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Abstract: During the construction of underground engineering, the prediction of groundwater dis-
tribution and rock body permeability is essential for evaluating the safety of the project and guiding 
subsequent design and construction. This article proposes an objective function that solves an un-
derdetermined inverse analysis problem based on the least-squares theory and regularization 
method and uses geostatistics theory and the variogram function to describe the spatial character-
istics of the actual engineering system. It also establishes an optimization model of the analysis stra-
tum seepage field and puts forward the method of using on-site test observation data to solve the 
stratum penetration coefficient. Relying on the foundation pit project of the Lingshanwei Station of 
Qingdao Metro, the on-site pumping and packer permeability test was conducted for different strata 
venues in the foundation pit, and the on-site water-head observation value was obtained. Physical 
detection of the influence area of foundation pit excavation confirms the correctness of the model 
from the region and verifies the accuracy of the model on the value through the on-site pumping 
test. Results show that the accuracy of the use of this objective function to solve the underdetermined 
inverse problem is above 85%, which proves the effectiveness of the method. The stratigraphic geo-
logical information obtained by the inverse analysis model provides an important basis for engi-
neering design and security construction. 

Keywords: regularization method; variogram function; underdetermined inverse problem; seepage 
field; numerical simulation 
 

1. Introduction 
In the process of underground engineering construction, it is very important to de-

termine the permeability of rock and soil mass and the distribution of groundwater [1,2]. 
In the early stage of project construction, it is often necessary to carry out numerous geo-
logical investigations on the rock and soil mass in the project construction area. Drilling 
tests are a common survey method for engineering geology and hydrogeological data. By 
arranging drilling at the project site and conducting on-site water pressure or pumping 
tests, the permeability coefficient of the stratum near the drilling can be calculated. How-
ever, geological conditions, testing construction, testing equipment, the environment, and 
other factors can all affect the test. It is difficult to obtain comprehensive hydrogeological 
information only through limited drilling data, and the obtained observation data usually 
have some errors. Therefore, this paper uses the on-site drilling test data to solve the per-
meability coefficient by establishing the solution model of the inverse problem. 

In terms of the inverse analysis of seepage fields, Li [3] carried out an inverse analysis 
of the permeability coefficient of a tailings dam based on actual engineering geology and 
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hydrogeological drilling data but only established a finite element model for the inversion 
analysis of the permeability coefficient based on actual drilling data without studying in-
version theory. Zhang [4] used Midas GTS NX 2018 software to calculate the permeability 
coefficient based on on-site pumping test data but did not consider conducting back anal-
ysis on the formation seepage field. P. K. Kitanidis [5] proposed an implementation 
method for free matrices using the Gauss–Newton method of Jacobian matrices, which 
improves the scalability of geological statistical inversion problems. However, only theo-
retical analysis was conducted on the inversion problem, and no research was conducted 
on the practical engineering application. A. Bárdossy [6] proposed a new Gaussian and 
non-Gaussian inversion method for groundwater flow. Yang [7] used Modflow-2005 nu-
merical simulation software to carry out inverse analysis on pumping test data. P. K. 
Kitanidis [8,9] proposed the quasi-linear theory of geostatistical solutions for inverse prob-
lems, extending the geostatistical method to a method for solving inverse problems in-
volving spatial distribution parameters and process equations. Zhang [10] studied the in-
fluence of temperature data on the characterization of reservoir permeability by calculat-
ing the joint inversion of flow and temperature observations. Capriotti [11] used fluid flow 
in porous media and combined it with delayed gravity response to invert permeability 
distribution. Guan [12] studied the permeability of seismic logging in fluid-saturated po-
rous formations through inversion. The load and strain rate-related characteristics of rocks 
and cemented soils are of great significance for determining their engineering properties. 
Maqsood [13] conducted unconfined monotonic tests at different strain rates to study the 
effects of creep and cyclic loading on the mechanical properties of boundary geotechnical 
materials (i.e., Gypsum Mixed Sand (GMS)) produced in the laboratory. Ojala [14] studied 
the effect of loading rate on the permeability of porous sandstone by conducting triaxial 
compression tests at different strain rates and temperatures. It was found that the evolu-
tion of permeability depends on the applied loading rate, and the decrease in initial per-
meability increases with the decrease in loading rate. This means that large initial com-
paction can be achieved under low strain rate testing. Savvides A. A. [15,16] used Monte 
Carlo simulation methods to test and evaluate the critical state-line inclination angle of 
soil and the permeability of the continuum and obtained that the failure load and dis-
placement of nonlinear behavior soil follow a Gaussian normal distribution. Matthies H 
G [17] studied the main sources of uncertainty involved in structural and solid analysis 
and proposed methods for handling them, using stochastic modeling to solve mathemat-
ical model problems. Sett K [18] proposed an evolutionary solution for the probability 
density function (PDF) of the elastic–plastic, stress–strain relationship in a material model 
with parameter uncertainty. Li [19] established a spatially variable undrained shear-
strength model using non-stationary random fields and studied the effect of spatial un-
drained shear strength on the performance of strip foundations. Deidda [20] studied a 
regularization algorithm for inverting nonlinear mathematical models in applied geo-
physics. Lee [21] used a global optimization algorithm to solve the problem of the optimal 
solution of nonlinear functions. Wang [22] built a full-range weighting method for the 
hydrogeological parameter inversion of a multi-observation logging pumping test and re-
alized the optimization solution of objective function based on a hybrid particle swarm 
optimization algorithm. R. L. Cooley [23,24] proposed two types of prior information: 
prior information with known reliability (i.e., bias and random error structures) and prior 
information composed of the best available estimate of unknown reliability, and studied 
the factors that affect the accuracy of parameter estimation in nonlinear regression 
groundwater flow models. Lv [25] introduced a global optimization algorithm in the in-
verse analysis of geotechnical engineering to solve the minimum of the objective function. 
Many scholars have studied the calculation method of the permeability coefficient [26–
28]. The above inverse analysis is based on parameters such as flow, water head, water 
storage coefficient, water inflow, and water-stop curtain boundary, and these parameters 
themselves have certain uncertainties. In addition, they are greatly affected by environ-
mental conditions and other objective factors. Therefore, it is difficult to accurately obtain 
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stratum permeability by using these parameters. The above optimization methods are 
mainly used to solve complex nonlinear multimodal functions, while there is less research 
on nonlinear underdetermined problems. 

Aiming at the shortcomings of the above research, based on the least-squares theory 
and regularization method, an objective function of an underdetermined inverse analysis 
problem is proposed, and geostatistical theory and variation function are used to describe 
the spatial characteristics of practical engineering systems. Based on the foundation pit 
project of Qingdao Lingshanwei Station, on-site tests were carried out, and the permea-
bility coefficient inverse analysis was calculated using the drilling test data. The distribu-
tion of the permeability coefficient of each stratum in the excavation area of the foundation 
pit was obtained. The hydrogeological information obtained from the inverse analysis 
model provides an important basis for engineering design and safe construction. 

2. Establishment of Inverse Analysis Model 
2.1. Inverse Problem Theory 

In practical engineering systems, there is often a partial differential equation contain-
ing unknown coefficients or parameters, and its unknown parameters change with the 
spatial position. In the process of its forward solution, the forward model of geophysical 
problems can be expressed as: 

Y = F s (1) 

where s is the set of unknown parameters in space, Y is the expected measurement values 
of the forward model, and F is the forward mapping between unknown parameters and 
expected measurement values. 

Generally, F can be either linear or nonlinear. However, most geophysical problems 
are nonlinear. Some inverse problems in geophysical problems can be effectively approx-
imated as linear problems, including some imaging problems in seismic and ground-pen-
etrating radar applications [29,30]. Therefore, F is assumed to be a system of linear equa-
tions. 

Considering the measurement error of the on-site test data, in order not to lose gen-
erality, there are: 

∆y = Fs + b  (2) 

where y is a set of measurement values, and ∆b is the error between the measurement 
values and the expected measurement values. 

Because the measurement data contain errors, and the matrix F is often not square or 
irreversible, it is difficult to solve unknown parameters. For such problems, the common 
method is to minimize the errors as much as possible, which is more conducive to error-
free solutions. Among them, the most common method is to take the minimum of the 
error square sum as the approximate value—that is, the least-squares method: 

2

2
arg min −s y Fs  (3) 

Assuming that the error ∆b follows a Gaussian distribution with mean 0 and variance 
σ2 (also known as a normal distribution), then, when both F and s are determined, y fol-
lows a Gaussian distribution with a mean value of Fs and a variance of σ2, and this satisfies 
the Gaussian distribution law [30]: 

2

2
1 ( )( ) exp

22
 − −

=  
 

y Fsp y
σσ

 
(4) 

For m independent observation data, the joint distribution satisfies: 
2

2

1
( ) exp ( )

22

−

=

 
= − − 

 
∑

m

i
i

mp y y Fsσ
σ

 
(5) 
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To maximize the probability of the random variable y, there must be: 

2

1
( ) min

=

= − =∑
m

i
i

E y Fs
 

(6) 

Formula (6) is the definition of the least-squares method without constraints, which 
is equivalent to Formula (3). 

For a normal distribution with two random variables (s1, s2), the joint probability den-
sity function can be written as: 

2 22 2
1 2 1 1 12 1 1 2 2 2 2

1 2 2 2 2 1/2 2 2 2
1 2 12 1 2 12 1 1 2 1 2 2

1( , ) exp 2
2 ( ) 2( )

     − − − −  = − ⋅ − ⋅ ⋅ +    − −        

s a s a s a s ap s s σ σ σ
π σ σ σ σ σ σ σ σ σ σ σ σ

 
(7) 

Let 𝝃𝝃 = 𝝈𝝈12
𝝈𝝈𝟏𝟏𝝈𝝈𝟐𝟐

, the above formula be written as: 

2 2

1 1 1 1 2 2 2 2
1 2 22

1 1 2 21 2

1 1( , ) exp 2
2(1 )2 1

     − − − −  = − ⋅ − ⋅ ⋅ +    −  −       

s a s a s a s ap s s ξ
ξ σ σ σ σπσ σ ξ

 
(8) 

Represented in matrix form, there are: 
2

1 1 1 12
2

2 2 12 2

, ,
    

= = =     
     

s a
s a Z

s a
σ σ
σ σ

 
(9) 

The probability density formula can be further written as: 

1
1 2 1/2

1 1( , ) exp ( ) ( )
22

− = − − − 
 

Z
Z

Tp s s s a s a
π

 
(10) 

where a1 is the mean of s1, a2 is the mean of s2, σ1 is the standard deviation of s1, σ2 is the 
standard deviation of s2, ξ is the correlation coefficient, and Z is the covariance matrix. 

By extending it to n-dimensional form, we can obtain that the solution of 
2

2
−y Fs  

is equivalent to the maximum likelihood estimation under the assumption of a Gaussian 
distribution when the average measurement error is zero [31–33]. 

11( ) exp ( ) ( )
2

− = ⋅ − − − 
 

RTp y K y Fs y Fs  (11) 

where K is a constant related to the Gaussian distribution, and R is the covariance matrix. 
According to the principle of least squares, in the absence of regularization con-

straints, the objective function [31,32] can be written as: 
2

2
( ) = −L s y Fs  (12) 

The objective function [31,32] corresponding to the L2 regularization constraint can 
be written as: 

2 2

2 2
( ) = − +L s y Fs sλ  (13) 

where 
2

2
−y Fs  is the Euclidean norm, 

2

2
s  is the L2 regularization term, and λ is the 

regularization parameter. 
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Take the logarithm of Formula (11) and remove the irrelevant constant term to obtain: 
1( ) ( ) ( )−= − −RTL s y Fs y Fs  (14) 

Therefore, the L2 norm means that the measurement data error follows the statistical 
law of Gaussian normal distribution.  

2.2. Establishment of Objective Function  
For the seepage field in a specific area of the underground project, it is necessary to 

find a set of partial differential equations that can well describe the spatial location change 
of the permeability coefficient. In the process of establishing its mathematical model, be-
cause the coefficients, boundary conditions, source-sink terms, etc. of the partial differen-
tial equations are mostly difficult to obtain, the permeability coefficient is inversely calcu-
lated through a series of measurement results using the inverse analysis method. Specifi-
cally, if the number of unknown parameters n is greater than the number of measurement 
data m, it will be an underdetermined problem. Based on the linear algebra theory, there 
will be an infinite number of solutions that meet the equations, and the error is 0. In other 
words, the solution is not unique, and there will be an infinite number of solutions that 
meet the measurement values. The reason is that although the measurement values pro-
vide some information to determine the model parameters, it is not enough to determine 
all the parameters. This kind of problem belongs to an underdetermined inverse problem, 
and the model in this paper belongs to this kind of problem. 

To find the solution to the underdetermined inverse problem, it is necessary to find 
an optimal solution from an infinite number of solutions, and data fitting alone is not 
enough to obtain the optimal solution. Therefore, when solving Equation (1), some infor-
mation not included in the observation data must be added, which is usually called “prior 
information”, and its main purpose is to supplement the information missing in deter-
mining model parameters [29]. In underground engineering, the geological changes are 
extremely complex, and it is difficult to accurately predict the geological structure of spa-
tial changes. In most cases, the average value is used to describe a certain variable. For 
example, in describing the permeability, porosity, and rock fluctuation in space, the aver-
age function is often used to express the structural characteristics—that is, the average 
value is used as the target to obtain a solution with zero error to express the structural 
characteristics, instead of taking the minimum value as the objective to obtain a solution 
with zero error. Therefore, this article adopts an average function (i.e., average value) and 
represents the structural characteristics of the seepage field through a variation function.  

s represents the variables that need to be estimated in the space, and the mean pa-
rameter is used to β express: 

[ ] = βXE s  (15) 

where E [] is the expected value, X is the n-dimensional row vector whose elements are all 
equal 1, and β is the average value of unknown parameters in the seepage field.  

In addition, s has a covariance matrix that can be represented as: 

[( )( ) ]= − −G X X TE s sβ β  (16) 

According to theoretical analysis, there are: 

2

1
( ) min

=

= − =∑ βX
m

i
E s  (17) 
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In this paper, the objective function of the geophysical inverse problem is constructed 
based on the least-squares theory and L2 regularization. The objective function can be ex-
pressed by the sum of the fitness term and regularization term: 

T 1 T 1( ) ( ) ( ) ( )− −= − − + − −β βR X G XL y Fs y Fs s sλ  (18) 

where y is the m-dimensional row vector of a group of measurement values, s is the n-
dimensional row vector of unknown parameter values, R is the m-by-m covariance matrix 
of measurement errors, λ is the regularization parameter, and G is the spatial covariance 
matrix. 

Since the on-site tests were carried out on the measure points at different locations, it 
can be considered that the measurement data error is independent of the variance σR2 dis-
tribution is consistent, i.e., 

2=R IRσ  (19) 

where I is the identity matrix of m × m. 
Usually, variables with spatial correlation have two main parts of variation: one is 

the randomness of spatial distribution influenced by many local and complex uncertainty 
factors; the second is the continuity of spatial distribution in the macrostructure, i.e., struc-
tural. Assuming s is a spatial variable parameter, it represents the process of variation at 
the airport. The basic principle of this model is that it represents the structure of unknown 
functions nearly without making overly strong or restrictive assumptions, just like when 
an unknown space function is represented as the sum of deterministic functions with ad-
justable coefficients. Zhang [34] believes that deterministic trend functions are not suitable 
for describing unstable variability, especially small-scale variability or random walk-type 
variability. This variability is more suitable for modeling through covariance or variation 
functions.  

Assume that the unknown parameters of the spatial distribution of the seepage field 
follow the geostatistical variation function distribution proposed by Liu [35]. 

[ ]
2)

1

1( , ) ( ) ( ) ( )
2 ( ) =

+ = = ⋅ − +∑
（N h

i i
i

x x h h Z x Z x h
N h

γ γ  (20) 

where ( )iZ x , ( )+iZ x h  is the value at points ix  and +ix h (i )1, 2, , ( )= … N h . 
Liu [36] proposed the covariance function of geostatistics: 

)

1

1( , ) ( )= ( ) ( ) ( ) ( )
( ) =

   + = ⋅ − + − +   ∑
（N h

i i i i
i

C x x h C h Z x Z x Z x h Z x h
N h

 (21) 

where ( )iZ x  , ( )+iZ x h   are the values at points ix   and +ix h  ( ( ),=1,2 ,…i N h  ), 

( )N h  is the number of points between two points, ( )iZ x , ( )+iZ x h  is the average 

value of points ix  and +ix h , respectively, and h is the distance between two points 
in a certain direction. 

Based on the form of the established objective function, the observation value of the 
water head in the seepage field is obtained by carrying out on-site water pressure and 
pumping tests, to calculate the distribution of the permeability coefficient in the seepage 
field. 
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3. On-Site Test 
3.1. Project Overview 

Lingshanwei Station of Line 13 of the Qingdao West Coast Intercity Rail Transit Pro-
ject is located on the east side of the intersection of Yuewu Road and Taishan East Road 
and is arranged along Taishan East Road in an east–west direction. The central mileage of 
the station is YCK14 + 119.1. The design length of the foundation pit is 190 m, the width 
is 20.7 m, and the excavation depth is 17 m. The geological situation is shown in Figure 1. 

The groundwater in the foundation pit site is mainly phreatic water and confined 
water. The phreatic water is mainly stored in plain fill and contains muddy medium-
coarse sand stratum, and the buried depth of the water level is 1~4 m. The confined water 
is mainly stored in medium and coarse sand and sand gravel stratum. 

 
Figure 1. Typical section of station geological. 

3.2. Test Plan and Results 
A bored pile was adopted for the foundation pit enclosure structure (φ1000@1200), 

and a high-pressure rotary jet pile (φ1000@700) was used to check the water curtain. The 
jet grouting pile is 17~20 m long. To explore the main channels of groundwater seepage 
in the foundation pit site and the permeability of various strata, water pumping tests were 
carried out for different strata. There are 14 drillings arranged around the foundation pit 
and 6 drillings arranged in the foundation pit. The holes around the foundation pit are 
used as pumping and pressure test holes, and the holes inside the foundation pit are used 
as water-level observation holes. The arrangement of drilling is shown in Figure 2. 
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Figure 2. Schematic diagram of drilling layout. 

As the aquifer structure of the foundation pit site is complex and strongly water-rich, 
the excavation site is layered according to the geological type, and the water pumping test 
is conducted for the contained muddy medium-coarse sand stratum, silty clay stratum, 
sand gravel stratum, and strongly weathered breccia tuff stratum, respectively. To ensure 
that each water pumping test only involves the specified stratum, the geofabriform is 
bound at the stratum boundary of the pressured-water tube. The geofabriform is ex-
panded by injecting cement slurry into the geofabriform, and the drilling is blocked to 
prevent the water from diffusing to other strata. Taking the midpoint of the stratum thick-
ness as the drilling depth, the drilling depth of each stratum is 4 m, 8 m, 13 m, and 18 m, 
respectively. The specific drilling depth and testing device principles are shown in Figures 
3 and 4. 

 
Figure 3. Schematic diagram of test hole depth. 



Buildings 2024, 14, 946 9 of 21 
 

 
Figure 4. Schematic diagram of the expansion mold bag test device. 

We carried out seven pumping and water pressure tests at the foundation pit site, 
respectively. The test plan of pumping water from one hole and pressing water from one 
hole was adopted for each test. Different strata were pumped and pressed at the same rate 
(5 L/min). The remaining holes in each test were used as water level observation holes, 
and their water level changes were recorded. The test results are shown in the following 
tables (Tables 1–4). 

Table 1. Test data of muddy medium-coarse sand stratum (unit: m). 

Test Number 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5− 
1 Pressure Pumping 0.40 −0.32 0.23 −0.16 0.10 −0.09 −0.07 −0.01 
2 0.09 −0.63 Pressure Pumping 1.87 −1.29 0.91 −0.81 0.42 −0.64 
3 −0.18 −0.57 1.72 −1.44 Pressure Pumping 2.70 −2.39 1.24 −1.68 
4 −0.32 −0.51 0.69 −1.04 2.61 −2.47 Pressure Pumping 2.67 −2.79 
5 −0.47 −0.41 0.20 −0.86 1.14 −1.78 2.68 −2.80 Pressure Pumping 
6 −0.54 −0.35 0.26 −0.99 0.99 −1.75 1.24 −1.64 2.72 −2.36 
7 −0.51 −0.14 0.48 −0.96 0.48 −0.84 0.42 −0.60 0.80 −0.73 

Test Number 6+ 6− 7+ 7− 8 9 10 11 12 13 
1 −0.19 −0.02 −0.38 −0.06 0.07 −0.13 0.40 −0.44 −0.10 −0.11 
2 0.40 −0.86 0.37 −1.06 1.13 1.06 0.81 −1.06 −1.26 −1.01 
3 0.98 −1.76 0.27 −1.01 3.28 1.26 0.16 −0.84 −1.71 −3.16 
4 1.13 −1.75 0.14 −0.88 3.36 0.63 −0.11 −0.69 −1.28 −3.32 
5 2.62 −2.45 0.55 −0.98 2.52 0.94 −0.21 −0.64 −1.37 −2.62 
6 Pressure Pumping 1.43 −1.36 2.42 2.39 −0.13 −0.73 −2.09 −2.18 
7 1.61 −1.18 Pressure Pumping 0.73 2.11 0.21 −0.80 −1.56 −0.81 

Note: The number in the title row of the table corresponds to the position of the corresponding hole 
in Figure 2. For example, “1+” in the table corresponds to the “1+” pressure hole in Figure 2. Each 
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group of experiments is subjected to pressure and pumping in the corresponding holes for “Pres-
sure” and “Pumping” in the table, while the remaining holes are used as observation holes. 

Table 2. Test data of silty clay stratum (unit: m). 

Test Number 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5− 
1 Pressure Pumping 1.00 −0.92 0.54 −0.43 0.23 −0.19 −0.22 0.17 
2 0.84 −1.08 Pressure Pumping 2.48 −2.16 1.23 −1.20 0.57 −0.71 
3 0.48 −0.49 2.50 −2.15 Pressure Pumping 2.93 −2.86 1.39 −1.77 
4 0.10 −0.32 1.17 −1.26 2.90 −2.97 Pressure Pumping 2.82 −2.97 
5 −0.27 0.12 0.54 −0.75 1.33 −1.83 2.83 −2.96 Pressure Pumping 
6 −0.45 0.52 0.66 −0.74 1.21 −1.70 1.39 −1.70 2.99 −2.88 
7 −0.84 0.95 0.92 −0.76 0.76 −0.80 0.61 −0.69 1.20 −1.17 

Test Number 6+ 6− 7+ 7− 8 9 10 11 12 13 
1 −0.54 0.42 −0.84 0.95 0.17 −0.35 1.03 −1.02 0.18 −0.19 
2 0.60 −0.81 0.89 −0.79 1.56 1.61 1.84 −2.29 −1.85 −1.48 
3 1.21 −1.69 0.81 −0.75 3.31 1.78 0.94 −1.01 −2.22 −3.37 
4 1.32 −1.77 0.55 −0.75 2.95 1.01 0.41 −0.67 −1.49 −3.24 
5 2.94 −2.93 1.11 −1.26 2.57 1.42 0.26 −0.42 −1.17 −2.89 
6 Pressure Pumping 2.33 −2.24 2.65 3.09 0.50 −0.39 −3.12 −2.24 
7 2.37 −2.20 Pressure Pumping 1.11 3.32 1.04 −0.65 −2.72 −0.91 

Note: The number in the title row of the table corresponds to the position of the corresponding hole 
in Figure 2. For example, “1+” in the table corresponds to the “1+” pressure hole in Figure 2. Each 
group of experiments is subjected to pressure and pumping in the corresponding holes for “Pres-
sure” and “Pumping” in the table, while the remaining holes are used as observation holes. 

Table 3. Test data of sand gravel stratum (unit: m). 

Test Number 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5− 
1 Pressure Pumping 0.54 −0.33 0.31 −0.23 0.14 −0.14 −0.03 −0.09 
2 −0.26 −1.12 Pressure Pumping 1.88 −1.05 0.85 −0.72 0.30 −0.61 
3 −0.76 −1.30 1.45 −1.48 Pressure Pumping 2.75 −2.11 1.03 −1.63 
4 −0.71 −1.00 0.45 −1.12 2.68 −2.19 Pressure Pumping 2.54 −2.64 
5 −0.72 −0.78 −0.03 −0.94 1.00 −1.66 2.60 −2.58 Pressure Pumping 
6 −0.81 −0.80 −0.04 −1.05 0.67 −1.65 1.13 −1.58 2.65 −2.07 
7 −0.65 −0.56 0.12 −0.94 0.21 −0.76 0.32 −0.54 0.76 −0.58 

Test Number 6+ 6− 7+ 7− 8 9 10 11 12 13 
1 −0.15 −0.14 −0.32 −0.23 0.10 −0.17 0.56 −0.34 −0.25 −0.18 
2 0.14 −0.87 −0.18 −1.23 0.89 0.29 1.11 −1.33 −1.21 −0.88 
3 0.48 −1.84 −0.45 −1.42 3.33 0.30 −0.20 −1.43 −1.68 −2.77 
4 0.89 −1.82 −0.26 −1.11 3.26 0.34 −0.39 −1.09 −1.31 −3.11 
5 2.52 −2.20 0.35 −1.00 2.63 1.22 −0.46 −0.89 −1.21 −2.34 
6 Pressure Pumping 1.32 −1.18 2.60 3.43 −0.44 −1.01 −1.64 −1.96 
7 1.64 −0.85 Pressure Pumping 0.69 2.51 −0.13 −0.91 −1.08 −0.68 

Note: The number in the title row of the table corresponds to the position of the corresponding hole 
in Figure 2. For example, “1+” in the table corresponds to the “1+” pressure hole in Figure 2. Each 
group of experiments is subjected to pressure and pumping in the corresponding holes for “Pres-
sure” and “Pumping” in the table, while the remaining holes are used as observation holes. 
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Table 4. Test data of strongly weathered breccia tuff stratum (unit: m). 

Test Number 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5− 
1 Pressure Pumping 0.66 −0.29 0.36 −0.15 0.16 −0.09 −0.08 0.06 
2 0.45 −0.50 Pressure Pumping 2.00 −1.60 1.02 −0.97 0.53 −0.77 
3 0.07 −0.44 1.86 −1.73 Pressure Pumping 2.76 −2.41 1.28 −1.66 
4 −0.14 −0.38 0.81 −1.17 2.68 −2.49 Pressure Pumping 2.73 −2.75 
5 −0.35 −0.21 0.29 −1.01 1.16 −1.78 2.72 −2.77 Pressure Pumping 
6 −0.36 −0.01 0.43 −1.21 1.02 −1.84 1.27 −1.63 2.81 −2.49 
7 −0.24 0.41 0.77 −1.07 0.64 −0.99 0.54 −0.74 1.01 −1.03 

Test Number 6+ 6− 7+ 7− 8 9 10 11 12 13 
1 −0.22 0.14 −0.29 0.36 0.21 0.09 0.96 −0.38 0.05 −0.03 
2 0.60 −1.03 0.82 −1.01 1.40 1.51 1.15 −1.41 −1.66 −1.34 
3 1.06 −1.81 0.55 −1.10 3.29 1.66 0.45 −0.91 −2.14 −3.06 
4 1.20 −1.71 0.35 −0.93 3.34 0.85 0.09 −0.71 −1.53 −2.85 
5 2.73 −2.57 0.77 −1.24 2.15 1.08 −0.08 −0.68 −1.68 −2.59 
6 Pressure Pumping 1.79 −1.84 1.87 2.63 0.07 −0.78 −2.51 −2.55 
7 1.98 −1.66 Pressure Pumping 0.77 2.34 0.56 −0.79 −1.91 −1.24 

Note: The number in the title row of the table corresponds to the position of the corresponding hole 
in Figure 2. For example, “1+” in the table corresponds to the “1+” pressure hole in Figure 2. Each 
group of experiments is subjected to pressure and pumping in the corresponding holes for “Pres-
sure” and “Pumping” in the table, while the remaining holes are used as observation holes. 

4. The Numerical Calculation Method of Inverse Analysis of the Seepage Field 
4.1. Seepage Theory 

When there is an aquifer in the rock and soil mass and there is a head difference or 
flow rate within the aquifer area, seepage is formed. The seepage rate, flow rate, and head 
changes of groundwater in the aquifer area usually comply with Darcy’s law. The on-site 
test adopts a constant flow rate test plan of one pumping and one pressure, and the test 
result is the measured water head change when the water head is stable. It can be consid-
ered that the seepage field in the experimental area conforms to Darcy’s law, and the seep-
age control equation of the seepage field in the experimental area can be expressed as: 

s( )∇⋅ ∇ ⋅ =− sk H Q  (22) 

where ∇  is the Hamiltonian operator, ks is the permeability coefficient, H is the height 
of the water head, and Qs is the source and sinks.  

4.2. Principle of Least-Squares Optimization for Back Analysis Models 
Assuming (xi, yi) is a set of measured values and x = [x1, x2, x3,···, xn−1, xn]T, y = R follows 

the following functional relationship: 

( , )=y f x ω  (23) 

Among them, ω = [ω1, ω2, ω3,···, ωn−1, ωn] is a pending parameter. 
To obtain the function f(x, ω) medium parameter ω based on the obtained m sets of 

measurement data (xi, yi) (i = 1, 2, 3,···, n − 1, n), we must solve the following objective 
function for the optimal solution. 

2

1
( , ( , )) [ ( , )]

=

= −∑
m

i i i
i

L y f x y f xω ω  (24) 
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Then, we solve the parameter when Equation (24) takes the minimum value ωi (i = 1, 
2, 3, ···, n − 1, n). 

The back analysis model established in this article adopts the L2 constrained least-
squares method, which adds the on-site observation data to the least-squares target phys-
ical field of the model. We defined and solved the constrained objective functions using 
the “optimization” interface in COMSOL Multiphysics 5.6 numerical simulation software. 
The objective function and constraints are defined based on the components of the control 
variable and auxiliary variable. The constraint is given as the solution of a differential 
equation defined by a multi-physical field model.  

4.3. Calculation Parameter Setting 
The seepage field in practical engineering is a random field varying with the spatial 

position. In this case, the spatial unknown parameters are infinite, and the measurement 
results are limited data, so it is difficult to find the unknown parameters. Therefore, the 
designated test area is discretized as 25 × 4, assuming that the permeability coefficient in 
each small square element does not change with the spatial position. The model contains 
a total of 100 unknown parameters. For the seepage field area beyond the test range, the 
permeability coefficient is set as a constant value [37]. 

The inverse analysis process is to calculate the permeability coefficient within the test 
range by using the observations. The precision of water-head measurement in the test ∆H 
= 1 cm, so the fitness term can be rewritten as: 

2

2
2

( )−

∆

y f s
H

 (25) 

It is assumed that the unknown parameters are isotropic in space. Therefore, the co-
variance matrix is only a function of the distance of the corresponding points in space, 
which can be expressed as: 

( )= −ij i jG C x x  (26) 

A common assumption in the geological sciences is that spatially distributed param-
eters follow a geostatistical distribution defined by some parameterized variogram. The 
conventional variogram models are exponential, spherical, and Gaussian. In this paper, 
the Gaussian variogram is used to calculate the regularization term: 

2

2( ) (1 )
−

= −
h
ah C eγ  

(27) 

The approximate relationship between the variogram and the covariance function [38] 
is expressed as: 

( ) (0) ( )= −h C C hγ  (28) 

The covariance function can be expressed as: 
2

2( )
−

= ⋅
h
aC h C e  

(29) 

where xi is the square centroid corresponding to the unknown parameters, γ(h) is a Gauss-
ian variation function, C is the sill parameter, a is the range, a is also standing as correla-
tion length, and h is the distance between two points in a direction. According to Cardiff 
[37], the C value is taken as 2 and the a value is taken as 50 m. 
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To facilitate the calculation, the auxiliary vector u is introduced to further simplify 
the regularization term: 

T 1 T( ) ( ) ( )−− − = −X G X X us s sα β β λ β  (30) 

1−= −（ ）u G Xs β  (31) 

= −Gu Xs β  (32) 

Since it is often more convenient to solve the value of u in linear Equation (32) than 
to directly calculate G, the calculation equation of auxiliary vector u is established in the 
model using domain ordinary differential and differential algebraic equations. Zhou [39] 
believed that when the λ value is 3, it is the best parameter, which can improve the calcu-
lation accuracy of the model. Through the above parameter settings, the observation val-
ues can be used for the inverse analysis calculation of the permeability coefficient. 

4.4. Numerical Simulation Results and Analysis 
According to the observation values in on-site tests, the permeability coefficients of 

different strata are calculated based on the inverse analysis calculation model, and the 
calculation results are shown in Figure 5. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5. Simulation results of the permeability coefficient of each stratum. (a) Simulation results of 
muddy medium-coarse sand stratum; (b) Simulation results of silty clay stratum; (c) Simulation 
results of sand gravel stratum; (d) Simulation results of strongly weathered breccia tuff stratum. 
Note: The numbers in the figure represent the −lg k (negative logarithmic) value of the permeability 
coefficient. The legend on the right represents the lg k value of the permeability coefficient. 

According to the inverse analysis results of different stratum permeability coeffi-
cients calculated from the drilling water-head observations, the muddy medium-coarse 
sand stratum and sand gravel stratum are the broken areas of the stratum in the excava-
tion area of the foundation pit. They have strong water permeability and large water con-
tent. Some areas may be connected with groundwater, among which the sand gravel stra-
tum is the most serious. Water gushing or collapse very easily occurs during the excava-
tion process, so such areas should be reinforced and dewatered before excavation. The 
silty clay stratum has good geological conditions, and its permeability coefficient is mostly 
1 × 10−5 under, basically meeting the requirements of the foundation pit during construc-
tion. Although there are broken areas in the strongly weathered breccia tuff stratum, most 
of them are located in the middle of the foundation pit site, while the permeability coeffi-
cient around the foundation pit is small, and only a few places need to be reinforced. It 
can be inferred that the high-pressure rotary jet pile in the strongly weathered breccia tuff 
stratum plays a water-stop curtain effect, and it needs to be dewatered before excavation. 
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5. Comparison and Analysis of Geophysical Exploration Results and Numerical  
Simulation Results 
5.1. Geophysical Exploration 

As the aquifer structure of the foundation pit site is complex and strongly water-rich, 
the geophysical exploration will show an obvious low-resistance area. The multi-electrode 
resistivity method is used to conduct hydrogeological investigations in the excavation 
area of the foundation pit. According to the geophysical exploration information of the 
stratum in the excavation area of the foundation pit, the correctness of the inverse analysis 
model is verified from the geological situation distribution area. 

(1) Multi-electrode resistivity method 
WDA-1, 1 A super digital DC method instrument, and four pole-measurement de-

vices are used for the multi-electrode resistivity method. This detection adopts a quadru-
pole measuring device with a voltage of 36 volts. The electrode spacing of S1, S2, and S3 
measuring lines is 2 m, and the electrode spacing of S4–S7 is 1 m. The measuring lines are 
arranged horizontally, as shown in Figure 6. 

 
Figure 6. Layout of multi-electrode resistivity method survey line. 

The exploration result is shown in Figure 7, and the marked range is inferred as a 
water-bearing or mud-filled area. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 7. Multi-electrode resistivity method exploration results map. (a) S1 survey line exploration 
results; (b) S2 survey line exploration results; (c) S3 survey line exploration results; (d) S4 survey 
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line exploration results; (e) S5 survey line exploration results; (f) S6 survey line exploration results; 
(g) S7 survey line exploration results. Note: The range indicated by the red dashed line is inferred 
as a fractured area of the rock mass, containing water or filled with mud. 

5.2. Analysis of Geophysical Exploration Results and Comparison of Numerical  
Simulation Results 

According to the geophysical exploration results, the distribution of geological con-
ditions in the area affected by foundation pit excavation is shown in Figure 8. It can be 
seen from the figure that areas C and D are the main abnormal zones. It can be inferred 
that the geological conditions in this area are poor, the rock mass is broken, the fractures 
are developed or relatively developed, and the local rock mass is connected with the 
groundwater. The rock mass in area D is the most broken and the water content is the 
highest, followed by area C; area B is a minor anomaly zone, and it is inferred that the 
rock mass in this area is relatively broken and the fractures are relatively developed; area 
A is a normal area with good geological conditions. 

 
Figure 8. Geophysical exploration results plan figure. 

By comparing Figures 8 and 9, it can be seen that the distribution of the permeability 
coefficient calculated from the on-site pumping and water-pressure test data is consistent 
with the abnormal location of geophysical exploration, which proves the correctness of 
the inverse analysis model from the distribution area. 
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Figure 9. Distribution of the permeability coefficient of each stratum. 

6. Water Injection Test to Test Stratum Permeability 
To verify the accuracy of the model calculation results, drilling tests were carried out 

in the area affected by the excavation of the foundation pit. We used six observation holes 
(8–13) (see Figure 2) arranged in the foundation pit to conduct the water injection test of 
the dewatering head, and the permeability coefficients of the contained muddy medium-
coarse sand stratum, silty clay stratum, sand gravel stratum, and strongly weathered stra-
tum were measured, respectively. The calculation formula for the permeability coefficient 
of the water injection test of the dewatering head is [40]:  

2
0 1 2

2 1

0.0523 ln( / )
=

−
k r H H

A t t
 (33) 

where k is the permeability coefficient of the test section, cm/s, r0 is the inner radius of the 
casing, cm, A is the shape coefficient, cm, H1 is the test water head at time t1, cm, and H2 is 
the test water head at time t2, cm.  

See Table 5 for the test results of the permeability coefficient of the water injection test 
of the dewatering head. 

Table 5. Permeability coefficient of each stratum.  

Drilling 
Number 

Contain Muddy  
Medium-Coarse Sand 

(cm·s−1) 

Silty Clay 
(cm·s−1) 

Sand Gravel 
(cm·s−1) 

Strongly Weathered 
(cm·s−1) Error/% 

Drilling 
Test 

Model  
Calculation 

Drilling 
Test 

Model  
Calculation 

Drilling 
Test 

Model  
Calculation 

Drilling 
Test 

Model  
Calculation / 

8 1.1 × 10−6 1.0 × 10−6 7.7 × 10−7 6.9 × 10−7 6.8 × 10−6 5.8 × 10−6 1.0 × 10−6 1.1 × 10−6 9~17 
9 5.6 × 10−6 4.9 × 10−6 2.4 × 10−6 2.9 × 10−6 3.0 × 10−5 2.5 × 10−5 3.7 × 10−6 3.1 × 10−6 14~20 

10 1.7 × 10−5 2.0 × 10−5 6.8 × 10−6 5.6 × 10−6 7.3 × 10−5 6.0 × 10−5 3.3 × 10−5 4.0 × 10−5 15~22 
11 1.4 × 10−4 1.2 × 10−4 1.1 × 10−5 1.3 × 10−5 8.2 × 10−3 6.8 × 10−3 1.9 × 10−5 1.5 × 10−5 15~27 
12 2.0 × 10−5 1.7 × 10−5 7.5 × 10−6 6.2 × 10−6 2.1 × 10−4 2.5 × 10−4 8.2 × 10−6 9.3 × 10−6 12~21 
13 6.1 × 10−6 6.9 × 10−6 1.8 × 10−6 2.2 × 10−6 1.3 × 10−4 1.5 × 10−4 1.6 × 10−5 1.4 × 10−5 12~18 

Note: Drilling number 8: 9% is strongly weathered, and 17% is sand gravel. Drilling number 9: 14% 
is medium-coarse sand, and 20% is sand gravel. Drilling number 10: 15% is medium-coarse sand, 
and 22% is sand gravel. Drilling number 11: 15% is silty clay, and 27% is strongly weathered. Drilling 
number 12: 12% is strongly weathered, and 21% is silty clay. Drilling number 13: 12% is medium-
coarse sand, and 18% is silty clay. 

We analyzed the reasons for the errors in the above table, which mainly come from 
two aspects. Firstly, there is a certain degree of measurement error in the water injection 
test. Secondly, the established inverse analysis model also has certain errors, which are 
caused by measurement errors in the data used, and the established model may also gen-
erate errors due to some assumptions. 

In the process of water injection testing, to ensure that each water injection test only 
involves the designated formation, binding the molded bag at the boundary position of 
the formation may cause certain errors due to the inaccuracy of the instrument and the 
error of the operator, resulting in a certain difference between the measured formation 
and the designated formation. The water injection test process will cause disturbance to 
the formation seepage field, increase the permeability coefficient of the original formation, 
and cause measurement errors, resulting in the permeability coefficients of most water 
injection tests in the table being greater than the permeability coefficients calculated by 
the model. Errors can also occur during measurement due to improper operation by op-
erators, instrument issues, and environmental changes. 
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In the process of establishing the inverse analysis model, the least-squares method 
was used to minimize the measurement errors in the on-site test data as much as possible, 
but measurement errors still exist and will not be eliminated. In underground engineer-
ing, geological changes are extremely complex, and it is difficult to accurately predict the 
geological structure of spatial changes. In most cases, people use averages to describe var-
iables. Using the average value to represent the structural characteristics of the actual 
seepage field will result in a certain degree of error compared to the actual situation. The 
seepage field in practical engineering is a random field that varies with spatial position. 
In this case, the unknown spatial parameters are infinite, and the measurement results are 
limited data, making it difficult to determine the unknown parameters. By assuming that 
the permeability coefficient within each unit does not change with spatial position and 
that the unknown parameter is isotropic in space, the unknown parameter can be calcu-
lated, but this can also generate certain errors. 

Based on the analysis of errors, it can be concluded that errors are inevitable, but 
certain actions can be taken to minimize errors as much as possible. For measurement 
errors, when selecting measurement methods, we can adapt to local conditions and choose 
appropriate measurement methods; use more precise instruments during the testing pro-
cess and improve the proficiency of operators; and test under good weather conditions as 
much as possible to minimize the impact of the environment on the test. For errors caused 
by spatial variability, a three-dimensional model can be established to study formation 
permeability, which, to some extent, reduces the impact of spatial variability on errors. 

In practical applications, there are often unavoidable variables or situations, making 
it impossible to achieve absolute accuracy. According to the results of the water injection 
test, the error between the permeability coefficient by the water injection test and the per-
meability coefficient calculated by the inverse analysis is about 15%, and the error is 
within the acceptable range. The injection test results verify the accuracy of the permea-
bility coefficient obtained by the inverse analysis model. 

7. Conclusions 
The results of this research are as follows: 

(1) Based on the least-squares theory and regularization method, the objective function 
of an underdetermined inverse analysis problem is proposed. The geostatistical the-
ory and variation function are used to describe the spatial characteristics of the actual 
engineering system, and a calculation method for the stratum permeability coeffi-
cient using the on-site drilling test data is proposed. 

(2) Through the combination of on-site pumping and water pressure tests, on-site drill-
ing test data are obtained. Based on the established inverse analysis model, the per-
meability coefficient of different strata is calculated. According to the distribution of 
the permeability coefficient of different strata, the water content and fracture area of 
each stratum are further determined. 

(3) Geophysical exploration was carried out in the excavation area of the foundation pit. 
The results show that the distribution of the permeability coefficient calculated by 
the inverse analysis model is consistent with the plane distribution of geophysical 
exploration, which verifies the correctness of the inverse analysis model of the stra-
tum seepage field in terms of regional distribution.  

(4) The pumping test was carried out in the affected area of foundation pit excavation, 
and the results showed that the error between the permeability coefficient calculated 
by the inverse analysis model and the permeability coefficient by on-site pumping 
was about 15%, which verified the numerical accuracy of the permeability coefficient 
calculated by the inverse analysis model. 
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