelationships among variables.

For addressing complex interactions between variables, especially where multiple
independent variables impact a dependent variable amidst a mix of linear and nonlinear
relationships, the study turns to regression analysis. This statistical technique allows
for an in-depth examination of these intricate dynamics. The Statistical Package for the
Social Sciences (SPSS) Statistics 27 software, known for its statistical analysis capabilities,
was utilized for this purpose, providing a reliable tool for dissecting and interpreting the
multifaceted relationships within the model. To ascertain the reliability of the regression
analysis outcomes, a battery of statistical tests was executed using SPSS, with the findings
detailed in Appendix B Table A1. The reliability was first assessed by evaluating the
adjusted R-squared, Durbin–Watson (DW) statistics, and the correlation coefficient between
independent and dependent variables. This assessment confirmed the strong fit and
explanatory power of the regression model, as evidenced by adjusted R-squared values
exceeding 0.8, DW values approximating the optimal 2, and the correlation coefficient close
to 1 [49,50]. Following this, the analysis delved into investigating potential multicollinearity
among the independent variables. The results, indicated by variance inflation factor (VIF)
values below 2, demonstrated the absence of significant multicollinearity [51], thereby
affirming the accuracy of the regression analysis.

2.6. Model Validation

To ensure the validity and reliability of the SD model, this study has implemented a
series of rigorous testing techniques, including boundary testing, structural testing, and
historical testing. These methods are essential for a comprehensive reevaluation and
integration of the boundaries and subsystem feedback loops of the model. They help make
sure that the equations of the model are correct in showing how different variables are
related to each other, that parameter value estimates are based on good evidence, and that
the quantitative framework is consistent.

The functionality and structural feasibility of the model have been further evaluated
using the Vensim 10.1.2 software, a specialized tool for SD modeling [52]. The capability
of this software to operate the model effectively attests to the practicality of the boundary
and structure of the model. A pivotal aspect of the model validation process in research is
historical testing, which involves comparing the simulation results of the model with his-
torical data. The credibility of the model is reinforced when the discrepancy between these
two datasets falls within the acceptable error margin of 15 percent as per SD standards [53].

Table 2 demonstrates this aspect by presenting a comparison of four key variables: total
residential energy consumption, total residential carbon emissions, per capita disposable
income, and energy consumption expenditures. The simulation results for these variables
exhibit errors significantly lower than 15 percent, all falling under the 10 percent threshold,
thus underscoring the accuracy of the model. Consequently, the model not only passes the
historical test but also proves its utility in simulating the regulation of residential carbon
emissions in Kunming under various policy scenarios. To evaluate how variations in pivotal
parameters influence outcomes, sensitivity analysis was employed, with the findings
presented in Appendix B Table A2. The simulation outcomes reveal a low sensitivity to
parameter changes, signifying that the model exhibits robust stability. This characteristic
affirms the model’s reliability for conducting scenario simulations, indicating its capacity
to provide consistent predictions under varying conditions. This stability is crucial for the
model’s application in strategic planning and policy development, allowing for confident
use in exploring potential future scenarios and their implications.
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Table 2. Comparison of historical test values and modeling simulation values.

Year
Total Carbon Emissions (×104 tons)

Total Energy Consumption of Urban Dwellings
(×104 kg of Standard Coal)

Actual Value Analog Value Error (%) Actual Value Analog Value Error (%)

2014 183.90 175.79 −4.41 63,860.22 61,367.40 −3.90
2015 204.53 200.36 −2.04 66,060.51 64,953.10 −1.68
2016 229.72 235.12 2.35 73,715.49 75,579.30 2.53
2017 216.53 228.81 5.67 68,773.18 72,669.80 5.67
2018 193.77 200.75 3.60 59,051.58 61,263.10 3.75
2019 243.11 252.94 4.04 75,167.47 78,455.60 4.37
2020 246.66 263.90 6.99 73,286.46 78,509.00 7.13
2021 310.24 298.87 −3.67 94,492.23 91,599.80 −3.06

Year
Per capita Disposable Income of Urban Residents (CNY) Energy Consumption Expenditure of Urban

Residents (CNY)

Actual Value Analog Value Error (%) Actual Value Analog Value Error (%)

2014 31,295 32,603.8 4.18 625.27 657.28 5.12
2015 33,955 34,176.5 0.65 642.27 646.88 0.72
2016 36,739 36,458.7 −0.76 728.59 705.00 −3.24
2017 39,788 40,350.6 1.41 696.61 737.61 5.89
2018 42,988 42,506.7 −1.12 596.19 585.44 −1.80
2019 46,289 50,356.6 8.79 779.43 764.77 −1.88
2020 48,018 46,268.5 −3.64 551.03 553.71 0.49
2021 52,523 48,916.6 −6.87 763.00 718.87 −5.78

3. Results
3.1. Simulation Results of the CO2 Emission Trend

This study uses a carefully constructed simulation model to predict future patterns
of carbon emissions and emissions intensity in residential areas of Kunming from 2022 to
2030 (Figure 8). The simulation results indicate a sustained increase in household carbon
emissions, mostly due to ongoing urbanization and the improving living standards of its
residents. The simulation predicts a significant surge in the household carbon emissions of
Kunming, projecting an increase to almost 4.108 million tons by 2030. This value is nearly
2.5 times higher than the baseline level observed in 2014.
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Moreover, the model forecasts a substantial decrease in the intensity of carbon emis-
sions from residential sources. It is estimated that by 2025, the emission intensity will reduce
to 0.0319 tons/million CNY, which represents an 18.4% decrease from the 2020 level of
0.0392 tons/million CNY. The anticipated reduction is in line with the goal of an 18% reduc-
tion, demonstrating Kunming’s commitment to putting effective carbon control measures
in place. Nevertheless, it is imperative to recognize the ongoing difficulties in controlling
home carbon emissions, even with the introduction of many low-carbon projects. The
continuous reduction in carbon emission intensity indicates advancement, but it also em-
phasizes the requirement for consistent and intensified endeavors in carbon management.

3.2. Simulation of Single-Factor Carbon Emissions

The optimal path to reduce emissions is determined by simulating the four main
subsystems—economy, society, energy, and environment—using the scenario analysis
method. This analytical approach allows for a detailed examination of how different factors
influence various potential trajectories. The adjustments made in these simulations are
meticulously outlined in Table 3, providing insight into the specific strategies implemented.

Table 3. Scenario modeling program settings.

Programmatic Adjustment Range

Basic program Keeping the system’s factors constant and progressing smoothly at the
pace prior to the x-factor

Option 1 Constant factors in the system, reduce factor x by 1 percentage point
Option 2 Constant factors in the system, increase factor x by 1 percentage point
Option 3 Constant factors in the system, increase factor x by 2 percentage points

Simulations in this study indicate that different factors within these subsystems have
varying impacts on household carbon emissions, as detailed in Appendix C. The main
factors contributing to an increase in carbon emissions include the urbanization rate, the
economic growth rate, the residential investment ratio, and the level of residential energy
consumption. For instance, a 1% increase in each of these factors leads to annual emission
increases of approximately 82,600 tons, 69,800 tons, 3000 tons, and 12,000 tons, respectively,
compared to the base scenario. Conversely, factors such as heightened low-carbon aware-
ness, increased scientific research investment, expanded green spaces, optimized energy
structures, and rising temperatures serve to inhibit the growth of carbon emissions. Com-
pared to the base scenario, annual emissions will decrease by approximately 17,000 tons,
15,000 tons, 4000 tons, 16,700 tons, and 28,500 tons, respectively, for every 1% increase in
these factors.

However, it is imperative to note that examining the contribution of a single factor
in isolation is not sufficient, given the complexity and interactivity of the household
carbon emission system. A comprehensive scenario incorporating various combinations of
factors is required to fully understand and determine the most effective path for reducing
carbon emissions.

Table 4 presents the results of analyzing the increase in carbon emissions under
various scenarios, selecting those scenarios that maximize carbon emission factors in
comparison to the base scenario. The sequence of influences on the increase in residential
emissions is as follows: accelerating economic development, urbanization, residential
energy consumption, and residential investment. Notably, accelerating the GDP by 1%
above the initial growth rate would lead to a rise in household carbon emissions of around
10,000 tons in 2022 and 152,000 tons by 2030. This indicates that there is a positive and
growing correlation between the GDP growth rate and carbon emissions over time. The
annual increase in carbon emissions will amount to 80,000 tons, corresponding to a 1% rise
in the urbanization rate. Conversely, the increase in residential investment has a minimal
impact, resulting in an average annual emission rise of only 0.3 million tons. These findings
indicate that the primary factor driving the increase in carbon emissions from residential
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sources is the significant growth of the economy, which concurrently leads to improved
living standards and higher income for residents. The rapid increase in urbanization leads
to a surge in the need for energy and housing in urban regions, resulting in a corresponding
increase in residential energy usage and carbon emissions [53]. The impact of residential
investment is minimal, primarily due to the shift towards environmentally friendly and
low-carbon residential projects as well as the revitalization of existing neighborhoods in
Kunming, China.

Table 4. Carbon emissions under different emission increase scenarios (10,000 tons).

Year of Modeling Basic
Program

Accelerating the
Urbanization

Process

Accelerating
Economic

Development

Increased
Residential
Investment

Increasing the Level of
Residential Energy

Consumption

2022 303.12 311.00 304.10 303.43 304.30
2023 309.88 317.82 311.97 310.19 311.08
2024 320.42 328.47 323.78 320.74 321.62
2025 319.62 327.49 324.25 319.92 320.82
2026 340.54 348.62 346.71 340.84 341.74
2027 361.06 369.40 369.06 361.36 362.27
2028 374.69 383.17 384.72 374.99 375.91
2029 395.35 404.10 407.78 395.65 396.59
2030 410.82 419.76 426.02 411.12 412.08

Considering the uncontrollable nature of temperature, the four main strategies for
reducing residential carbon emissions are increased research investment, energy consump-
tion structure optimization, raising low-carbon consciousness, and expanding green areas.
Table 5 illustrates the relative influence of various strategies on the reduction of residential
carbon emissions. The strategies are categorized in order of their effectiveness: enhancing
awareness of low-carbon practices, optimizing the energy infrastructure, increasing invest-
ment in scientific research, and fostering the development of green environments. The
three primary scenarios—increasing scientific research investment, improving the energy
structure, and elevating the low-carbon consciousness of residents—demonstrate similar
degrees of impact on reducing carbon emissions. Specifically, these strategies lead to annual
emission reductions of 17,000 tons, 16,700 tons, and 15,000 tons, respectively, illustrating
their substantial potential for diminishing carbon emissions comparably.

Table 5. Carbon emissions under different emission reduction scenarios (10,000 tons).

Year of
Modeling

Basic
Program

Raising Low-Carbon
Awareness

Increased Investment in
Research

Optimizing the
Energy Mix

Expansion of
Green Areas

2022 303.12 302.13 302.20 301.72 302.72
2023 309.88 308.78 308.86 308.45 309.48
2024 320.42 319.18 319.28 318.93 320.01
2025 319.62 318.26 318.39 318.10 319.20
2026 340.54 338.97 339.13 338.90 340.12
2027 361.06 359.24 359.44 359.31 360.64
2028 374.69 372.63 372.87 372.85 374.26
2029 395.35 392.97 393.28 393.41 394.92
2030 410.82 408.10 408.49 408.79 410.38

The analysis indicates that raising public awareness about low-carbon practices plays a
crucial role in influencing both governmental and industrial policies towards energy-saving
and emission-reducing building designs and regulations [54]. Such increased awareness
also encourages residents to adopt more sustainable consumption habits and lifestyles,
which are key to reducing carbon emissions in residential buildings. The optimization of
the energy structure, particularly the shift towards natural gas, emerges as a significant
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factor due to its composition mainly of methane, which boasts a higher hydrocarbon ratio
than coal and results in lower carbon dioxide emissions during combustion. Additionally,
the thermal efficiency of natural gas power generation typically exceeds 60%, contributing
to lower emissions and improved conversion efficiency [55,56]. The bolstering of financial
resources for scientific research promotes the development and application of low-carbon
technologies, which, along with effective management and increased public awareness,
collectively contribute to the mitigation of the rise in residential carbon emissions.

However, the analysis also reveals that expanding green areas in residential spaces
has a relatively minor impact on reducing carbon emissions in comparison to the other
strategies. This limited effect is partly due to the current selection of green species and
their carbon sequestration rate. Therefore, simply increasing the proportion of greening
is insufficient. To maximize the impact on carbon emission reduction, it is imperative to
enhance carbon sequestration efficiency, select tree species with high carbon-sequestering
capabilities, and implement greening measures intensively.

3.3. Simulation of Multi-Factor Carbon Emissions

The residential carbon emission system is characterized by its complexity and dynamic
nature, fluctuating with economic and societal growth. As such, regulating a single factor
becomes increasingly challenging, necessitating a synergistic approach of multiple policies
to support the low-carbon transformation of cities. According to the analysis in Section 3.2
of the study, factors like economic development, urbanization processes, energy consump-
tion levels and structures, low-carbon awareness, and scientific research investments have
a significant impact on changes in household carbon emissions in Kunming. After an
in-depth examination of these critical factors, the study formulates three scenarios, drawing
on references [57–60] to precisely depict the prevailing conditions in Kunming. As shown
in Table 6, these scenarios rigorously simulate the influence of several policy interventions
on the trend of residential carbon emissions in Kunming, with a specific focus on energy
conservation and emission reduction.

Table 6. Multi-factor carbon emission scenario modeling options for Kunming, China.

Norm Base Case Low-Carbon Scenario
(LCS)

Medium Low-Carbon
Scenario (MLCS)

High Low-Carbon
Scenario (HLCS)

GDP growth rate Leave the original data
unchanged

Reduction of 0.5
percent per year 1% reduction per year 2% reduction per year

Urbanization rate Leave the original data
unchanged

Reduction of 0.5
percent per year 1% reduction per year 2% reduction per year

Energy price Leave the original data
unchanged 1% increase per year 2% increase per year 3% increase per year

Energy consumption
structure

Leave the original data
unchanged

1.5% increase for
natural gas, no change
for gas, 1% decrease for
LPG, 0.5% decrease for

electricity

2% increase for natural
gas, no change for gas,
1% decrease for LPG,

1% decrease for
electricity

3% increase for natural
gas, no change for gas,
1% decrease for LPG,

2% decrease for
electricity

Investment in
education

Leave the original data
unchanged 1% increase per year 2% increase per year 3% increase per year

Investment in scientific
research

Leave the original data
unchanged 1% increase per year 2% increase per year 3% increase per year

The LCS involves a moderate reduction in the rate of growth and urbanization while
increasing investment in education and scientific research. The focus is on promoting
the development of low-carbon consciousness and technological progress, implementing
gradual energy pricing modifications to manage residential energy usage, and increasing
the proportion of renewable energy sources. This scenario proposes achieving efficient
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regulation of carbon emissions from residential areas by implementing a well-coordinated
strategy that includes policies, technological advancements, and structural modifications.

The MLCS is an extension of the LCS that implements more rigorous methods to
reduce emissions. Additionally, it further slows down urbanization and prioritizes the
equitable progress of both economic expansion and carbon emission reduction. This
scenario entails increased investment in education and scientific research, modifications to
energy prices, and further optimization of the energy consumption structure.

The HLCS is characterized by a modest development rate for Kunming’s economy
and urbanization. This entails maintaining lower values for the GDP growth rate and
urbanization rate. Building upon the MLCS, the government will enhance funding in
the fields of education and scientific innovation, implement higher energy tariffs, and
streamline the energy infrastructure. The HLCS embodies a bold strategy for achieving
low-carbon development, with a focus on substantial changes in economic and urban
growth patterns.

Every scenario is specifically created to examine a plan that combines economic growth
with the reduction of residential carbon emissions in a sustainable manner. This provides
valuable information on feasible approaches for achieving low-carbon development in
Kunming, China.

Figure 9 presents the outcomes of a systematic simulation of various scenarios, pro-
jecting residential carbon emissions and carbon emission intensity in Kunming from 2022
to 2030. The base scenario, assuming the continuation of current policies and development
trends, forecasts an average annual growth rate of 3.9% in the total residential carbon
emissions of Kunming. This translates to an increase of 35.53% from 3,031,200 tons in
2022 to 4,108,200 tons by 2030. In contrast, under the LCS, emissions are projected to
be controlled at 3.8951 million tons in 2030, marking a 32.34% increase over 2022 with
an average annual growth rate of 3.6%. The LCS also anticipates a cumulative emission
reduction of 1.2888 million tons compared to the base scenario.

Buildings 2024, 14, x FOR PEER REVIEW 17 of 27 
 

shows a more pronounced effect on reducing carbon emissions, with emission reductions 
ranging from 307,000 tons in 2022 to 659,000 tons by 2030 compared to the base scenario. 

The analysis indicates that all scenarios demonstrate a growth in residential carbon 
emissions, albeit at varying rates. The low-carbon scenarios, particularly the MLCS and 
HLCS, offer more significant emission reductions compared to the LCS, suggesting the 
effectiveness of these strategies in curbing the rise of residential carbon emissions in Kun-
ming. The LCS reduces emissions by 143,200 tons annually, while the MLCS and HLCS 
reduce emissions by 267,900 and 307,000 tons annually, respectively. 

  
(a) (b) 

Figure 9. Trend chart of (a) carbon emission and (b) carbon emission intensity changes in different 
scenarios for Kunming, China. 

4. Discussion 
The comprehensive energy conservation and emission reduction program outlined 

in the Kunming City Plan aims to achieve a GDP exceeding CNY 1 trillion by 2025. Con-
currently, it targets a reduction in carbon dioxide emissions and energy consumption per 
unit of GDP of 18% and 14%, respectively, from the 2020 levels [48]. The simulation results 
of the three low-carbon development scenarios formulated in this study indicate that each 
scenario will lead to a decrease in carbon emissions and energy demand, aligning effec-
tively with these planning objectives. Among the scenarios, the MLCS and HLCS exhibit 
the most substantial impact on emissions reduction. However, the HLCS falls short of 
meeting the GDP target due to its lower rate of economic growth. Consequently, the 
MLCS emerges as the most viable option for achieving the dual objectives of the city plan 
of Kunming—enhancing energy efficiency and reducing carbon emissions while sustain-
ing GDP growth. 

The approach to low-carbon urban economic development in China prioritizes main-
taining its current level of economic growth and urbanization, which are fundamental and 
cannot be compromised for carbon emission reduction [61,62]. This necessitates a balance 
between economic development and environmental conservation, requiring multifaceted 
strategies, including institutional innovation, technological advancement, and industrial 
restructuring. A long-term strategy integrating environmental preservation with eco-
nomic growth is essential. This involves setting phased emission reduction targets across 
various time frames, creating a systematic roadmap for residential low-carbon develop-
ment, and implementing these plans at different administrative levels. 

Moreover, urbanization should be viewed as an opportunity for transitioning to a 
low-carbon economy. Balancing urbanization rates with carbon emission increases is cru-
cial. Aggressive energy and environmental policies should be adopted to enhance energy 
efficiency and structural optimization. Additionally, government incentives such as finan-
cial subsidies or tax breaks can motivate businesses to invest in low-carbon technology 

Figure 9. Trend chart of (a) carbon emission and (b) carbon emission intensity changes in different
scenarios for Kunming, China.

Similarly, the MLCS is expected to limit emissions to 3.7153 million tons in 2030, a
26.6% increase from 2022, with a modest average annual growth rate of 2.9%. The HLCS
shows a more pronounced effect on reducing carbon emissions, with emission reductions
ranging from 307,000 tons in 2022 to 659,000 tons by 2030 compared to the base scenario.

The analysis indicates that all scenarios demonstrate a growth in residential carbon
emissions, albeit at varying rates. The low-carbon scenarios, particularly the MLCS and
HLCS, offer more significant emission reductions compared to the LCS, suggesting the
effectiveness of these strategies in curbing the rise of residential carbon emissions in
Kunming. The LCS reduces emissions by 143,200 tons annually, while the MLCS and HLCS
reduce emissions by 267,900 and 307,000 tons annually, respectively.
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4. Discussion

The comprehensive energy conservation and emission reduction program outlined
in the Kunming City Plan aims to achieve a GDP exceeding CNY 1 trillion by 2025. Con-
currently, it targets a reduction in carbon dioxide emissions and energy consumption per
unit of GDP of 18% and 14%, respectively, from the 2020 levels [48]. The simulation re-
sults of the three low-carbon development scenarios formulated in this study indicate that
each scenario will lead to a decrease in carbon emissions and energy demand, aligning
effectively with these planning objectives. Among the scenarios, the MLCS and HLCS
exhibit the most substantial impact on emissions reduction. However, the HLCS falls short
of meeting the GDP target due to its lower rate of economic growth. Consequently, the
MLCS emerges as the most viable option for achieving the dual objectives of the city plan
of Kunming—enhancing energy efficiency and reducing carbon emissions while sustaining
GDP growth.

The approach to low-carbon urban economic development in China prioritizes main-
taining its current level of economic growth and urbanization, which are fundamental and
cannot be compromised for carbon emission reduction [61,62]. This necessitates a balance
between economic development and environmental conservation, requiring multifaceted
strategies, including institutional innovation, technological advancement, and industrial
restructuring. A long-term strategy integrating environmental preservation with economic
growth is essential. This involves setting phased emission reduction targets across various
time frames, creating a systematic roadmap for residential low-carbon development, and
implementing these plans at different administrative levels.

Moreover, urbanization should be viewed as an opportunity for transitioning to a low-
carbon economy. Balancing urbanization rates with carbon emission increases is crucial.
Aggressive energy and environmental policies should be adopted to enhance energy effi-
ciency and structural optimization. Additionally, government incentives such as financial
subsidies or tax breaks can motivate businesses to invest in low-carbon technology research
and development [63]. This will not only improve the energy efficiency of household appli-
ances but also accelerate the low-carbon development of residential buildings throughout
their lifecycle. The government should also lead in enhancing incentive and constraint
mechanisms, fostering collaboration among businesses, the public, and other societal actors
to promote energy conservation and emission reduction in the residential sector.

Overall, this research offers a valuable exploration of the SD approach for simulating
household carbon emissions, considering the geographical characteristics of Kunming.
The modeling framework and findings provide a foundational basis for further studies
and can be adapted to other cities with similar highland climates, serving as an important
reference for policy development and research expansion. However, the models in this
study are based on methodological assumptions made to simplify the dynamic complexity
associated with characterizing real-world building stocks and energy performance. These
assumptions inherently limit the model, warranting caution in its application. Future work
could focus on model expansion and refinement to enhance its flexibility and applicability.
This might include a thorough evaluation of the effects of potential socio-economic factors
on carbon emissions, such as the impact of household income levels on energy usage
and transportation choices, the lifestyle and consumption patterns differences between
urban and rural dwellers, the level of public awareness and acceptance of environmental
conservation and low-carbon lifestyles, as well as the influence of regional industrial
structures and energy supply configurations on macroeconomic scales. By quantifying
these key factors’ modes of action, a more precise evaluation of the economic and social
viability of various emission reduction strategies can be achieved.

5. Conclusions

This study utilized an SD model to simulate urban residential carbon emissions in
Kunming, China, for the period 2022–2030 under various scenarios. The key findings from
the simulations are summarized as follows:
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Growth in Urban Residential Carbon Emissions: The urban residential carbon emis-
sions of Kunming have exhibited a significant increase, with an average annual growth rate
of nearly 10% between 2014 and 2021, culminating in an overall rise of 68.7%. This trend is
predominantly attributed to the expansion of residential areas and energy consumption
driven by urbanization. Despite a temporary decrease in emissions during 2017 and 2018
due to changes in energy use structure, the overall pattern of growth remains consistent.

Projected Increase in Carbon Emissions: Predictions in the study indicate a steep rise
in carbon emissions from 2022 to 2030, with an expected peak of 4.108 million tons—almost
2.5 times the 2014 baseline. This underscores the ongoing and future increase in domestic
energy consumption and associated carbon emissions.

Influencing Factors and Emission Reduction Strategies: The most significant factors
influencing urban residential carbon emissions include economic growth, urbanization,
residential energy consumption, and residential investment. Conversely, the key drivers for
emission reduction are, in order of effectiveness: enhancing low-carbon awareness, modify-
ing the energy structure, increasing investment in scientific and technological research and
development, and expanding green space areas.

Efficacy of Comprehensive vs. Single-Factor Regulation: The study reveals that
comprehensive regulation strategies are more effective in reducing emissions compared
to single-factor approaches. The MLCS and HLCS demonstrate a higher potential for
emission reduction than the standard LCS, particularly the HLCS, which can potentially
reduce emissions by up to 20%. However, the HLCS does not align with the 2025 GDP
target of CNY 1 trillion. Therefore, it is recommended that, in the short term, the MLCS
scenario be targeted to achieve a reduction of about 10% by 2030, balancing economic
and environmental pressures. In the medium and long term, investment in science and
technology should increase, energy use structure should be optimized, the low-carbon
concept of the public should be cultivated, and there should be preparation for achieving a
higher level of emission reduction.

This study introduces a pioneering approach to scrutinizing the residential carbon
emissions in Kunming, China, a topic that has been relatively underexplored, particularly
due to the city’s distinctive highland geography and climate. Through the development of
an SD model, this study illuminates the intricate interactions within the complex system of
residential carbon emissions in Kunming, thereby offering a more nuanced and accurate
depiction of their formation process. To find the best way to reduce emissions while
still promoting economic growth and meeting emission reduction goals, the study also
started to construct different scenarios that showed how residential carbon emissions might
change in the future. These scenarios were used to compare the effects of different emission
reduction strategies using numbers. This aids not only in crafting long-term visions
but also in devising phased action plans. The methodology and model presented here
hold the potential for adaptation across other cities, enabling the development of tailored
emission reduction strategies that resonate with local specificities. Moving forward, there
is potential to broaden the model to include more emissions sectors, such as industry and
transportation, and allow for a comprehensive evaluation of emission reduction initiatives
across the entire city.
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Appendix A. Grey Relational Degree Analysis of Influencing Factors

Subsystem Influencing Factor Grey Correlation Degree (γn)

Economic subsystem

GDP 0.761
Investment in fixed assets 0.830

Per capita GDP 0.819
Public budget expenditure 0.844

Education expenditure 0.821
Expenditure on science and

technology
0.824

Energy price 0.722
Residential investment 0.756

Social subsystem

Urbanization rate 0.799
Urban population 0.881

Per capita disposable income of
urban residents

0.861

Per capita living area of urban
residents

0.752

Per capita consumption
expenditure of urban residents

0.736

Residential energy consumption
expenditure of urban residents

0.815

Residential consumption
expenditure of urban residents

0.868

Energy subsystem

Energy structure 0.799
Carbon emission intensity 0.730

Per capita residential energy
consumption

0.730

Public education level (per
100,000 people enrolled in

institutions of higher learning)
0.843

Applied technology scientific and
technological achievements

0.767

Environmental subsystem Heating degree day 0.741
Residential green space 0.886

Appendix B. The Main Equations of the SD Systems

(1) Population growth rate = WITH LOOKUP (Time, ([(2014, 0)-(2030, 0.3)], (2014,
0.018515), (2015, 0.00830099), (2016, 0.00649399), (2017, 0.0113687), (2018, 0.01823), (2019,
0.1862), (2020, 0.003592), (2021, 0.0055), (2022, 0.0065), (2023, 0.0075), (2024, 0.0085), (2025,
0.0095), (2026, 0.0105), (2027, 0.0115), (2028, 0.0125), (2029, 0.0135), (2030, 0.012))), Units: %

(2) GDP growth rate = WITH LOOKUP (Time, ([(2014, 0)-(2030, 0.3)], (2014, 0.0692191),
(2015, 0.0832317), (2016, 0.129571), (2017, 0.0718991), (2018, 0.243711), (2019, 0.0398262),
(2020, 0.0725758), (2021, 0.0795), (2022, 0.0819), (2023, 0.0878), (2024, 0.0899), (2025, 0.088),
(2026, 0.0911), (2027, 0.0915), (2028, 0.0934), (2029, 0.0953), (2030, 0.0945))), Units: %

(3) Urbanization rate = WITH LOOKUP (Time, ([(2014, 0.6)-(2030, 1)], (2014, 0.698198),
(2015, 0.714703), (2016, 0.731405), (2017, 0.748306), (2018, 0.763604), (2019, 0.78), (2020,
0.7967), (2021, 0.805), (2022, 0.8133), (2023, 0.8216), (2024, 0.8299), (2025, 0.8382), (2026,
0.8465), (2027, 0.8548), (2028, 0.8631), (2029, 0.8714), (2030, 0.8797))), Units: %

(4) Proportion of natural gas consumption = WITH LOOKUP (Time, ([(2014, 0)-(2030,
0.5)], (2014, 0.1077), (2015, 0.1335), (2016, 0.1526), (2017, 0.2376), (2018, 0.2429), (2019, 0.2912),
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(2020, 0.204), (2021, 0.2937), (2022, 0.2889), (2023, 0.292), (2024, 0.31), (2025, 0.33), (2026,
0.356), (2027, 0.369), (2028, 0.382), (2029, 0.386), (2030, 0.395))), Units: %

(5) Proportion of electricity consumption = WITH LOOKUP (Time, ([(2014, 0)-(2030,
1)], (2014, 0.540148), (2015, 0.606754), (2016, 0.617335), (2017, 0.62122), (2018, 0.686736),
(2019, 0.657694), (2020, 0.710263), (2021, 0.670625), (2022, 0.678), (2023, 0.67715), (2024,
0.66159), (2025, 0.64584), (2026, 0.62217), (2027, 0.61234), (2028, 0.60076), (2029, 0.59599),
(2030, 0.59142))), Units: %

(6) Proportion of liquefied petroleum gas consumption = WITH LOOKUP (Time,
([(2014, 0)-(2030, 0.2)], (2014, 0.0962861), (2015, 0.0854082), (2016, 0.0857058), (2017, 0.0702644),
(2018, 0.0372152), (2019, 0.0309252), (2020, 0.080279), (2021, 0.0311655), (2022, 0.029), (2023,
0.027), (2024, 0.025), (2025, 0.021), (2026, 0.019), (2027, 0.016), (2028, 0.015), (2029, 0.016),
(2030, 0.012))), Units: %

(7) The proportion of coal consumption = WITH LOOKUP (Time, ([(2014, 0)-(2030,
0.04)], (2014, 0.00997455), (2015, 0.0243855), (2016, 0.00541693), (2017, 0.0211978), (2018,
0.00927345), (2019, 0.00838114), (2020, 0.000788273), (2021, 0.00129286), (2022, 0.001), (2023,
0.00095), (2024, 0.00091), (2025, 0.00086), (2026, 0.00083), (2027, 0.00076), (2028, 0.00074),
(2029, 0.00071), (2030, 0.00068))), Units: %

(8) Proportion of gas consumption = WITH LOOKUP (Time, ([(2014, 0)-(2030, 0.3)],
(2014, 0.245922), (2015, 0.149968), (2016, 0.138979), (2017, 0.0497589), (2018, 0.023837), (2019,
0.0118216), (2020, 0.0046909), (2021, 0.00320352), (2022, 0.0031), (2023, 0.0029), (2024, 0.0025),
(2025, 0.0023), (2026, 0.002), (2027, 0.0019), (2028, 0.0015), (2029, 0.0013), (2030, 0.0009))),
Units: %

(9) Residential consumer price index = WITH LOOKUP (Time, ([(2014, 0)-(2030, 110)],
(2014, 104.6), (2015, 100.3), (2016, 102.9), (2017, 99.2), (2018, 99.8), (2019, 99.8), (2020, 99.3),
(2021, 99.6), (2022, 99.5), (2023, 99.1), (2024, 98.6), (2025, 98.1), (2026, 98.3), (2027, 98.6), (2028,
98.2), (2029, 98.3), (2030, 98.4))), Units: %

(10) Temperature = WITH LOOKUP (Time, ([(2014, 9)-(2030, 20)], (2014, 10.6167), (2015,
10.4167), (2016, 9.56667), (2017, 11), (2018, 11.5), (2019, 10.8667), (2020, 10.8833), (2021, 10.9),
(2022, 10.9), (2023, 11.1), (2024, 11.3), (2025, 11.4), (2026, 11.1), (2027, 11), (2028, 11.1), (2029,
11.1), (2030, 11.3))), Units: ◦C

(11) Residential investment ratio = WITH LOOKUP (Time, ([(2014, 0.2)-(2030, 0.5)],
(2014, 0.266056), (2015, 0.2504), (2016, 0.237705), (2017, 0.251047), (2018, 0.26082), (2019,
0.327293), (2020, 0.333349), (2021, 0.338772), (2022, 0.3339), (2023, 0.3406), (2024, 0.3472),
(2025, 0.3536), (2026, 0.3596), (2027, 0.3652), (2028, 0.3707), (2029, 0.3757), (2030, 0.3806))),
Units: %

(12) Proportion of educational expenditure = WITH LOOKUP (Time, ([(2014, 0)-
(2030, 1)], (2014, 0.0232728), (2015, 0.0233531), (2016, 0.0253728), (2017, 0.0243264), (2018,
0.0249763), (2019, 0.0209537), (2020, 0.0212946), (2021, 0.0200042), (2022, 0.0215), (2023,
0.0225), (2024, 0.0235), (2025, 0.0245), (2026, 0.0255), (2027, 0.0265), (2028, 0.0275), (2029,
0.0285), (2030, 0.0295))), Units: %

(13) Intensity of scientific research funding = WITH LOOKUP (Time, ([(2014, 0)-
(2030, 0.2)], (2014, 0.0154377), (2015, 0.0185718), (2016, 0.0191562), (2017, 0.0188281), (2018,
0.0188097), (2019, 0.0173027), (2020, 0.0179483), (2021, 0.01875), (2022, 0.0205), (2023, 0.0226),
(2024, 0.0243), (2025, 0.0255), (2026, 0.0276), (2027, 0.0296), (2028, 0.031), (2029, 0.0328), (2030,
0.0339))), Units: %

(14) GDP = INTEG (GDP growth, 3712.99), Units: one hundred million CNY
(15) Total population = INTEG (population increase, 655.258), Units: 10,000 people
(16) GDP growth = GDP × GDP growth rate, Units: 100 million CNY/year
(17) Population growth = Population growth rate × Total population, Units: 10,000 peo-

ple/year
(18) Per capita GDP = GDP × 10,000/total population, Units: CNY
(19) Residential investment = Social fixed asset investment × residential investment

ratio, Units: 100 million CNY
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(20) Research fund input = GDP × Research fund input intensity, Units: 100 million
CNY

(21) Education input = GDP × Proportion of education expenditure input, Units:
100 million CNY

(22) Public budget expenditure = 492.307 × ln (GDP) − 3458, Units: 100 million CNY
(23) Social fixed asset investment = 2202.73 × LN (GDP) − 14,668.9, Units: one

hundred million CNY
(24) Consumption Expenditure per Urban Resident = 0.228 × GDP per capita + 117,664

× Share of Urban Population − 76,233, Units: CNY
(25) Residential Energy Consumption = Residential Consumption Expenditure ×

Energy Consumption Ratio, Units: CNY
(26) Number of patent applications = 311.768 × Investment in research funds – 11,215.2,

Units: pieces
(27) Public education level = 0.004 × Education input + 0.282, Units: Dmnl
(28) Urban disposable income = 0.384 × GDP per capita + 106.265 × Social Security

and Employment Expenditures + 3665.93, Units: CNY
(29) Electricity Consumption = (Total Energy Consumption of Urban Residence ×

Percentage of Electricity Consumption)/0.123, Units: 104 KWh
(30) Natural Gas Consumption = (Total Energy Consumption of Urban Residence ×

Percentage of Natural Gas Consumption)/1.33, Units: 104 m3

(31) LPG consumption = (Total energy consumption of urban housing × Proportion of
LPG consumption)/1.714, Units: Ten thousand kilograms

(32) Carbon sink = Green area of residential area × Net carbon sequestration × 0.001,
Units: 104 tons

(33) Total energy consumption of urban dwellings = 0.981 × Residential domestic
energy use + 28.98 × Heating days − 18,064, Units: 104 kg of standard coal

(34) Residential consumption expenditure = (0.147 × Consumption expenditure per
capita of urban residents + 492.114 × Living space per capita − 19,410.2) × Consumer price
index of residential category/100, Units: CNY

(35) Technological Progress Impact Factor = 1 − Number of Patent Applications/Total
Population/104, Units: Dmnl

(36) Low Carbon Awareness = 1 − Number of Patent Applications/Total Popula-
tion/104, Units: Dmnl

(37) Carbon emissions from energy generation = (Natural gas consumption × Natural
gas carbon emission factor + Liquefied petroleum gas consumption × Liquefied petroleum
gas carbon emission factor + Coal consumption × Coal carbon emission factor + Electricity
consumption × Electricity carbon emission factor + Coal gas consumption × Coal gas
carbon emission factor) × Technological Progress Impact Factor × 0.001, Units: 104 tons

(38) Urban Residential Carbon Emissions = Carbon Emissions from Energy Generation
− Carbon Sinks, Units: 104 tons

(39) Carbon Emission Intensity = Urban Residential Carbon Emissions/GDP, Units:
tons/104 CNY.

(40) Residential energy consumption per capita = (0.129 × Residential energy con-
sumption + 0.122 × Heating days − 0.513 × (Energy prices−100) − 29.694) × Low-carbon
awareness, Units: kg standard coal.

(41) Social security and employment expenditure = 0.14 × Public budget expenditure
− 14.727, Units: 100 million CNY

(42) Residential land area = 2.657 × Residential investment + 14,977.395, Units:
10 thousand square meters

(43) Per capita living area = 0.154 × (residential area/urban population) + 0.370 ×
per capita disposable income of urban residents × 0.0001 + 36.629, Units: Square meters
per person
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(44) Residential consumption expenditure of urban residents = (0.147 × per capita
consumption expenditure of urban residents + 492.114 × per capita living area − 19,410.154)
× Residential Consumer Price Index/100, Units: CNY

Table A1. Equation test data of the SD model.

Equation The Adjusted
R-Squared DW Correlation

Coefficient VIF

Social fixed-asset
investment 0.821

Public budget expenditure 0.925
Social security and

employment expenditure 0.915 2.401 0.963 1

Number of patent
applications 0.967 1.432 0.986 1

Public education level 0.869 2.249 0.942 1
Residential land area 0.921 1.609 0.966 1.377
Per capita living area 0.912 1.22 0.961 1.377

Consumption Expenditure
per urban resident 0.966 1.1 0.861 1.487

Residential consumption
expenditure of urban

residents
0.915 2.223 0.966 1.137

Residential energy
consumption per capita 0.818 1.313 0.844 1.084

Technological Progress
Impact Factor 0.899 2.1 0.977 1

Table A2. Sensitivity test results of the SD model (%).

Variable Increase (10%) Decrease (−10%)

Urbanization rate 2.5 2.5
Population growth rate 5 0.16

Energy prices 3.8 3.8
Proportion of scientific research

expenditure 2.8 2.8

Proportion of educational expenditure 3 3
Greening area ratio 1.3 1.3

Residential investment ratio 1.1 1.1
GDP growth rate 3.3 2.4

Heating days 8.3 8.3
Natural gas consumption 8.55 8.55

Liquefied petroleum gas consumption 1.8 1.8
Coal consumption 0.9 0.9

Electricity consumption 2.26 2.26
Gas consumption 0.44 0.44
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Appendix C. Impacts of Different Factors on Carbon Emissions

Table A3. The impact of urbanization rate on carbon emissions.

Urbanization Rate Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 295.35 311.00 319.00
2023 309.88 302.05 317.82 325.87
2024 320.42 312.49 328.47 336.62
2025 319.62 311.86 327.49 335.46
2026 340.54 332.57 348.62 356.81
2027 361.06 352.84 369.40 377.84
2028 374.69 366.32 383.17 391.76
2029 395.35 387.72 404.10 412.95
2030 410.82 401.99 419.76 428.80

Table A4. The impact of education input on carbon emissions.

Education Input Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 304.12 302.13 301.13
2023 309.88 310.98 308.78 307.67
2024 320.42 321.67 319.18 317.94
2025 319.62 320.98 318.26 316.91
2026 340.54 342.12 338.97 337.40
2027 361.06 362.88 359.24 357.43
2028 374.69 376.76 372.63 370.56
2029 395.35 397.74 392.97 390.58
2030 410.82 413.54 408.10 405.38

Table A5. The impact of energy prices on carbon emissions.

Energy Prices Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 304.30 301.94 300.76
2023 309.88 311.08 308.69 307.49
2024 320.42 321.62 319.22 318.02
2025 319.62 320.82 318.42 317.21
2026 340.54 341.74 339.34 338.14
2027 361.06 362.27 359.85 358.64
2028 374.69 375.91 373.47 372.25
2029 395.35 396.59 394.12 392.88
2030 410.82 412.08 409.56 408.31

Table A6. The impact of GDP growth rate on carbon emissions.

GDP Growth Rate Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 302.14 304.10 305.08
2023 309.88 307.80 311.97 314.08
2024 320.42 317.11 323.78 327.20
2025 319.62 315.10 324.25 328.99
2026 340.54 334.57 346.71 353.07
2027 361.06 353.38 369.06 377.38
2028 374.69 365.14 384.72 395.23
2029 395.35 383.60 407.78 420.92
2030 410.82 396.56 426.02 442.20
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Table A7. The impact of residential investment ratio on carbon emissions.

Residential Investment Ratio Carbon Emission (×104 t CO2)

Year Basic
program Option 1 Option 2 Option 3

2022 303.12 302.81 303.43 303.75
2023 309.88 309.57 310.19 310.51
2024 320.42 320.11 320.74 321.05
2025 319.62 319.32 319.92 320.22
2026 340.54 340.25 340.84 341.14
2027 361.06 360.76 361.36 361.66
2028 374.69 374.40 374.99 375.29
2029 395.35 395.06 395.65 395.95
2030 410.82 410.52 411.12 411.43

Table A8. The impact of energy structures on carbon emissions.

Energy Structures Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 301.72 300.50 298.05
2023 309.88 308.45 307.20 304.69
2024 320.42 318.93 317.61 314.99
2025 319.62 318.10 316.78 314.12
2026 340.54 338.90 337.46 334.57
2027 361.06 359.31 357.77 354.69
2028 374.69 372.85 371.24 368.01
2029 395.35 393.41 391.70 388.28
2030 410.82 408.79 407.01 403.45

Table A9. The impact of scientific research input on carbon emissions.

Scientific Research Input Carbon Emission (×104 t CO2)

Year Basic
program Option 1 Option 2 Option 3

2022 303.12 304.05 302.20 301.27
2023 309.88 310.90 308.86 307.84
2024 320.42 321.56 319.28 318.14
2025 319.62 320.85 318.39 317.16
2026 340.54 341.96 339.13 337.71
2027 361.06 362.69 359.44 357.82
2028 374.69 376.51 372.87 371.06
2029 395.35 397.43 393.28 391.20
2030 410.82 413.15 408.49 406.15

Table A10. The impact of heating days on carbon emissions.

Heating Days Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 305.90 300.34 297.57
2023 309.88 312.70 307.07 304.25
2024 320.42 323.25 317.60 314.52
2025 319.62 322.45 316.79 313.69
2026 340.54 343.37 337.72 334.89
2027 361.06 363.91 358.21 355.36
2028 374.69 377.57 371.82 368.94
2029 395.35 398.27 392.44 389.52
2030 410.82 413.78 407.86 404.63
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Table A11. The impact of greening area ratio on carbon emissions.

Greening Area Ratio Carbon Emission (×104 t CO2)

Year Basic program Option 1 Option 2 Option 3
2022 303.12 303.52 302.72 302.32
2023 309.88 310.29 309.48 309.07
2024 320.42 320.83 320.01 319.60
2025 319.62 320.04 319.20 318.79
2026 340.54 340.97 340.12 339.70
2027 361.06 361.49 360.64 360.21
2028 374.69 375.13 374.26 373.83
2029 395.35 395.79 394.92 394.48
2030 410.82 411.27 410.38 409.93
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