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Abstract: Accurately predicting construction costs during the initial planning stages is crucial for
the successful completion of construction projects. Recent advancements have introduced various
machine learning-based methods to enhance cost estimation precision. However, the accumulation
of authentic construction cost data is not straightforward, and existing datasets frequently exhibit a
notable presence of missing values, posing challenges to precise cost predictions. This study aims
to analyze diverse substitution methods for addressing missing values in construction cost data.
Additionally, it seeks to evaluate the performance of machine learning models in cost prediction
through the removal of conditional outliers. The primary goal is to identify and propose optimal
strategies for handling missing value in construction cost records, ultimately improving the reliability
of cost predictions. According to the analysis results, among single imputation methods, median
imputation emerges as the most suitable, while among multiple imputation methods, lasso regression
imputation produces the most superior outcomes. This research contributes to enhancing the trust-
worthiness of construction cost predictions by presenting a pragmatic approach to managing missing
data in construction cost performance records, thereby facilitating more precise project planning
and execution.

Keywords: construction duration; estimation; imputation

1. Introduction
1.1. Research Background and Objectives

The industrial perspective on the importance of cost management in construction
projects, emphasizing economic efficiency, is widely acknowledged by the majority of
stakeholders in the construction industry. However, the traditional understanding of the
necessity of cost management has been limited to the realm of cost reduction, primarily
focused on aspects such as minimizing material and labor expenses, as well as indirect cost
savings through process management. This perception has been prevalent among members
of the construction industry, where cost management has historically been perceived as a
means to achieve savings specifically in various cost components [1]. For the successful
completion of construction projects, it is crucial to accurately predict and manage construc-
tion costs and risks from the early stages, particularly during the project’s initiation and
planning phases. However, the reality is that the majority of South Korean construction
companies and related institutions tend to treat cost information merely as data rather than
proactively assessing it. Recently, there has been an attempt to introduce machine learning
into cost management for precise predictions through quantitative analysis.

The dataset utilized for machine learning training should be constructed based on
historical project actual construction cost data. However, in typical cases, there is a lack
of standards or systems for accumulating and managing performance data related to
completed project construction costs. The absence of such a systematic record-keeping
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system results in insufficient available construction cost data, leading to challenges in the
collection process [2]. Consequently, there is a shortage in the accumulation of actual data
regarding construction costs, and the accumulated data often contains numerous missing
values, constraining the training of machine learning models. Particularly in large-scale
datasets, with few exceptions, the prevalence of missing values is notable [3]. The existence
of these missing values renders the dataset incomplete, and utilizing incomplete data
may result in inaccurate interpretations and outcomes regarding the inherent patterns in
the data. Therefore, inputing missing values is a crucial step in the preprocessing phase
before conducting actual analysis [4]. Hence, selecting an appropriate strategy for handling
incomplete data is of paramount importance in the field of data analysis [5].

Therefore, the purpose of this study is to apply various imputation methods for miss-
ing values in the construction cost prediction machine learning model. The study aims to
select a suitable method for imputing missing values in construction cost performance data
based on the comparison of prediction performance and outlier removal results, consider-
ing the correlation characteristics among construction cost influencing factors. The data
used in this study were collected from 906 construction cost performance records through
the public procurement agencies and the Construction Cost Information Plaza provided by
the Korea Public Procurement Service. Based on the collected data, influential factors have
been identified, and a dataset has been constructed to execute machine learning for predict-
ing construction costs based on this foundation. After defining the constructed model as
the base model, various methods for imputing missing values are applied and categorized
into single imputation methods and multiple imputation methods. The applied single
imputation methods include median imputation, mode imputation, and mean imputation.
The multiple imputation methods encompass regression-based approaches such as linear
regression, support vector machine regression, ridge regression, random forest regression,
lasso regression, decision tree regression, and K-nearest neighbors regression imputation.
An analysis has been conducted on the training outcomes of a machine learning model for
predicting construction costs using the applied imputed dataset and the outlier removal
process. Through this analysis, training performance was compared, and the characteristics
of influencing factors were validated. Based on these results, one of the most suitable
methods for handling missing values in the imputed dataset will be chosen. The study aims
to propose the optimal method for imputing missing values in the dataset for construction
cost prediction.

1.2. The Scope and Methodology of the Research

This study aims to compare imputation methods during the preprocessing phase of
constructing a dataset used in training machine learning models for construction cost pre-
diction. The applied imputation methods include three main methods for single imputation
and nine methods for multiple imputation, with a particular focus on regression-based
approaches. In this research, by applying these methods and comparing the results of
prediction performance and outlier removal based on the adjusted dataset, the study aims
to select a suitable imputation method for handling missing values in construction cost
data, considering the correlation among factors influencing construction costs. The specific
research methods are as follows.

First, factors influencing construction costs for the planning and design stages are de-
rived based on information available through the ‘Korea Online E-Procurement System [6]’
provided by the Public Procurement Service of Korea. Through various research materials,
it has been identified that construction cost influencing factors include total area, building
area, site area, landscape area, basement, ground level, total height, typical floor height,
and parking lots. Data were collected through the Public Procurement Service’s Korea
Online E-Procurement System and the Construction Cost Information Plaza [7]. The col-
lected data span from 2018 to 2022, covering construction projects. These projects include
structures made of reinforced concrete and steel frame construction, and the purposes of
the buildings range from educational facilities to government buildings, encompassing a
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variety of public structures. Based on the identified influential factors, a total of 906 data
samples are collected according to the previously mentioned conditions. Utilizing the data
collected based on these identified influential factors, a baseline model is constructed for
the implementation of machine learning.

Secondly, various methods are applied to impute missing values in the constructed
dataset for the prediction of construction costs, leading to the development of a complete
construction cost training dataset. The constructed dataset undergoes conditional outlier
removal and Z-score processing. Through this process, changes in the number of data
points are observed, and the success of imputing missing values, considering the correlation
among influencing factors in the actual construction cost data, is evaluated. Subsequently,
the results are compared and analyzed.

Finally, utilizing the dataset that has undergone imputation for missing values and
outlier removal during the data preprocessing phase, a machine learning model for con-
struction cost prediction is trained. Throughout this process, various aspects such as error
rates, accuracy during the machine learning process, and the comprehensive analysis of the
correlation between the derived factors are considered. Based on this analysis, a suitable
imputation method for handling missing values in actual construction cost data is selected.
The research flowchart is depicted in Figure 1.
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v '

Single Imputation Method Multiple Imputation Method

12

‘ The Dataset with Missing Values Imputed |

| Z-Score Outlier Removal | | Conditional Outlier Removal I——> Evall.Jatlor? ofithelleveliof Reflectlon G/
Relationships among Influencing Factors

‘ The Dataset with Outliers Removed |

Performance Evaluation of a Machine Learning Model
For Construction Cost Estimation

Suggesting an Appropriate Method
for Imputing Missing Values

Figure 1. Research Flowchart.

2. Related Works

Recently, there has been an increase in research on developing models and algorithms
for construction cost prediction using various combinations of machine learning algorithms.
This study aims to identify suitable supplementary methods to enhance the predictive per-
formance of machine learning models for construction cost prediction. Specifically, it seeks
to identify appropriate imputation methods for handling missing values in construction
cost data, optimizing training performance, and improving the accuracy of construction
cost predictions.

Hong [8] proposed a machine learning model based on accumulated data from newly
constructed zero-energy buildings to approximately predict construction costs according
to the desired characteristics of the client. The collected data for zero-energy building
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construction costs consisted of a total of 53 entries. Due to the limited quantity and
imbalanced distribution of the data, the study addressed this challenge by leveraging
CTGAN (Conditional Tabular Generative Adversarial Nets), a data augmentation technique.
The study utilized augmented data generated by CTGAN for machine learning, and it
demonstrated that construction cost data augmentation using CTGAN effectively reflected
the characteristics of the original construction cost data. Through this approach, the study
provided evidence that the performance of the approximate construction cost prediction
model based on Artificial Neural Networks (ANN) improved.

Kim et al. [9] applied a model combining neural networks and genetic algorithms to
predict the initial construction costs of residential buildings. The model was validated using
data from a total of 498 residential buildings constructed in Korea from 1997 to 2000. The
research results demonstrated that optimizing the parameters of the error backpropagation
network using a genetic algorithm was effective in predicting the initial construction costs.

Son and Kim [10] proposed a multivariate artificial neural network model applicable
to construction cost prediction in the project planning and budgeting process of educational
facility projects. After the publication of their book, they applied the construction cost
index to the detailed construction cost calculated by the quantity takeoff and utilized
multivariate performance data with the application of the construction cost index in an
artificial neural network. The goal was to present a construction cost model that allows
cost prediction in the conceptual phase of educational facility projects. The model’s utility
was validated, and the evaluation results showed an average error rate of 6.82%, with
a recorded accuracy of 93.18%. Since the proposed artificial neural network model was
trained using the construction budget amounts for educational facilities constructed in the
past five years, its application is anticipated in future budget allocations for educational
facility construction projects [8].

El-Sawalhi [11] employed various approaches considering project performance and
risks to estimate construction project costs. They used SVM (Support Vector Machine) to
predict the parameter costs of road construction projects, aiding in the performance of
construction management duties. The database used in this study collected 12 influential
factors that have the most significant impact on cost prediction from completed road
projects. The training model demonstrates a high accuracy rate of 95% in cost estimation,
underscoring its potential utility in early project planning stages. The study also suggests
further research to evaluate this model against other predictive methods, such as regression
models and artificial neural networks, to broaden its applicability and improve precision in
construction cost forecasting.

Hyari [12] proposed an artificial neural network model for conceptual cost estimation
of public construction projects. The model predicted the cost of engineering services,
considering both design costs and construction supervision costs. The database was based
on a dataset obtained from the Jordanian government’s bidding department. During the
model development process, factors influencing the cost of engineering services were
identified, and an appropriate artificial neural network was applied to the cost estimation
model. The model predicted the cost of engineering services as a percentage of construction
costs based on project type, engineering service category, project location, and project scope.
The result of the research indicated that the model could provide acceptable performance
for predicting the cost of engineering services in conceptual cost estimation models. The
developed model is expected to complement existing models focused on construction
cost estimation by adding the cost of engineering services, contributing to the overall cost
estimation of public construction projects.

Wang et al. [13] utilized deep neural networks (DNN) and SHapley Additive exPla-
nations (SHAP) based on data from 98 public school projects in the Hong Kong Special
Administrative Region to quantitatively explore construction cost estimation. They val-
idated their results through comparative analysis using conventional machine learning
models for construction cost prediction. The research findings indicated that economic fac-
tors play a crucial role in reducing construction cost estimation errors and are more critical
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than project characteristics. These results are expected to assist stakeholders in the field of
construction engineering and management in making informed decisions. Additionally,
researchers can benefit from understanding the actual impact of various influencing factors
on construction cost estimation.

Elhag and Boussabaine [14] developed two Artificial Neural Network (ANN) models
to predict the lowest bid prices for primary and secondary school buildings. The study
included 30 projects, and the relevant data were extracted from the BCIS database. While
Model 1 utilized 13 cost-determining attributes, Model 2 used only four input variables. The
results demonstrated that both ANN models were effectively trained during the training
phase and exhibited generalization capabilities during the testing session. ANN Models 1
and 2 achieved average accuracies of 79.3% and 82.2%, respectively.

Al-Tawal et al. [15] developed, trained, and tested ANN models using cost and design
data from 104 projects constructed in Jordan over the past five years. In the detailed
design phase, the first ANN model was developed using 53 design factors. Then, in
the approximate design phase, the factors were reduced to 41 to develop the second
prediction model. In the conceptual design phase, the third ANN model was developed
using 27 design factors. These models achieved average cost estimation accuracies of 98%,
98%, and 97% in the detailed design, approximate design, and conceptual design phases,
respectively. The introduced ANN approach as a management tool is expected to be a
useful tool for stakeholders to predict costs in the early stages of construction projects with
limited data.

Kovacevi, et al. [16] aim to accurately estimate the construction costs of transportation
infrastructure, specifically reinforced concrete (RC) and prestressed concrete (PC) bridges,
at the initial project stages. The research introduces various machine learning methods,
including MLP-ANN, MLP-ANN ensemble, regression tree ensemble, SVR, and GPR (Gaus-
sian Process Regression). It aims to create a dataset for 181 RC and PC bridges constructed
on the Pan-European Corridor X and to test all models under the same conditions using
10-fold cross-validation. Most models captured the complex interactions between input
features well and demonstrated strong generalization capabilities, with Gaussian Process
Regression (GPR) showing superior performance while maintaining lower complexity
compared to ensemble models. The study shows that machine learning-based methods
can eliminate biases due to human factors and provide the construction industry with
tools for rapid and reliable cost estimation for bridge construction. While problems in cost
estimation may arise from regression algorithms, they can also be considered classification
problems based on the grouping of cost data, in which case classification algorithms could
be applied. It was suggested that the developed models could be modified and applied to
other costs throughout the project lifecycle.

Park [17] utilized a construction cost budget prediction model for the budget of
public office buildings. Construction cost data were obtained from the Public Procurement
Service’s Construction Cost Information Plaza, focusing on public office buildings. The
research aimed to develop and compare construction cost budget prediction models using
Artificial Neural Networks (ANN) and multiple linear regression analysis techniques. The
objective was to verify whether each model could be utilized for predicting construction
cost budgets for public office buildings, extracting key features and implications. However,
there were limitations due to the constraints of available data, making it challenging to
perform construction cost predictions.

When attempting to construct a dataset for actual construction costs to predict con-
struction expenses, challenges related to the difficulty of collecting construction cost data
and the issue of missing data in the collected dataset may arise. In existing research cases,
there seems to be a lack of consideration for addressing these problems in the context of con-
struction cost prediction. This study aimed to propose an appropriate imputation method
that considers the correlation between factors influencing construction costs to minimize
information loss in the original data. The proposed imputation method, considering the
interaction among factors influencing construction costs, is deemed crucial for enhancing
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both dataset construction and prediction performance when utilizing machine learning
methods for construction cost prediction.

3. Model Configuration and Outlier Removal for Cost Prediction
3.1. Missing Data Imputation Method

The method of imputing missing values involves replacing missing values with values
inferred from the relationships with other variables and the observations where missing
values exist. This method is categorized into single imputation and multiple imputation,
aiming to construct a complete dataset. Single imputation provides a single value generated
through a series of processes as the replacement for missing values. The multiple imputation
method entails the generation of N sets of singularly imputed data through a series of
systematic procedures. Each of the N datasets undergoes a distinct analytical process, and
subsequently, the outcomes are amalgamated into a unified result.

3.1.1. Single Imputation Method

The single imputation method provides a single value generated through a series of
processes as the replacement for missing values. It involves replacing missing values with a
single value, such as the median, mean, or mode, which is generated through a systematic
procedure. This approach has the advantage of relatively easy application, as it replaces
missing values with a single value for the respective variable, allowing for the derivation
of a complete dataset. However, since all missing values are replaced with a single value,
there is a high likelihood of introducing bias into the estimates.

3.1.2. Multiple Imputation Method

The multiple imputation method was proposed to address the limitations of single
imputation methods, such as the occurrence of biases in estimates. The key distinction of
multiple imputations lies in generating several sets of single imputed data through a series
of processes. Each of the several datasets undergoes individual analytical procedures, and
subsequently, the results are amalgamated into a unified outcome. However, to conduct an
analysis on a single incomplete dataset, users need to possess multiple imputed datasets.
Additionally, inaccuracies may arise in the imputed data when learning inherent data
patterns during the process of data imputation. This can potentially lead to a decrease in
the accuracy of the imputed data.

In this study, we employed the regression model-based imputation method among
various multiple imputation techniques. The regression model-based imputation typi-
cally designates the dependent variable as the variable with missing values, while the
independent variables utilize the given set of other variables [15]. This method involves
establishing a regression model, applying regression analysis, and replacing missing values
with the regression-predicted values obtained from the analysis results. The imputed
values for missing data vary depending on the regression model used. In this research, the
employed regression models include linear regression, support vector machine regression,
ridge regression, random forest regression, lasso regression, decision tree regression, and
k-nearest neighbors regression.

Linear regression is a regression analysis technique that models the linear correlation
between the dependent variable y and one or more independent variables X. Equation (1)
represents the linear regression model. Lasso regression and ridge regression are regular-
ization methods used in linear regression models to reduce model complexity. Support
vector machine regression calculates the similarity between input values and support
vectors, assigns weights accordingly, and uses them to calculate predicted values. In this
research, the ‘sigmoid’ kernel was employed in the support vector machine regression to
effectively model nonlinear relationships within a particular dataset. The ‘sigmoid’ kernel
facilitates linear separation in issues with complex data structures by mapping the data to
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Results 1

a higher-dimensional space. This method enhances the model’s ability to learn the inherent
patterns in the data, thereby improving its predictive performance.

]/i:,BO"‘,lei"‘si i:l,2,3...,n 1)

The decision tree model is a model that automatically discovers rules in the data
through learning and creates tree-based classification rules. Random forest regression, as
shown in Figure 2a, is an ensemble technique based on decision trees. It involves gener-
ating multiple decision trees and calculating the final predicted value by averaging their
predicted values. In this research, the random state value was set to 0 for two regression
models, thereby specifying the initial seed value for the random number generator within
the algorithm. Fixing this value to a specific number ensures that consistent results are
achieved whenever the same data and parameter settings are utilized, thus guaranteeing
the reproducibility of the experiment.

B Decision Tree

T A
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Figure 2. (a) Random Forest Regression Model (b) K-Nearest Neighbors Regression Model.

K-nearest neighbors regression, as depicted in Figure 2b, involves finding the k-nearest
neighbors among existing data when a new observation is given. It classifies and predicts
based on values similar to those of the nearby neighbors, considering the attributes. In
this study, the KNN regression model used for imputing missing values was set with the
number of neighbors as five. The significance of the number of neighbors, K, in a model
directly impacts its complexity and performance. A lower K can make the model overly
sensitive to noise, leading to a higher risk of overfitting, while a higher K might result in
the model being overly simplified, causing underfitting. Therefore, choosing K = 5 was
expected as it effectively operates across various scenarios, offering a balanced approach
between capturing the complexity of the data and facilitating generalization.

3.2. Dataset for Machine Learning Training

Constructing a dataset for machine learning models is a crucial task. Additionally,
when building the dataset, it is essential to choose influential factors for predicting con-
struction costs.

This study aims to estimate the appropriate construction costs during the planning
and design phase of the architectural design process. To estimate construction costs, it is
necessary to define the factors influencing construction costs, and these factors are related
to the constraints provided during the design phase. Influencing factors include total area,
building area, site area, landscape area, basement, ground level, total height, typical floor
height, and parking lot size. Such information can be collected based on data provided by
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the Public Procurement Service’s Korea ON-Line E-Procurement System and Construction
Cost Information Plaza.

Based on the selected influential factors, data on construction projects completed
between 2018 and 2022 were collected from the Public Procurement Service’s Korea Online
E-Procurement System and the Construction Cost Information Plaza. The data primarily
consists of buildings constructed with reinforced concrete and steel frame structures, with
the uses of these buildings primarily being educational facilities, government buildings,
and other public structures. A total of 909 cases, including overall construction costs by
facility type, were collected. Cases without essential data (total area, building area, ground
level) for predicted construction costs were excluded, resulting in a total of 906 cases used
in the dataset. Before the data preprocessing stage, the number of missing values for each
influencing factor in the original dataset is shown in Table 1.

Table 1. Number of Missing Values by Influencing Factor.

Influencing Factor Number of Missing Values
totalarea 0
sitearea 81
buildingarea 78
landscapearea 143
typicalfloorheight 173
totalheight 106
basement 55
groundlevel 56
parkinglot 52
duration 7

3.3. Construction of Machine Learning Base Model for Cost Prediction
3.3.1. Base Model Configuration

The dataset used for training the machine learning model for construction cost pre-
diction is based on 906 cases of collected actual construction cost data. The development
environment is built on Visual Studio Code, using the Python language. The primary
objective of this study is to propose methods for appropriately filling in missing values in
actual construction cost data. Therefore, the conditions for all prediction models are set to
be the same, except for variations in the missing value imputation methods. Moreover, out
of the 906 case data, 70% are utilized as training data, while the remaining 30% are used as
test data. During the machine learning process, the case data are randomly extracted for
each training session to divide them into training and test data groups. When dealing with
complex and noisy data such as construction cost prediction, the selection of an activation
function that can reduce the model’s sensitivity to noise is crucial. For this reason, the ELU
(Exponential Linear Unit) activation function was chosen in this study. Additionally, the
configuration of node progression is a significant factor when processing large datasets or
training complex models. Therefore, to ensure that the model can thoroughly learn the
diverse characteristics of the data, a larger number of nodes were used in the initial layer.
Subsequently, the number of nodes was reduced to 100 — 64 — 32 — 1 in the following
layers to effectively summarize and compress the important information.

3.3.2. Model Configurations by Case

The basic model configuration conditions remain constant, with variations introduced
solely in the missing value imputation methods. There are a total of 10 applied missing
value imputation methods, comprising 3 single imputation methods and 7 multiple im-
putation methods based on regression models. In single imputation methods, median
imputation, mode imputation, and mean imputation are applied. In multiple imputation
methods, regression model-based imputations include linear regression imputation, sup-
port vector machine regression imputation, ridge regression imputation, random forest
regression imputation, lasso regression imputation, decision tree regression imputation,
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and k-nearest neighbors regression imputation. The model conditions for each case are
detailed in Table 2.

Table 2. Model Configurations.

Base Model Imputation Method for Missing Values
. dian i tati
Activation Function: Smglg me éan. tmputation
ELU Imputation mode imputation
Method mean imputation

linear regression imputation
support vector machine regression imputation

. Multiple ridge regression imputation
Node Processing: . P .
Imputation random forest regression imputation
100, 64, 32, 1 T .
Method lasso regression imputation

decision tree regression imputation
K-nearest neighbors regression imputation

The default settings for imputing missing values using multiple imputation methods
are as follows. For the support vector machine regression imputation method, the kernel
was set to ‘sigmoid’. In the case of ridge regression and lasso regression imputation
methods, ‘random state’ was set to 0 and ‘alpha’ was set to 1.0. The random forest regression
and decision tree regression imputation methods had their ‘random state” set to 0, while
for the KNN imputation method, the number of neighbors was set to 5.

3.3.3. Outlier Removal Based on Conditions and Z-Score

Filling missing values using single and multiple imputation methods for construction
cost actual data can be effective in completing the dataset. However, depending on the
method used, there is a possibility that incorrect data may be filled in, potentially leading
to gaps not only in the analysis of the characteristics of influential factors in the constructed
dataset but also in the correlation analysis between influencing factors. Therefore, to
confirm the presence of gaps, it is necessary to check for outliers in the replaced data values.

After the missing value imputation process, conditions were defined to remove outliers
based on actual construction cost data. The study established three conditions for removing
anomalies: first, when the building area is greater than the total area; second, when the
landscape area is greater than the site area; and third, when the building area is greater than
the site area. Data corresponding to these three conditions undergo a process of removing
entire rows. In the next step, among the data that was not removed, outliers are identified
and removed using the Z-Score outlier detection method. In this study, the Z-Score outlier
detection method was employed to identify and remove outliers. This method involves
comparing the Z-Score of data points against a predefined threshold, ‘threshold = 1.9¢,
where data points with a Z-Score exceeding this threshold are considered outliers and
subsequently removed. Outliers were independently removed for each column of the
provided dataset. Through this process, the number of outlier data points is measured
based on the missing value imputation method, and it is verified whether consideration
was given to the correlation between influential factors in construction cost prediction.

The dataset, processed through the missing value imputation and outlier removal
processes, is utilized for training machine learning models for construction cost prediction.

Figure 3 is a diagram illustrating the data preprocessing process that involves missing
value imputation and outlier removal. Based on the processed data, a comparison of the
performance of various machine learning models was conducted. In this manner, the study
aimed to consider the correlation between influential factors in construction cost prediction
and the performance of machine learning models, ultimately seeking to choose the optimal
method for imputing missing values in actual construction cost data.
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Figure 3. Changes in Data Based on Data Preprocessing.

4. Analysis of the Training Results
4.1. Differences in Data Composition by Missing Value Imputation Methods

The filled values vary depending on the method used to replace missing values in
the actual construction cost data. The three single imputation methods applied in this
study involve assigning the same constant value to all missing values. However, the
seven multiple imputation methods, mentioned as regression model-based imputation
methods, fill in missing values through an analysis of the constructed data patterns. The
analysis of data patterns may vary depending on the type of regression model, leading
to differences in the imputation of missing values. Therefore, while it is crucial to find
an appropriate imputation method through performance comparison for effective model
training, it is equally important to consider an imputation method that takes into account
the characteristics of data patterns and influential factors.

In this study, to assess whether characteristics between data patterns and influential
factors are considered, the changes in data quantity are examined through conditional
outlier removal and Z-Score outlier removal methods. For each missing value imputation
method, the total amount of data after outlier removal is compared, allowing for the
assessment of the level of consideration for influential factor characteristics. A suitable
missing value imputation method is then selected based on the judgment of an appropriate
level beyond the baseline.

The first outlier removal method, conditional outlier removal, is based on the corre-
lation between influential factors. It establishes conditions based on the correlation and
removes rows where the conditions are not met, considering them as outliers. The condi-
tions applied for conditional outlier removal include three cases: when the building area
is greater than the floor area, when the landscaping area is greater than the site area, and
when the building area is greater than the site area. If any of these conditions are met, the
entire row of data is deleted. Subsequently, the second method, Z-Score outlier removal,
is a general method that uses the mean and standard deviation to remove outliers. The
changes in data quantity according to the outlier removal process are shown in Table 3.

Based on the examination of the pattern of changes in data quantity, it was observed
that in the case of conditional outlier removal, the number of removed outliers was relatively
small when the median imputation method was applied among the single imputation
methods. This is because some values are deleted when conditional outlier removal is
applied to the original data. The reason for deletion is that during the imputation of missing
values, values that were not reflected in the correlation between floor area, landscaping area,
building area, and site area were replaced. Data excluded from the relationships between
influential factors in construction costs, as a result of this exclusion, may provide inaccurate
data patterns during model training, potentially reducing the performance of machine
learning models. Therefore, in this study, it is necessary to remove outliers generated
during missing value imputation to enhance the training performance of construction cost
prediction machine learning models.
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Table 3. Changes in Data Based on Data Preprocessing.

. - Conditional Z-Score Outlier

Imputation Method for Missing Values Raw Data Outlier Removal Removal

Single median imputation 906 900 (—6) 806 (—94)
Imputation mode imputation 906 900 (—6) 806 (—94)
mean imputation 906 899 (—7) 803 (—96)

linear regression imputation 906 900 (—6) 801 (—99)

support vector machine regression imputation 906 900 (—6) 828 (—72)

Multiple ridge regression imputation 906 900 (—6) 801 (—99)
Imputation random forest regression imputation 906 899 (-7) 805 (—94)
lasso regression imputation 906 900 (—6) 799 (—101)
decision tree regression imputation 906 899 (—7) 798 (—101)
K-nearest neighbors regression imputation 906 899 (—7) 798 (—101)
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The research results demonstrate that in the case of multiple imputation methods, lin-
ear regression imputation, support vector machine regression imputation, ridge regression
imputation, and lasso regression imputation methods result in fewer instances being iden-
tified as outliers compared to other regression model imputation methods. In conclusion,
the study shows that, for single imputation methods, the median imputation method, and
for multiple imputation methods, linear regression imputation, support vector machine
regression imputation, ridge regression imputation, and lasso regression imputation meth-
ods reflect the relationships between influential factors at a relatively high level compared
to other imputation methods.

4.2. Training Results by Missing Value Imputation Method

The results of the performance analysis of construction cost prediction machine learn-
ing models, utilizing single imputation methods applied based on the basic model con-
figuration, specifically median imputation, mode imputation, and mean imputation, are
presented in Figures 4-6. In the figure, a “wavy line” is used to omit certain loss sections to
improve the visibility of the graph, which is affected by the sharp decrease in ‘train_loss’
and ‘validation_loss’.
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Figure 4. Training Results of Median Imputation Method.
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Figure 5. Training Results of Mode Imputation Method.
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Figure 6. Training Results of Mean Imputation Method.

For single imputation methods, datasets were generated by applying median im-
putation, mode imputation, and mean imputation for machine learning training. The
results of the training show that, for the dataset with median imputation, ‘train_loss” and
‘validation_loss” gradually converge to 0 as epochs (training iterations) progress. As ob-
served from the results of three training sessions conducted through k-fold cross-validation,
the gap between ‘train_loss” and ‘validation_loss’ narrows as the number increases, and
then stabilizes at a certain level. On the other hand, for the dataset with mode imputa-
tion, there is a convergence trend up to 200 epochs, but as the epochs progress, the gap
between ‘train_loss’ and ‘validation_loss’ gradually widens. For the dataset with mean
imputation applied, as the number of epochs increases, the gap between ‘train_loss” and
‘validation_loss’ tends to narrow and gradually converge towards zero. However, the
progression of the graph is not consistent, and noise continues to appear persistently.

For machine learning training on the linear regression model, multiple imputation
methods, including linear regression imputation, support vector machine regression impu-
tation, ridge regression imputation, random forest regression imputation, lasso regression
imputation, decision tree regression imputation, and k-nearest neighbors regression impu-
tation, were applied to create datasets. The training results are presented in Figures 7-13.
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Figure 7. Training Results of Linear Regression Imputation Method.
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Figure 8. Training Results of Support Vector Machine Regression Imputation Method.
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Figure 9. Training Results of Ridge Regression Imputation Method.
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Figure 10. Training Results of Random Forest Regression Imputation Method.
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Figure 11. Training Results of Lasso Regression Imputation Method.
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Figure 12. Training Results of Decision Tree Regression Imputation Method.
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Figure 13. Training Results of K-Nearest Neighbors Regression Imputation Method.
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In the case of multiple imputation methods, various regression model-based imputa-
tion methods were applied to create a dataset for machine learning training. When training
was conducted using the dataset imputed through linear regression, the ‘train_loss’ showed
a converging trend to 0 as epochs progressed, while the ‘validation_loss’ converged to 0
but maintained a certain value.

For the dataset imputed through support vector machine regression, the overall trend
converged to 0, but ‘validation_loss” maintained a constant value. In the case of the
dataset imputed through ridge regression, ‘train_loss’, and ‘validation_loss’ converged to
0, maintaining a constant gap as epochs progressed.

When training was conducted using the dataset imputed through ridge regression,
both ‘train_loss” and ‘validation_loss’ demonstrated a tendency to converge towards zero.
However, even as the number of training iterations increased, they maintained a steady
state at the point of convergence.

When training was performed using a dataset imputed with Random Forest, a signifi-
cant amount of noise was observed throughout the training process, resulting in unstable
graph patterns. Moreover, in some folders, a crossing pattern between ‘train_loss” and
‘validation_loss’ was observed.

Training with the dataset imputed through Lasso regression revealed that both
‘train_loss” and ‘validation_loss” exhibited a convergence towards zero. However, beyond
a certain level of training iterations, only ‘train_loss’ continued to converge towards zero.

Upon conducting training with the dataset imputed through Decision Tree Regression,
the overall graph trended towards convergence at zero. However, it was observed that
minor noise occurred within the graph.

Upon training with the dataset imputed via the KNN regression approach, a notable
reduction in graph noise was observed compared to other methods. Additionally, as the
number of epochs increased, a trend towards zero was evident for both ‘train_loss” and
‘validation_loss’. However, during this process, instances of ‘train_loss’ and ‘validation_loss’
intersecting were also encountered.

Unlike single imputation methods for missing values, the use of multiple imputation
methods can result in situations where “validation_loss’ is lower than ‘train_loss’. This
phenomenon can occur during the application of k-fold cross-validation, where the machine
learning model undergoes training three times. The composition of training and test data,
randomly extracted in each training session, can vary, leading to the possibility of lower
‘validation_loss’ in certain folds. This is because the randomly selected data in some folds
may contain patterns that are easier to predict.

4.3. Optimal Method Selection Based on Machine Learning Training Performance

To evaluate the optimal missing value imputation method for creating a dataset for a
machine learning model predicting construction costs, the level of reflection of relationships
between influential factors and the learning performance of the construction cost prediction
machine learning model was assessed. The results of evaluating the level of correlation
maintenance between influential factors showed that, for single imputation methods,
median imputation and mode imputation were relatively high. For multiple imputation
methods, linear regression imputation, support vector machine regression imputation, ridge
regression imputation, and lasso regression imputation were relatively highly evaluated.

The relative training performance evaluation results for the dataset missing value
imputation methods of the machine learning model for construction cost prediction are
shown in Figure 14. According to the analysis results, in the case of single imputation
methods, median imputation is relatively low, with an average error rate of 16.91%. Among
the multiple imputation methods, lasso regression exhibits the lowest average error rate at
15.54%, followed by decision tree regression and random forest regression.
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Figure 14. Comparison of Machine Learning Training Performance (MAPE).

Therefore, considering both the level of reflection of relationships between influential
factors and the training performance of the construction cost prediction machine learning
model, lasso regression imputation is deemed the most appropriate for filling in missing
values in actual construction cost data.

5. Conclusions

To enhance predictive performance during the process of constructing a machine learn-
ing model, data preprocessing is essential. In the process of building a machine learning
model that deals with large-scale data, the data preprocessing stage, especially the replace-
ment of missing values, is crucial. There are various methods to replace missing values,
and in this study, three representative methods among single imputation methods and
seven regression model-based imputation methods among multiple imputation methods
were applied to replace missing values in the construction cost actual data.

To evaluate the suitability of the generated dataset based on the applied methods, two
criteria were used for assessment. The first criterion, determining suitability through the
reflection of correlations between influential factors, indicated that median imputation,
mode imputation, linear regression imputation, support vector machine regression imputa-
tion, ridge regression imputation, and lasso regression imputation methods were deemed
appropriate. The second criterion, evaluating suitability based on the learning performance
of the construction cost prediction machine learning model, revealed that, among single
imputation methods, median imputation, and among multiple imputation methods, lasso
regression imputation, was considered suitable due to its low average error rates. In sum-
mary, it was concluded that using the lasso regression method to replace missing values
is appropriate, considering the correlation between influential factors and improving the
learning performance of the machine learning model for construction cost prediction.

Analyzing these results, based on the second criterion of comparing the learning
performance of the construction cost prediction machine learning model, it can be observed
that median imputation, despite being a single imputation method, yields relatively low
error rates compared to most multiple imputation methods. However, the position of the
median can vary depending on the distribution of the data, as well as the range of maximum
and minimum values. This indicates that the learning performance may vary depending
on the data distribution. Therefore, especially when larger or smaller construction projects
are added to the actual construction cost data, where the position of the median can change
with additional data collection, applying single imputation methods might be challenging.
Considering these two evaluation criteria and the potential expansion of the data range, the
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application of lasso regression imputation among multiple imputation methods is deemed
the most appropriate.

Construction costs can vary significantly depending on various conditions in each
region or country, and predicting construction costs in any given area requires access to
that region’s data. Securing sufficient data for construction cost prediction in each region
is a challenging task, and even when data are obtained, there might be data that cannot
be partially collected. Due to these issues, finding ways to appropriately address missing
data is essential for enhancing the usability of the collected construction cost data. This
research could be significant in showing how to address missing values in the challenging
context of construction cost prediction, where data acquisition is difficult, and how the
performance of construction cost prediction changes depending on the method used to
handle missing data.

To improve the accuracy of construction cost prediction, it is necessary to secure a
sufficient amount of construction cost data. However, until enough data can be gathered,
it is considered necessary to find ways to optimally fill in missing data, as in this study,
in order to enhance the usability of the data that has been collected. Missing values in
actual construction cost data often share similar data patterns, so it is expected that using
an appropriate regression model, as demonstrated in this study, can replace missing values
to some extent. However, there are many cases of research expenses showing outliers that
deviate from general patterns, indicating that such models alone may have limitations
in completely substituting for missing data. This research serves as an initial step in the
development of machine learning-based construction cost prediction, seeking the optimal
method to replace missing data in construction cost prediction based on general models.
However, future research will need to focus on developing learning models that can be
applied to various conditions and cases that can be used in construction cost prediction
and researching ways to replace missing data under specific conditions.
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