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Abstract: To overcome limitations inherent in existing mechanical performance prediction models for
pervious concrete, including material constraints, limited applicability, and inadequate accuracy, this
study employs a deep learning approach to construct a Convolutional Neural Network (CNN) model
with three convolutional modules. The primary objective of the model is to precisely predict the
28-day compressive strength of pervious concrete. Eight input variables, encompassing coarse and
fine aggregate content, water content, admixture content, cement content, fly ash content, and silica
fume content, were selected for the model. The dataset utilized for both model training and testing
consists of 111 sample sets. To ensure the model’s coverage within the practical range of pervious
concrete strength and to enhance its robustness in real-world applications, an additional 12 sets of
experimental data were incorporated for training and testing. The research findings indicate that, in
comparison to the conventional machine learning method of Backpropagation (BP) neural networks,
the developed CNN prediction model in this paper demonstrates a higher coefficient of determination,
reaching 0.938, on the test dataset. The mean absolute percentage error is 9.13%, signifying that
the proposed prediction model exhibits notable accuracy and universality in predicting the 28-day
compressive strength of pervious concrete, regardless of the materials used in its preparation.

Keywords: pervious concrete; convolutional neural network; compressive strength; prediction model

1. Introduction

Pervious concrete, acknowledged as an innovative and environmentally friendly
construction material, features remarkable attributes such as excellent permeability, anti-
slip properties, corrosion resistance, and durability [1,2]. With its applications ranging
from urban development to environmental protection, pervious concrete offers a wide
range of potential uses [3]. Among its key performance indicators, compressive strength
emerges as pivotal. Precise prediction of pervious concrete’s compressive strength holds
paramount importance in enhancing the design and construction quality of structures
employing this material.

In recent years, extensive research has been conducted on the performance indica-
tors of pervious concrete. Many studies have employed diverse experimental materials
and conducted comparative experiments with varying mix proportions to investigate
the influence of different materials on the compressive strength and other performance
indicators of pervious concrete under different design conditions. These investigations
have covered various aspects, including different fly ash substitution rates [4–6], various
aggregate types [7–9], and different cement varieties [10,11], aiming to understand the
impact of these factors on pervious concrete performance. With the increasing application
of pervious concrete in urban construction, researchers have begun to explore the effects of
novel materials on its performance. This includes investigating the influence of different
types of fibers [12–14] and utilizing construction waste to prepare pervious concrete to
meet specific performance requirements in urban construction [15,16]. Considerations have
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also been given to factors such as curing conditions [17] and porosity [18,19], analyzing the
variations in compressive strength in pervious concrete from multiple perspectives. In ad-
dition to macroscopic studies on the strength variation patterns of pervious concrete, some
researchers have employed advanced techniques such as Scanning Electron Microscopy
(SEM) to investigate factors influencing its performance at a microscopic level. For example,
Kelly Patrícia Torres Vieira et al. [20] observed recycled aggregate pervious concrete sam-
ples using SEM, discovering a significant decrease in compressive strength with an increase
in the proportion of recycled aggregate. Conversely, Xiaoyan Zheng et al. [21] utilized field
emission SEM and X-ray diffraction to study the mechanism of alkali-activated materials
on pervious concrete performance. These microscopic studies not only provide a profound
analysis of the variation mechanism of compressive strength in pervious concrete through
extensive experimental data but also reveal key factors at the microscopic level, offering
valuable guidance for future pervious concrete design and construction.

While previous studies have derived variation patterns of compressive strength in
pervious concrete [22] with specific material configurations based on experimental mate-
rials, proposing empirical formulas, Table 1 illustrates some of these formulas and their
predictive effectiveness. However, the empirical formulas may not precisely predict the
compressive strength of pervious concrete with different materials and mix proportions
as the scope of application widens and new materials are developed. Given the rigor
of previous research and the resource consumption of comparative experiments, com-
prehensive consideration of pervious concrete compressive strength may be limited by
unique geological conditions and technological capabilities in different regions. Different
regions possess distinct construction experiences and explorations of pervious concrete
preparation methods, making it challenging to obtain a prediction method applicable to
the compressive strength of all pervious concrete using traditional empirical formulas.
Therefore, it is of practical significance to fully utilize the results and experimental data
from previous research to accurately predict the 28-day compressive strength of commonly
used formulations of pervious concrete.

Table 1. Partial Predictive Models for Compressive Strength of Pervious Concrete and Their Performance.

Nomenclature of the Model Method Class Model R2

fc: compressive strength;
ϕ: total porosity;

dp: mean pore size;
da: diameter of the aggerate particles.

First-order multivariate
function model [23]

fc =

−1.239ϕ − 1.568 dp
da

+ 39.265
0.99

fcc: compressive strength;
ϕ: porosity.

Logarithmic function model
[24] fcc = −18.6 ln(ϕ) + 71.3 0.98

fcu: cube compressive strength;
D: height of the specimen;

da: size of aggregate.
Power function [25] fcu = 532

(
D√
da

)−1.25 0.87

fcu: compressive strength;
δ1: replacement rates of ground granulated

blast-furnace slag;
δ2: replacement rates of recycled concrete aggregates;

δ3: replacement rates of recycled fine glass.

First-order multivariate
function model [26]

fcu = 23.60 + 11.96δ1 −
19.11δ2 − 4.51δ3

0.87

σc: compressive strength;
UPV: ultrasonic pulse velocity. Power function [27] σc = 0.1292UPV3.617 0.80

y: compressive strength;
x: porosity. Linear regression model [8] y = −7.05x + 166.0 0.71

y: compressive strength;
x: density. Linear regression model [22] y = 0.02x − 31.369 0.63

Table 1 illustrates that with the introduction of complex methods such as logarithms,
the predictive accuracy of traditional empirical formulas continues to improve. However, it
is crucial to note that the accuracy of traditional empirical formulas often relies on specific
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mix proportions. Consequently, empirical formulas that perform well in certain studies
may not be applicable to research based on different mix proportions. This limitation
arises from the fact that mix proportions and material types are typically not considered
when constructing these formulas. Incorporating mix proportion information significantly
increases the data requirements for model construction. Additionally, traditional regression
methods may struggle to handle such large datasets effectively.

In recent years, research in machine learning and deep learning has made it feasi-
ble to predict sample indicators by integrating past large datasets with existing sample
features [28,29]. Existing studies indicate that models based on machine learning and
deep learning can predict the compressive strength of concrete with relatively high ac-
curacy [30–32]. For instance, predictive models constructed using BP neural networks
have shown good predictive performance regarding the compressive strength of different
types of concrete [33–37]. Additionally, other machine learning methods, besides BP neu-
ral networks, have demonstrated a favorable trend in predicting the 28-day compressive
strength of concrete [38–42]. With the continuous advancement of deep learning, models
for predicting the compressive strength of concrete established using CNNs and improved
convolutional neural networks exhibit superior predictive performance compared to tra-
ditional machine learning methods [43–46]. This provides novel insights and methods
for researching the prediction of compressive strength in pervious concrete. For example,
Ziyue Zeng et al. [47] analyzed the effectiveness of various deep learning and machine
learning methods in predicting the compressive strength of concrete and developed a
CNN-based predictive model for concrete compressive strength. This model was trained
using data on concrete compressive strength from various materials with different material
types and mix proportions. Testing revealed an R2 of 0.967 on the test set, confirming that
the CNN-based predictive method for concrete compressive strength can be applied to
concrete prepared from different materials with better applicability compared to traditional
empirical formulas.

This study presents a predictive model for the 28-day compressive strength of pervious
concrete utilizing CNN. The methodology integrates various material characteristics of
pervious concrete, effectively merging existing research data and practical engineering
experience to yield reliable strength predictions. By employing a deep neural network
and utilizing the content of each component as input for data training and analysis, this
approach is not only operationally straightforward but also adeptly characterizes key
features influencing concrete strength, including water-to-cement ratio, sand-to-aggregate
ratio, fly ash substitution ratio, etc.

The main contributions of this study are as follows: (i) Development of a CNN
model to predict the 28-day compressive strength of pervious concrete. Comparative
assessments based on goodness of fit, average absolute percentage error, root mean square
error, and mean absolute error demonstrate the superior performance of the proposed
model. (ii) Integration of existing mix proportion information into the model, primarily
obtained from previous studies on the mechanical performance of pervious concrete. This
utilization of component information as input simplifies the model’s operation, alleviating
additional workload for engineers and enhancing its practicality. (iii) The proposed model
achieves a goodness of fit greater than 0.9 on the test set, indicating its effectiveness in
predicting the 28-day compressive strength of pervious concrete with different materials.
The average absolute percentage error on the test set is less than 10%, suggesting that the
CNN model’s prediction errors regarding pervious concrete strength under the influence
of different materials fall within an acceptable range, affirming the applicability of the
proposed method.

This research presents a novel approach, providing theoretical support for predicting
the strength of pervious concrete. The findings offer valuable insights for future in-depth
studies in related fields.
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2. Data Source and Model Testing

To ensure experimental reproducibility, this section will introduce the data sources
used to train the CNN, the methods employed for acquiring experimental data, as well as
the structural information of the CNN and the specifics of the training and testing processes.

2.1. Data Source

To validate the universality of the predictive model established in this study, we
employed data from experiments on pervious concrete using different materials reported
in the literature for training and testing a convolutional neural network. Table 2 provides
the sources and relevant component information for these 111 sets of data. Given that
the compressive strength of pervious concrete is typically lower than that of conventional
concrete and varies within the range of 2–28 MPa [22], although advances in research have
led to improvements in the compressive strength of pervious concrete, it still remains lower
than that of conventional concrete. Based on this, we searched for pervious concrete samples
within the compressive strength range of 2 to 40 MPa for model training and prediction.
Additionally, due to variations in the mix composition of pervious concrete studied in
different articles, adding samples beyond a certain range of material types may lead to
difficulty in model convergence during training. Therefore, we selected several sets of
samples with conventional mix compositions to ensure better applicability of the model at
the current stage. Specifically, during the data collection process, we gathered information
on coarse and fine aggregate types and contents, water content, admixture content, cement
types and contents, fly ash content, silica fume content, and 28-day compressive strength
for each sample group. Furthermore, to mitigate the potential impact of minor variations in
the training or testing sets on model training or prediction errors, we additionally collected
12 sets of data through experiments (as described in Section 3.2) and incorporated them
into the dataset. Subsequently, each sample in the overall dataset was randomly assigned
to the training set and testing set, ensuring that a different training set and testing set were
used each time the model was run to enhance its robustness.

Table 2. Source and Information of the Dataset.

Reference
Curing

Age (Days) Type of Curing Type of Cement Type of Filler
Type of Aggregate

CA FA

1 Seeni Bright
Singh et al. [48] 28 Moist Ordinary

Portland Cement Fly Ash Gravel

2 Bright Singh
Seeni et al. [49] 28 Moist Ordinary

Portland Cement Silica Fume Gravel

3 Yafei Sun et al.
[50] 28 Moist Ordinary

Portland Cement Fly Ash Natural
Gravel

4
Ayda S.

Agar-Ozbek
et al. [51]

28

be Wrapped with
Aluminum and

Plastic Foils
(20 ◦C)

CEM I 52.5 Microsilica
Crushed

Basalt and
River Gravel

Crushed Basalt

5 Yu Chen et al.
[52] 28 Moist ASTM Type I Fly Ash and

Silica Fume Granite

6 M. Rezania
et al. [53] 28 Maintained Into a

Pool (23 ± 2 ◦C)
Ordinary

Portland Cement
Lightweight
Aggregate

Dry Apparent
Specific Weight:

1600 kg/m3

Considering the aim of this study to establish a method for predicting the 28-day com-
pressive strength of pervious concrete, it is noted that existing publicly available datasets do
not encompass the mix proportion information of pervious concrete prepared from different
types of materials. In such a scenario, including material types as input parameters may
potentially hinder model convergence or lead to poor predictive performance. Therefore,
in the process of model development, this study opts to disregard restrictions on aggregate
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and cement types and endeavors to seek pervious concrete data that approximate material
preparation during model training.

The dataset obtained from the literature was split into two subsets, with 70% desig-
nated as the training set and the remaining 30% as the testing set, utilized for training and
evaluating the CNN models. Each sample in the dataset includes nine pieces of informa-
tion: coarse and fine aggregate content, water content, admixture content, cement content,
fly ash content, and silica fume content, covering eight input variables, along with the
corresponding compressive strength after 28 days of curing.

2.2. Model Information
2.2.1. Background

CNN is a standard neural network structure in deep learning, originating from com-
puter vision and finding widespread applications. It typically consists of layers, including
convolutional layers, pooling layers, batch normalization layers, activation functions, and
more. Among these, the convolutional layer performs convolution operations on the output
data from the preceding layer to extract diverse features. This process can be represented as:

Yk
i,j =

H−1

∑
m=0

W−1

∑
n=0

C−1

∑
l=0

X(S · i + m, S · j + n, l) · ω(m, n, l, k) + b(k) (1)

In the equation, Yk
i,j represents the value at position (i, j) after the original data under-

goes processing with the k-th convolutional kernel. H represents the height, W represents
the width, C represents the number of channels in the input image, X(i, j, l) represents the
value at position (i, j) on channel l of the input data, S denotes the stride of the convolutional
kernel, set to 1 in this study. ω(m, n, l, k) signifies the value of the k-th convolutional kernel
at position (i, j) on channel l, and b(k) denotes the bias of the k-th convolutional kernel. The
convolutional layer extracts features from the output data of the preceding layer following
the described rules, as illustrated in Figure 1.
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Figure 1. Schematic Diagram of the Convolution Process.

The pooling layer is employed to filter redundant components from the output data
of the preceding layer, reducing the computed data volume, enhancing the model’s noise
resistance, preventing overfitting, and simultaneously preserving the original data features.
Common pooling methods include max pooling and average pooling, with this study
choosing max pooling to filter the data processed by the convolutional layer. Specifically,
within each data region of the pooling kernel size, the maximum value is selected to form the
new output. The primary computational process can be expressed by the following formula:
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Yl
i,j = maxX(S · i + m, S · j + n, l), m, n = 0, · · · , P − 1 (2)

In the equation, Yl
i,j represents the data value at position (i, j) for the l-th channel of

the pooling layer’s output, and X(i, j, l) represents the value at position (i, j) for channel l
of the input data. S denotes the stride of the pooling kernel, set to 1 in this study, and P
represents the size of the pooling kernel. The process of the pooling layer’s treatment of the
output data from the preceding layer (with a stride of 2 for the pooling kernel) is illustrated
in Figure 2.
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The batch normalization layer can be viewed as a preprocessing step involving data
standardization and regularization. It is frequently applied in convolutional neural net-
works to normalize the output of each convolutional layer, ensuring that the outputs adhere
to a Gaussian distribution with consistent mean and variance. This aids in preventing
continuous shifts in the distribution of input data across different layers, thereby enhancing
the stability and efficiency of the training process. The batch normalization process involves
the following steps. Firstly, calculate the variance and mean for each data batch:

µ =
1
m

m

∑
i=1

Xi (3)

σ2 =
1
m

m

∑
i=1

(Xi − µ)2 (4)

In the equation, m represents the size of each batch, and Xi represents the i-th sample
within each batch.

By computing the variance and mean of each batch, the normalization process is
applied to the batch data:

X̂i =
Xi − µ√

σ2 + ε
(5)

Here, ε is a small positive constant introduced to prevent division by zero in the
denominator.

Finally, the normalized data is shifted and scaled to accelerate the training process
while ensuring the stability of the model:

Yi = γX̂i + β (6)

Here, γ represents the scaling parameter, and β is the translation parameter.
The activation function introduces non-linearity into the model, thereby enhancing the

expressive power of the neural network. Common activation functions include the Rectified
Linear Unit (ReLU) function, the Sigmoid function, and others. In this study, the ReLU
function is utilized as the activation function for the convolutional neural network. The
computation process of the ReLU function for each input data x is represented as follows:

f (x) = max(0, x) (7)
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The fully connected layer achieves a linear combination of data and weights, introduc-
ing non-linearity through the incorporation of an activation function. This allows the model
to extract more complex features from the data and undergo non-linear transformations,
thereby enhancing its flexibility. The computation process is as follows:

Y = f (X · W + b) (8)

In the equation, X represents the input data vector, W is the weight matrix, b is the
bias vector, and f (x) denotes the ReLU function.

2.2.2. CNN Structure

CNNs have been extensively explored by researchers for predicting concrete compres-
sive strength. For instance, Deng et al. [54] developed a neural network with a convolutional
layer kernel and a hidden layer containing four neurons, utilizing four input features to
predict recycled aggregate concrete. Conversely, Zeng et al. [47] argued that as the number
of input indicators increases, the CNN’s structure should be adjusted accordingly. There-
fore, they expanded the number of convolutional kernels and conducted a search for the
optimal number of neurons in the fully connected layer within the range of 4 to 128.

Considering the significant variations in raw materials among samples in this study,
the convolutional structure is enhanced accordingly. Each convolutional structure com-
prises a convolutional layer (with a kernel size of 3 × 1 × 1), a pooling layer (with a pooling
kernel size of 1 × 1), a batch normalization layer, and a ReLU activation function layer. The
collected data enter the model through the input layer. After undergoing basic training
with three convolutional structures, redundant data are eliminated through dropout layers.
Subsequently, data fusion is accomplished through fully connected layers. Finally, the
model is trained, and data prediction is performed using a regression layer. The structure
of the CNN is illustrated in Figure 3.
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2.3. Model Training and Testing

The model undergoes training using a loss function, which quantifies the disparity
between predicted and actual values. The CNN is iteratively optimized during training to
minimize this loss. Common loss functions encompass mean square error, mean absolute
error, and cross-entropy. In this study, the root mean square error (RMSE) is chosen as the
loss function. The error after a training iteration is computed as:

LN =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (9)

Here, N represents the total number of samples, yi denotes the actual value of the i-th
sample, and ŷi is the predicted value for the i-th sample.
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The optimizer fine-tunes model parameters for the CNN based on predefined criteria
to minimize the loss function. In this study, stochastic gradient descent (SGD) is employed
as the optimizer. For each training iteration, SGD randomly selects a subset from all samples
to calculate the gradient, subsequently updating the model parameters. The main formula
for this process is as follows:

θt+1 = θt − η ▽ L(θt; xi, yi) (10)

In the equation, θt represents the values of the model parameters at the t-th training
iteration, η is the learning rate, L(θt; xi, yi) denotes the loss function of the sample (xi, yi)
at the t-th training iteration, and ▽L(θt; xi, yi) is the partial derivative of the loss function
with respect to the model parameters.

During the initial training phase of convolutional networks, a higher learning rate
aids in the rapid convergence of the model. However, as the model approaches the optimal
point, a higher learning rate may lead to oscillations during training. Therefore, this study
adopts a strategy of dynamic learning rate adjustment. We set the initial learning rate to
0.01, with a learning rate decay factor of 0.5. After 500 training iterations, the learning rate
is reduced to 0.005. Additionally, during training, each batch consists of 30 samples, with
a maximum of 2000 training iterations. The dataset is divided into 70% for training and
30% for testing. Given that this study aims to validate and test the predictive performance
of CNNs for pervious concrete compressive strength, MATLAB 2021b is utilized for CNN
model construction, training, and testing. Due to cost considerations, a shared data platform
is not established at present.

3. Results and Discussion
3.1. CNN Model Predictive Performance

To visually demonstrate the predictive capabilities of the CNN model for the com-
pressive strength of pervious concrete, this study selects results from a specific experiment,
as illustrated in Figure 4. The vertical axis represents the 28-day compressive strength
predicted by the CNN model, while the horizontal axis represents the actual compressive
strength data obtained through literature review and experimental testing. This figure
enables a direct visual comparison of the CNN model’s predictions on the training and
testing sets.
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The data points in the graph are primarily clustered around the diagonal line, indi-
cating a strong alignment between the model’s predictions and the observed results. This
clustering pattern suggests a high degree of concordance between the predicted and actual
compressive strength values. The model demonstrates notable accuracy in forecasting
compressive strength for pervious concrete, as evidenced by the proximity of the data
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points to the diagonal line. This visual analysis underscores the CNN model’s ability to
provide accurate predictions for compressive strength.

3.2. Improvements in CNN Model Training
3.2.1. Enhancements for Improved Robustness of the Model

Figure 4 illustrates the favorable predictive performance of the CNN model trained in
this study for various types of pervious concrete. However, there is a lack of training data
in the range of 10 to 20 MPa, which could lead to inadequacies in the model’s predictions
for the compressive strength of pervious concrete within this range. To enhance the
robustness of the model, ensuring that subtle variations in the material composition of
pervious concrete do not significantly impact the prediction results, experimental data on
the measured 28-day compressive strength in the range of 10 to 20 MPa will be added. This
additional data aims to augment the training set of the CNN predictive model, improving
its applicability to different types of pervious concrete.

3.2.2. Method for Enhancing Model Robustness

(1) Experimental Materials

This study employed various materials for the pervious concrete experiments, includ-
ing Ordinary Portland Cement (OPC) of grade 42.5. The OPC has a standard consistency
of 27.1%, a specific surface area of 357 m2/kg, an initial setting time of 203 min, and a
final setting time of 250 min. For coarse aggregates, 5–20 mm aggregates supplied by the
Jinying Hardware Business Department in Jiangning District, Nanjing, were chosen. These
aggregates exhibit an apparent density of 3.0149 g/cm3, a bulk density of 3.0045 g/cm3, a
compacted bulk density of 2.9246 g/cm3, and a crushing value of 3.04%.

Additionally, low-calcium Class I fly ash produced by the Nanjing Thermal Power
Plant was employed, featuring a density of 2.04 g/cm3, a water demand ratio of 0.95,
and fineness (remaining on the 45 µm sieve) of 6%. To enhance concrete performance, a
high-performance polycarboxylate superplasticizer from Wuhan Greelan Building Material
Technology Co., Ltd., located in Wuhan City, Hubei Province, China, was introduced. This
superplasticizer, in powder form with a gray-white appearance, has a bulk density ranging
from 350 to 450 kg/m3 and achieves a 25% to 30% reduction in mortar water content. The
water used in concrete mixing adhered to the standards outlined in JGJ63-2006 for concrete
water usage [55].

(2) Experimental Procedure

In this study, twelve sets of pervious concrete were prepared with different mix
proportions, and their specific compositions are detailed in Table 3. The pervious concrete
was fabricated using the slurry coating method, following a specific procedure: Initially,
the coarse aggregates were mixed with approximately 3% water for 30 s in a mixer to
ensure thorough pre-wetting of the aggregate surfaces, enhancing their adhesion to cement.
Subsequently, 100% cement, water, and corresponding additives were added, and the
mixture was stirred for 180 s to form a highly flowable slurry, significantly reducing friction
between the aggregates. This process effectively prevented the crushing of the coarse
aggregates when their resistance exceeded acceptable limits while facilitating uniform
coating of the aggregate surfaces by the slurry, promoting the formation of a spherical
structure and enhancing the porosity of the pervious concrete. The freshly mixed concrete
was then poured into cubic molds measuring 100 × 100 × 100 mm3 and compacted by
vibration. After being left to stand for 24 h, the specimens were demolded and placed
in a standard curing chamber. After 28 days, compressive strength tests were conducted
on the specimens according to the “Standard for Test Method of Mechanical Properties
of Ordinary Concrete” (GB/T 50081-2002) [56]. The porosity and compressive strength
test results of the pervious concrete specimens are listed in Table 4. Since the pervious
concrete specimens were prepared to supplement the data gap in the 10–20 MPa range, the
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compressive strength test results showed relatively close values, with a standard deviation
of approximately 4.63 MPa.

Table 3. Pervious Concrete Mix Ratios.

Mixture
Coarse

Aggregates
(kg/m3)

Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Fresh Concrete
Bulk Density

(kg/m3)

Mix 1 1532 300 90 90 1863
Mix 2 1532 300 178 110 1945
Mix 3 1532 300 279 111 2065
Mix 4 1532 350 74 94 1884
Mix 5 1532 350 144 109 1967
Mix 6 1532 350 237 123 2039
Mix 7 1532 400 40 94 1876
Mix 8 1532 400 115 109 1958
Mix 9 1532 400 189 120 2098
Mix 10 1532 450 10 98 1855
Mix 11 1532 450 69 104 1965
Mix 12 1532 450 159 117 2075

Table 4. Pervious Concrete Porosity and Compressive Strength Test Results.

Mixture Measured Porosity (%) 28 d Compressive Strength
(MPa)

Mix 1 24.9 10.8
Mix 2 20.4 12.9
Mix 3 15.9 16.4
Mix 4 24.3 12.8
Mix 5 19.2 14.6
Mix 6 16.5 18.8
Mix 7 23.2 16.3
Mix 8 21.1 18.9
Mix 9 14.3 24.4

Mix 10 24.5 18.9
Mix 11 21.1 21.8
Mix 12 15.3 25.6

3.2.3. Predictive Performance after Model Training Enhancement

To visually showcase the predictive performance of the CNN developed in this study
for estimating the compressive strength of pervious concrete with different material compo-
sitions, actual data from various sources were compared with their corresponding predicted
values generated by the model. The comprehensive predictive performance is illustrated in
Figure 5. Notably, the additional data incorporated in this study successfully addressed
the data gap within the 10~20 MPa range. Following the retraining process, the CNN
model demonstrated favorable predictive accuracy across all sample data, with data points
clustered closely around the diagonal line.

After incorporating additional training data, the prediction performance of the CNN
model on both the training and test sets is illustrated in Figure 6. It is evident that the
model’s predicted values closely match the actual values in both the test and training sets,
with minimal absolute errors. This observation signifies that the model, retrained with the
inclusion of new data, showcases excellent predictive capabilities without encountering un-
derfitting or overfitting issues. The model consistently achieves high accuracy in predicting
the 28-day compressive strength of diverse types of pervious concrete.
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Figure 6. Comparison between Predicted and Actual Values of the Improved CNN Model: (a) Training
Set; (b) Test Set.

To comprehensively demonstrate the predictive performance of the model, this paper
employs the following metrics to further evaluate the prediction performance of the CNN
model. The coefficient of determination R2, characterizing the prediction effect, is calculated
by the Formula (11). The coefficient of determination is a commonly used evaluation index
for assessing the prediction and fitting effects of the model. According to its definition,
the value of R2 falls between [0, 1], with a value closer to 1 indicating that the model’s
predicted values are closer to the actual values.

R2 = 1 − ∑N
i=1(Predictedi − Actuali)

2

∑N
i=1

(
Actuali − Actual

)2 (11)

In Formula (11), Predictedi represents the predicted strength of the i-th sample in the
model, Actuali represents the measured strength of the i-th sample, and Actual denotes the
average measured strength of all samples.

In addition to the coefficient of determination, this paper assesses the predictive
performance of the CNN model on pervious concrete using Root Mean Square Error, Mean
Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). Formulas (12)–(14)
present the expressions for these indicators, and Table 5 provides the values of these
evaluation metrics in a single model training experiment.
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MAPE =
1
N

N

∑
i=1

∣∣∣∣ Actuali − Predictedi
Actuali

∣∣∣∣× 100% (12)

RMSE =

√√√√ 1
N

N

∑
i=1

(Actuali − Predictedi)
2 (13)

MAE =
1
N

N

∑
i=1

|Actuali − Predictedi| (14)

Table 5. Values of evaluation indicators in a single model training experiment.

Data Set
Performance Measures

R2 RMSE (MPa) MAPE (%) MAE (MPa)

Training set 0.942 2.716 9.621 2.080
Test set 0.938 2.997 9.134 2.440

In addition to the aforementioned indicators, this paper also visually presents the
distribution of relative errors between predicted and actual values in both the training
and test sets through histograms, as illustrated in Figure 7. According to the calculations,
the minimum relative error in the training set can reach 0.03%, and in the test set, it can
reach 0.08%. Moreover, in the training set, over 60% of the relative errors are less than
10%, and in the test set, a similar proportion of over 60% of the relative errors fall below
10%. The percentage of relative errors exceeding 20% is only 9.30% in the training set
and 8.11% in the test set. These findings indicate the CNN model’s ability to provide
reliable and accurate estimates of compressive strength for pervious concrete with varying
material compositions.
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3.3. Comparative Analysis between CNN and Other Prediction Methods

To further highlight the superiority of CNN, this study conducted a comparative
analysis of the predictive performance between CNN and another widely used machine
learning model, the BP Neural Network. Both models were trained and tested using the
same dataset. Figure 8 visually illustrates the predictive capabilities of the BP Neural
Network regarding the compressive strength of pervious concrete from various sources. It
is evident that the data points are generally distributed in proximity to the diagonal line,
with some points exhibiting a certain distance from the diagonal but lacking clear outliers.
This observation suggests that the BP Neural Network also demonstrates acceptable pre-
dictive performance for the 28-day compressive strength of pervious concrete with diverse
material compositions.
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To visually compare the efficacy of CNN and the BP neural network in predicting
pervious concrete compressive strength, this paper generated a comparative graph illus-
trating their predicted values against the actual values. Figure 9 provides an intuitive
representation of the variance in predictive performance between the BP neural network
model and CNN for the 28-day compressive strength of pervious concrete. Notably, both
CNN and BP’s predicted values exhibit clustering around the actual values. However,
the predicted values of the CNN model are in closer proximity to the real values, visually
indicating superior predictive performance. This visual analysis underscores that the CNN
model offers greater accuracy and reliability in predicting the compressive strength of
pervious concrete compared to the BP neural network.
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To provide a more explicit comparison of the predictive capabilities for the 28-day
compressive strength of pervious concrete between the CNN and BP models, this study
contrasts the predicted values of CNN and BP with the actual values individually, as
depicted in Figure 10. The results in the figure clearly demonstrate that both BP and CNN
exhibit satisfactory predictive performance across the entire dataset. However, the data
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points in the CNN model are more densely clustered around the diagonal, indicating closer
proximity between CNN predictions and the measured compressive strength. Additionally,
the overall R2 for the sample predictions in the CNN model is 0.931, while for the BP neural
network, it is 0.893. This implies that the overall predictive performance of CNN surpasses
that of the BP neural network.
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To comprehensively compare the predictive performance of CNN and BP, this study
evaluated the RMSE, MAE, and MAPE metrics between the two models. Figure 11 illus-
trates the comparative results of CNN and BP based on these metrics. The findings reveal
that CNN exhibits smaller RMSE, MAE, and MAPE in comparison to BP, indicating that
the average differences between predicted values and actual values are reduced in the
CNN model. Moreover, the MAPE for the BP test set is 14.40%, surpassing the desirable
threshold of 10%. This suggests that while the BP neural network demonstrates reason-
able predictive performance for most pervious concrete samples, it may exhibit notable
deviations from actual values for specific mix ratios, presenting challenges in practical
applications. In contrast, CNN demonstrates smaller error metrics, with all MAPE values
falling below the 10% threshold, signifying that its predictive performance is within an
optimal range. Therefore, CNN provides reliable predictions for the 28-day compressive
strength of pervious concrete with various material compositions.
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4. Conclusions

This paper introduces a CNN model designed for predicting the 28-day compressive
strength of pervious concrete, utilizing eight mix proportion parameters as input variables.
The model undergoes training and testing on a dataset comprising 123 samples from
literature and experiments. The key findings of this study are as follows:

(I) The proposed CNN model showcased remarkable accuracy. Through multiple experi-
ments, the CNN model achieved an R2 of 0.938 and a MAPE of 9.13% on the test set,
indicating acceptable prediction errors and robust model stability. This underscores
the CNN model’s capability to precisely predict the 28-day compressive strength of
pervious concrete, making it adaptable to diverse material compositions.

(II) The predictive model presented in this paper demonstrates enhanced stability and
outperforms traditional methods. In comparison to the BP neural network trained and
tested on the same dataset, the CNN model exhibits considerably lower prediction
error metrics (RMSE, MAE, and MAPE) and notably higher R2, signifying superior
predictive performance and stability compared to traditional approaches.

(III) This study supplemented the model training with experimental data encompassing
the compressive strength range of 10–20 MPa for pervious concrete, ensuring coverage
of the common compressive strength spectrum of pervious concrete. The test set
results indicate that the model data augmented with experimental data performs well
in predicting data obtained from different literature sources as well as data acquired
through experiments.

The results of this study enable the prediction of the 28-day compressive strength of
various types of pervious concrete using existing pervious concrete preparation experience,
better meeting the needs of practical construction. However, due to the limited nature
of the dataset, factors such as aggregate size, type, cement grade, curing conditions, etc.,
were not included as input parameters. The diversity of pervious concrete types may result
in suboptimal performance of the predictive model constructed in this study. Therefore,
in future work, to build CNN predictive models more suitable for different materials, it
is essential to fully utilize existing experimental data, incorporate material information
and preparation conditions of pervious concrete into the model’s input parameters, and
collect sufficient data to ensure model convergence. Additionally, with the increase in input
parameter variables and the significant expansion of the dataset, determining specific values
for hyperparameters such as learning rate and learning rate decay factor will become a
complex issue. It will be necessary to develop appropriate algorithms to partition a portion
of the overall dataset for estimating these hyperparameter values, enabling the model to
converge more quickly and thereby improve prediction accuracy and applicability.
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