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Abstract: Pole-type structures are vulnerable to earthquake events due to their slender shapes,
particularly porcelain cylindrical equipment in electrical substations, which has inherent fragility
and low strength in its materials. Traditional base isolation designs configure the bottom of the
pole-type equipment as hinges with restraints. It fully relies on the restrainers to re-center the
pole-type equipment, posing a risk of tilting and functionality failure after earthquakes. This study
proposes a solution to this challenge by introducing a restrained rocking mechanism at the base of
the structure. The design leverages the self-centering nature of rocking motion and uses restrainers to
control the amplitude of rotation. Hence, it can effectively avoid tilting of the pole-type structures
after earthquakes. Experimental investigations conducted on a 1:1 full-scale specimen revealed that
the proposed restrained rocking design can achieve a reduction in seismic internal forces of over
50% while maintaining equipment in an upright position. Furthermore, an analytical model for
the proposed isolation system of pole structures was developed and validated through comparison
with experimental results. This paper introduces a novel solution for seismic isolation of pole-type
structures through restrained rocking, specifically addressing the research gap regarding a reliable
self-centering mechanism under seismic excitation. This advancement significantly enhances the
seismic resilience of fragile pole-type structures and provides practical design methodologies for the
seismic isolation of slender structures.

Keywords: restrained rocking; seismic isolation; pole-type structure; shaking table test; porcelain
electrical equipment

1. Introduction

Pole-type structures are commonly engineered to withstand moderate loads at con-
siderable heights. This category of structures encompasses a variety of utility poles, such
as electricity poles, flagpoles, communication facility poles, and overhead antennas. Typ-
ically, these structures are constructed using materials such as timber, steel tubes, or
steel-reinforced concrete. Despite the supported loads being significantly lower than their
own weight, the inherent self-weight and slender profile render these pole-type structures
susceptible to lateral forces induced by seismic events [1,2] or wind loads [3,4]. Conse-
quently, various efforts have been made to enhance the flexural strength of the pole-type
structures [5,6].

As illustrated in Figure 1a, cylindrical equipment within electric power substations rep-
resents an example of pole-type structures. The cylindrical electrical equipment comprises
an array of insulators that support and house electrical components and conductors [7].
To ensure an adequate ground insulation distance, pole-type equipment in high-voltage
substations can be more than ten meters in height, with length-to-diameter ratios of up
to 1:20 [7]. Porcelain materials have excellent electrical insulation performance and are

Buildings 2024, 14, 1176. https://doi.org/10.3390/buildings14041176 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14041176
https://doi.org/10.3390/buildings14041176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-8739-2171
https://orcid.org/0000-0003-1313-9493
https://doi.org/10.3390/buildings14041176
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14041176?type=check_update&version=1


Buildings 2024, 14, 1176 2 of 19

resistant to environmental corrosion, making them the preferred choice for forming the
structural elements of cylindrical electrical equipment. As depicted in Figure 1a, hollow
core insulators are formed by porcelain bushings, with both ends connected to metal
flanges, and multiple insulators are assembled to create a piece of equipment. The electrical
components housed within the hollow core insulators serve as non-structural parts.

Porcelain materials are characterized by low strength and brittleness, rendering them
susceptible to brittle fracture even under low tensile stress [8,9]. Additionally, porcelain ma-
terials have a relatively high density, slightly exceeding that of concrete, and the electrical
components housed within add considerable weight to the equipment. Given their brittle
nature, substantial weight, and tall, slender profiles, the seismic resilience of pole-type
cylindrical electrical equipment is compromised. Various types of pole-type electrical
equipment, such as transformer bushings [10,11], surge arresters [12], capacitor voltage
transformers [13], and post insulators [14,15], have been observed to be damaged during
major earthquakes in recent decades [16–19], adversely affecting essential power supplies
in the aftermath of these earthquakes [20–22]. Figure 1b illustrates the extensive damage to
porcelain cylindrical electrical equipment during the 2008 Wenchuan earthquake. While
glass fiber composite materials [23] can be employed as substitutes for porcelain in insu-
lator tubes, challenges related to inadequate bending strength at connections persist [24].
Furthermore, replacing insulators necessitates repeated electrical design and verification
efforts, incurring significant costs.
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damage of an electrical substation within the Sichuan electric power grid during the 2008 Wenchuan
earthquake (cited from [25]). (a) Pole-type cylindrical equipment; (b) Earthquake damage.

Given the aforementioned considerations, the optimal approach for seismic enhance-
ment of cylindrical equipment is seismic isolation at the base. In relevant studies, the base
of pole-type equipment is engineered to be a rotational hinge in order to achieve isola-
tion objectives [26,27]. Additionally, energy dissipation devices, such as metallic yielding
dampers [28,29] or wire rope isolators [30–32], are integrated as restraints to control the
rotation at the base hinge. This method, which mitigates base moments and prolongs the
structural vibration period, has demonstrated effectiveness in enhancing seismic resistance.
However, it is crucial to note that restoring moments at the bottom are provided by restraint
elements. This approach necessitates the restraint elements to maintain a recoverable state;
otherwise, post-seismic residual deformations may lead to structural tilting and subsequent
functional or structural failures. The absence of a reliable self-centering mechanism for
seismic isolation of pole-type equipment represents a notable research gap. Addressing
this gap is the primary objective of this study, which has the potential to further enhance
the seismic resilience of such equipment.

The rocking motion of structures under horizontal base excitation [33] inherently pos-
sesses self-centering capabilities owing to the gravitational effects after uplifting. Seismic
protection by rocking has been exemplified by the stone pillars in ancient temple architec-
ture, which have withstood earthquakes over hundreds of years [34,35]. In recent decades,
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leveraging rocking action for seismic isolation design has seen significant application in
building and bridge engineering, such as the use of rocking walls (or rocking shallow
foundations) in buildings [36–39] and rocking piers in bridges [40–43]. Various types of re-
straints [44–47] have been proposed to mitigate the overturning hazard of rocking systems.

Incorporating restrained rocking mechanisms to achieve reliable rocking isolation
designs for pole-type electrical equipment is the primary focus of this study. Equally im-
portant is the development of an analytical model as an analysis method for the restrained
rocking design of such facilities. Previous studies have proposed analytical models for
the rocking response of flexible structures [48–52], which serve as the basis for the models
presented in this paper. Additionally, a significant contribution of this paper lies in the vali-
dation of the isolation design through shaking table tests of full-scale electrical equipment,
the results of which will be extensively reported.

The novelty of the paper lies in the restrained rocking mechanism for seismic isolation
of pole-type cylindrical electrical equipment. While previous studies have explored seismic
isolation methods involving rotational hinges and energy dissipation devices, the proposed
design integrates rocking interfaces, rotational restraint devices, and stopples to allow for a
controlled rocking motion of the structure under seismic excitation while limiting excessive
rotation. This innovative design addresses the lack of a reliable self-centering mechanism
in existing seismic isolation methods for pole-type equipment, representing a significant
advancement in enhancing the seismic resilience of such structures.

In this paper, Section 2 will introduce the design concept of restrained rocking isolation
for pole-type structures. The analytical model of the proposed system will be developed
in Section 3. The validation of the restrained rocking design for a full-scale high-voltage
surge arrester will be presented in Section 4, and Section 5 will conduct a seismic response
analysis to explore the seismic response patterns of the proposed design.

2. Conceptual Development

The aspect ratio of pole-type structures typically ranges from 1:10 to 1:20. According
to previous experimental research [12], pole-type electrical equipment primarily experi-
ences bending loads during seismic events, leading to significant tensile stress at the base.
Consequently, implementing base shear isolation becomes challenging. The high tensile
stress at the base necessitates horizontal shear isolation devices with a robust capacity for
tensile resistance. However, common solutions for base shear isolation, such as friction
pendulums or lead-core rubber bearings, lack sufficient tensile resistance in the vertical
direction. Therefore, a rocking motion damping approach is considered more suitable for
pole-type structures.

The design of restrained rocking isolation for pole-type structures in this study en-
compasses three main parts: rocking interfaces set at the base, rotational restraint devices
circularly arranged at the base, and stopples set to prevent excessive rotation. These parts
are compactly located between the base of the structure and the foundation (or elevation
podium). The design is shown in Figure 2.

The isolation design in this study introduces a rocking mechanism at the base that
allows the structure to undergo rocking motions under horizontal seismic excitation, as
depicted in Figure 3. Unlike setting a hinge at the base in which the supporting block
functions as a part of the base hinge [29], the rocking pads are set to provide an adjustable
contact surface of width W (the diameter of the contact circle). Reducing the width W tends
to make the structure more conducive to uplift, while increasing W enables the structure to
enter a rocking state under larger base excitation. Another parameter of the rocking pad is
the height hp, which should be coordinated with the initial length of the restrainers and its
expected deformation during an earthquake event.
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Figure 2. Proposed design of restrained rocking isolation of pole-type cylindrical electrical equipment.
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Figure 3. Rocking motion at the isolation device.

The rocking restrainers are arranged around the base of the structure, as shown in
Figure 2, with the lower end fixed to the base and the upper end connected to the bottom
plate of the pole-type structure. The example in Figure 2 shows eight evenly spaced
restrainers, and its number can vary in different cases. The diameter D of the installation
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position needs to be selected carefully. A larger diameter D will result in a larger moment
arm for restraining rocking motion and larger deformations in a certain rotation. When
D is small, the deformation of the restrainer decreases, but larger force is required for
restraining rocking.

The level arm of the circularly arranged restrainers relative to the pivot point is not
constant during the rocking motion. For a given restrainer, the level arm is larger in the
tension phases as compared to the compression phases. Additionally, among the restrainers,
the majority are under tension, with only a few experiencing compression, as depicted in
Figure 3. This force distribution characteristic of rocking restrainers is beneficial in reducing
the demand on the height of rocking pads. Moreover, it facilitates the utilization of common
springs as restrainers, which typically exhibit a large tensile stroke and a small compressive
stroke. Figure 4 outlines the hysteresis relationships of various restrainers, such as linear
springs, elasto-plastic elements, and yielding elements using the Wen model. Although not
explicitly listed, restrainers with viscous damping can also be adopted.
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Figure 4. Mechanical behaviours of rocking restrainers.

In the design of restrained rocking isolation, it is necessary to implement stopples
to limit the maximum rotation of the pole-structure within a certain range. The rotation
stopples can be integrated with the rocking pad; for instance, it can be placed at the
midpoint of the rocking pad, as shown in Figure 2. The length of the stopple (i.e., hs)
restricts rotation within the range of arctan (2hs/W). The rotation limit can be set according
to the maximum allowable inclination of the structure during earthquakes, and, in normal
cases, the restrainers, rather than stopples, can keep the rotation within the limit so that the
stopples become an additional safeguard against overturning.

Figure 3 specifies the positive direction of rotation in the analysis. The structure
rotates around the right-side point O of the rocking pad at a given time, t, and the rotation
is represented by θ(t), which is a positive value. The level arm of ith the restrainer is
expressed as:

LRi = Lri, (i = 1, 2, . . ., n) (1)

in which LRi represents the lever arm of the ith restrainer relative to the rotation point and
Lri denotes the lever arm when the rotation point is on the right. When the structure rotates
around the left-side point O′, θ(t) is negative and the level arm of the restrainer is:

LRi = Lli, (i = 1, 2, . . ., n) (2)

in which LRi represents the lever arm of the ith rocking restrainer relative to the rotation
point O′ on the left. The values of Lri and Lli are contingent upon the distance of the
restrainer relative to the rotation point, as depicted in Figure 3. The deformation of the
restrainer is expressed as:

∆Ri(t) = LRitan θ(t) (3)
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The corresponding restraining forces are determined based on the constitutive rela-
tionship of the restrainers. When the loading and unloading paths of the restrainers are
consistent, as illustrated in Figure 4a,b, they can be represented as:

FRi(t) = f [∆Ri(t)] (4)

In cases where the loading and unloading paths of the restrainers are exhibiting
hysteretic behaviour, FRi(t) is dependent on both the current deformation and the loading
history. It also necessitates analysis combined with hysteresis relationships, as in the case
shown in Figure 4c.

The total restoring moment of the restrainers, MR(t), is given by:

MR(t) = ∑n
i=1 FRiLRi (5)

In addition to the restoring force from the restrainers, it is important to note that
additional restoring moments can be generated from the rocking structure under the
gravitational effects, MG(t),

MG(t) = f [θ(t), u(h, t)] (6)

in which u(h,t) denotes the elastic displacement of the structure at height h.

3. Dynamics Modeling

The pole-type structure is simplified as a beam with a uniform cross-section, consid-
ering bending deformation as dominant and neglecting shear deformation. The sectional
bending modulus of the column is denoted by EI, and the height of the column is H. The
column is assumed to have a uniformly distributed mass with a mass density of mc/H. An
additional mass m is added to the top to represent the supported load.

The fundamental period of pole-type equipment in electrical substations is typically
within 0.8 s, placing it within or near the resonant period range of earthquake excitations.
Consequently, the seismic response of pole-type equipment is predominantly governed
by its first vibration mode. In former studies by the author on the shaking table test of
pole-type electrical equipment with fixed bases, including the testing of surge arresters,
post insulators and capacitor voltage transformers [7], it was demonstrated that the seismic
response of the equipment primarily exhibited the first-order bending mode [12]. The
shear deformation of the slender pole-type equipment is negligible considering the small
cross-sectional dimensions compared to their length; therefore, it could be modelled by
an Euler−Bernoulli beam with a damping coefficient c. The first-order mode shape of the
cantilever column can be described by the following equation [53]:

ψ(h) =
−h3

2H3 +
3h2

2H2 (7)

With a fixed base, the frequency of the structure is given by:

ω1 =

√
3EI( 33

140 mc + m
)

H3
(8)

It is important to highlight that, for pole-type structures with fundamental periods
significantly longer than the resonant period range of earthquake excitations, the effective-
ness of base isolation might be compromised due to the contribution of higher vibration
modes [54,55]. While the exploration of seismic isolation methods for such flexural pole-
type structures holds significance, it falls beyond the scope of this paper and warrants
further research.

For the restrained rocking design in Section 2, the width of the rocking pad at the
bottom of the structure is denoted as W, and the characteristic angle of the rocking structure
is α, which equals arctan (W/H). There are n restrainers at the base, evenly distributed on a
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circle with diameter D. When the structure undergoes rocking vibrations, the system has
two degrees of freedom: the rocking rotation degree of freedom (DOF) θ around the pivot
point (O or O′) and the translational DOF representing the deformation at top u, as shown
in Figure 5. The system forms a dynamic equilibrium in the rotational and horizontal
directions under the action of gravity, inertia forces, and forces of restrainers.
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Figure 5. Dynamics modeling of the pole-type structure with restrained rocking isolation.

The process of the rocking vibration of the pole-type structure, as shown in Figure 6,
is analyzed here. In the initial state of rest, both rotation θ and translational deformation u
are zero. Under seismic excitation, the structure undergoes lateral displacement first and
responds like a fixed-base SDOF system. It does not rotate until the lateral displacement
reaches a critical value ucr. The ucr can be obtained by referring to the state where an
equivalent lateral force acting at the top of the cantilever structure produces the same
moment as that of the gravity of the structure [56], which is:

ucr =
(mc + m)gBH2

3EI
(9)
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Figure 6. Sequence of rocking.

After that, the system undergoes rotation, resulting in a state of 2DOF. The occurrence
of rotation produces a deformation of the rocking restrainers. The vibration frequency of
translational deformation shifts due to the supporting conditions changing from a fixed
base to pivoting rotation [52]. Under the combined restoring moment from gravity and
the rocking restrainer, the rocking rotation of the structure will return to zero after a cycle,
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and rocking pounding will occur. In this study, the Vertical Velocity Energy Loss (VVEL)
model [52] is adopted to update the translational velocity and rotational velocity after
pounding. It assumes that the energy of the vertical motion component is completely
consumed while the energy of the horizontal motion remains unchanged, which is:

.
θpost = 0 (10)

.
upost = sign

(
H

.
θ +

.
u
)√√√√√m

(
H

.
θ +

.
u
)2

+ mc

(
1
3 H2

.
θ

2
+ 11

20 H
.
θ

.
u + 33

140
.
u2

)
m + 33

140 mc

(11)

After the rocking pounding, the pole-type structure enters the SDOF state again and
another cycle continues.

In a 2DOF state, both the angular acceleration
..
θ and the translational acceleration

..
u will affect the dynamic balance in the translational direction and rotational direction.
Analyzing from the perspective of dynamic equilibrium of forces and moments can be
complex. Alternatively, analyzing the system dynamics from an energy perspective using
the Lagrange equation is more straightforward.

The total kinetic energy E in the system is formed from kinetic energy generated by
the motion of the added mass at the top and the column [52].

E =
1
2

m
((

B2 + H2 + u2 − 2·sign(θ)Bu
) .

θ
2
+

.
u2

+ 2H
.
u

.
θ

)

+
1
2

mc

((
B2 +

H2

3
+

33
140

u2 − 3
4

sign(θ)Bu
)

.
θ

2
+

33
140

.
u2

+
11
20

H
.
u

.
θ

)
(12)

in which B equals 0.5 W as shown in Figure 5.
The potential energy V in the system comprises the potential energy VG due to gravity

acceleration g and horizontal ground motion
..
ug; the strain energy of the column VE; and

the energy developed in the rocking restrainer VR:

V = VG + VE + VR (13)

The expressions’ potential energies are expressed in Equations (14)–(16). These expres-
sions are similar to that of an unrestrained rocking system [52], with the exception of the
term rocking restrainers VR.

VG = Bmsign(θ)
(

gsinθ − ..
ugcosθ

)
+ Hm

(
gcosθ +

..
ugsinθ

)
+um

(
−gsinθ +

..
ugcosθ

)
+ Bmcsign(θ)

(
gsinθ − ..

ugcosθ
)

+
1
2

Hmc
(

gcosθ +
..
ugsinθ

)
+

3
8

umc
(
−gsinθ +

..
ugcosθ

)
(14)

VE =
1
2
·3EI

H3 u2 (15)

VR = ∑n
i=1

(∫
FRiLRitan θdθ

)
(16)

where LRi is the level arm of restraints and FRi is the force of restrainers obtained from
hysteresis model (Figure 4).

By adopting Lagrangian operations [52,57], the governing equations of the system
can be built based on considering transitions between potential and kinetic energy of the
system. By the partial derivation operation in Equation (17), the governing equation for the
rotation θ is obtained as Equation (18)
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d
dt

∂(T − V)

∂
.
θ

− ∂(T − V)

∂θ
= 0 (17)(

mc

(
B2 + H2

3

)
+ 33

140 mcu2 − sgn(θ) 3
4 mcBu + m

(
B2 + H2)− sgn(θ)2mBu + mu2

) ..
θ =

−
( 33

70 mc + 2m
)
u

.
u

.
θ −

(
11
40 mc + m

)
H

..
u + sgn(θ)

( 3
4 mc + 2m

)
B

.
u

.
θ+

..
ug

(
−sgn(θ)(m + mc + mb)Bsinθ −

(
1
2 mc + m

)
Hcosθ +

( 3
8 mc + m

)
usinθ

)
+

g
(
−sgn(θ)(m + mc + mb)Bcosθ +

(
1
2 mc + m

)
Hsinθ +

( 3
8 mc + m

)
ucosθ

)
−

sgn(θ)∑n
i=1(FRiLRicos θ)

(18)

By the partial derivation operation in Equation (19), the governing equation for the
translational deformation u is obtained as Equation (20) [52]:

d
dt

∂(T − V)

∂
.
u

− ∂(T − V)

∂u
= −c

.
u (19)

( 33
140 mc + m

) ..
u +

(
11
40 mc + m

)
H

..
θ = − 3EI

H3 u +
( 3

8 mc + m
)

gsinθ +
( 33

140 mc + m
)
u

.
θ

2

−sgn(θ)
( 3

8 mc + m
)

B
.
θ

2
−

( 3
8 mc + m

) ..
ugcosθ − c

.
u

(20)

A case study of a pole structure with a height H of 10 m is given to illustrate the
analysis. The uniformly distributed mass of the column along height is 500 kg/m, and no
lump mass is added at the top. The bending stiffness of the pole is 3.5 × 107 N.m2. When
the base is fixed, the first-order frequency and the damping ratio are 1.5 Hz and 0.025,
respectively. A base isolation design with a rocking pad width of 300 mm, as shown in
Figure 2, is adopted in this structure. A total of 10 elastic restrainer are arranged circularly
with a diameter of 750 mm, and the stiffness of each restrainer is 5 kN/mm. The initial
condition of the structure is zero rotation, zero translational deformation, and zero angular
velocity, while the initial translational velocity is 3 m/s. The structure enters a state of free
rocking attenuation. Figure 7 shows the numerical analysis results based on the model in
this section, including rotation angle, angular velocity, translational deformation, and the
energy of the system. It can be seen that the system has a relatively short residence time
in the 1DOF state. This is because a small amount of deformation (ucr = 5 mm) can cause
the structure to enter a rocking state. The deformation of the structure is accompanied by
high-frequency vibrations while maintaining the same pace as the rocking motion. This
high-frequency part is the manifestation of the first-order deformation mode of the structure
with a shifted frequency due to changes in supporting conditions after uplifting [48,58].

The energy curve represents the exchange of potential energy and kinetic energy, as
well as the energy dissipation during the response. In this case study, the system exhibits
initial velocity and experiences no base excitation. Therefore, monitoring changes in system
energy provides insights into the damping characteristics of the system. As illustrated in
Figure 7, the total energy dissipation of the system originates from two primary sources.
Firstly, structural damping manifests as a gradual decrease in system energy, aligning with
the inherent damping of the pole-type structure. Secondly, abrupt energy decreases signify
dissipation due to rocking collisions, contributing to the system damping as the second
source. If rocking restrainers with energy dissipation properties are utilized, their hysteresis
energy dissipation constitutes the third source of system damping.

The structural damping of the pole-type structure can be quantified when it is with a
fixed base. However, energy dissipation from rocking collisions and the hysteretic energy
dissipation from restrainers depend on the vibration amplitude and cannot be accurately
represented by a fixed equivalent damping coefficient. The influences of rocking impact
and hysteretic behaviour of restrainers have been factored into the analytical model.
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4. Experimental Study
4.1. Testing Specimen, Setup and Schedule

The effectiveness of the restrained rocking isolation design for pole-type structures is
validated by the experimental study in this section. Additionally, verifying the accuracy
of the analytical model proposed in this paper is of equal significance. The shaking table
test conducted in this section utilized a full-scale prototype as the specimen; therefore, the
results obtained carry greater practical significance.

The specimen involved surge arrester equipment used in an Ultra High Voltage (UHV)
electric power substation, as shown in Figure 8. The surge arrester comprised six porcelain
insulators, with the upper five insulators being 2.12 m in height and 1350 kg in weight.
The lower insulator was 0.65 m in height and 400 kg in weight, making the total weight
of the pole-type structure 7150 kg. The main structural component of the insulator was a
porcelain hollow core bushing with an outer diameter of 510 mm and an inner diameter
of 400 mm. The elastic modulus of the porcelain material was 1.1 × 1011 N/m2. The
fundamental frequency of this pole-type structure was around 1.5 Hz, while the structural
damping of the fixed based specimen was around 2%.

In the rocking isolation design, the width of the rocking pad was 375 mm. Ten
restrainers were installed at the bottom of the pole-type structure, evenly distributed in
a circle with a diameter of 770 mm. The restrainers exhibited typical metallic yielding
hysteretic behaviour, as depicted in Figure 9. This device features an internally filled lead
alloy core, which has typical metallic yielding behaviour under axial loading. Subject to
shear forces, the core undergoes repetitive yielding of lead alloy. The recrystallization
properties inherent in lead alloy ensure the stability of the mechanical performance of the
core throughout the repeated shear-yielding cycles. The yielding load of the damper was
40 kN, the stiffness before yielding was 60 kN/mm, and the stiffness after yielding was 1%
of the initial stiffness.

The setup of the shaking table test is shown in Figure 8, and the test was carried out
according to the schedule outlined in Table 1. Test cases #1 to #5 were conducted on the
fixed-base structure, whereas test cases #6 to #9 represented the rocking isolation condition.
Due to the full-scale equipment specimen needing to be used in subsequent electrical
performance tests following the seismic test, the input motion was chosen in accordance
with the GB50260 standard [59], in which code-compatible artificial motion was employed.
The time history of the artificial motion is depicted in Figure 10, exhibiting an acceleration
response spectrum consistent with the code spectrum in the resonant segment.
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Figure 8. Test specimen of surge arrester equipment used in a Ultra High Voltage (UHV) electric
power substation.

Buildings 2024, 14, x FOR PEER REVIEW 11 of 19 
 

time history of the artificial motion is depicted in Figure 10, exhibiting an acceleration re-

sponse spectrum consistent with the code spectrum in the resonant segment. 

 

Figure 8. Test specimen of surge arrester equipment used in a Ultra High Voltage (UHV) electric 

power substation. 

 

Figure 9. Rocking restrainer adopted in the experimental study. 

Table 1. Test schedule. 

No. Setup Input Motion PGA  Direction 

1 

Fixed base 

White noise 0.05 g 

X direction 

2 Code compatible wave * 1.4 × 0.15 g 

3 White noise 0.05 g 

4 Code compatible wave 1.4 × 0.20 g 

5 White noise 0.05 g 

6 

Restrained 

rocking 

Code compatible wave 1.4 × 0.20 g 

7 White noise 0.05 g 

8 Code compatible wave 1.4 × 0.40 g 

9 White noise 0.05 g 

* The input motion was scaled by 1.4 times for considering the amplification effect of supporting 

podium or frame [12]. 

Legend

Strain guage

Accelermeter

2
1
1

5
2

1
1

5
2

1
1

5
2

1
1

5
2

1
1

5
6

5
0

Length unit in mm

(dy,Fy)

k0

ky

Deformation

(mm)

Force (kN)

80 4-4-8

10

20

30

0

-30

-20

-10

Figure 9. Rocking restrainer adopted in the experimental study.

Table 1. Test schedule.

No. Setup Input Motion PGA Direction

1

Fixed base

White noise 0.05 g

X direction

2 Code compatible wave * 1.4 × 0.15 g
3 White noise 0.05 g
4 Code compatible wave 1.4 × 0.20 g
5 White noise 0.05 g

6
Restrained

rocking

Code compatible wave 1.4 × 0.20 g
7 White noise 0.05 g
8 Code compatible wave 1.4 × 0.40 g
9 White noise 0.05 g

* The input motion was scaled by 1.4 times for considering the amplification effect of supporting podium or
frame [12].



Buildings 2024, 14, 1176 12 of 19Buildings 2024, 14, x FOR PEER REVIEW 12 of 19 
 

 

Figure 10. Input motion. 

4.2. Testing Results 

Comparisons were made between the seismic response results of the specimen in the 

conditions of rocking isolation and a fixed-base. In the comparison of acceleration re-

sponse between test case #4 and #6, shown in Figure 11, it can be seen that the acceleration 

at the top decreased from 1 g to 0.45 g under the input with PGA of 1.4 × 0.2 g. At the same 

time, the Frequency Response Function (FRF) on the right shows that the predominant 

frequency of the equipment decreased from 1.4 Hz to an unfixed frequency of around 0.5–

0.8 Hz. This was a result from the rocking motion in which the frequency was not fixed 

but related to the amplitude. The strain response indicated the seismic internal force at 

the porcelain component. In the fixed-base test shown in Figure 12, the strain at the base 

was about 195 με and the corresponding stress was 21.5 MPa, which was around 60% of 

the allowable stress of the porcelain material. In the rocking isolation test case, this value 

was lowered to 95 με or 10.4 MPa, with a decreasing rate of 55%. After the test, the speci-

men returned to an upright position without any residual tilting. 

 

Figure 11. Acceleration responses in test case #4 and #6. 

Figure 10. Input motion.

4.2. Testing Results

Comparisons were made between the seismic response results of the specimen in the
conditions of rocking isolation and a fixed-base. In the comparison of acceleration response
between test case #4 and #6, shown in Figure 11, it can be seen that the acceleration at the
top decreased from 1 g to 0.45 g under the input with PGA of 1.4 × 0.2 g. At the same time,
the Frequency Response Function (FRF) on the right shows that the predominant frequency
of the equipment decreased from 1.4 Hz to an unfixed frequency of around 0.5–0.8 Hz. This
was a result from the rocking motion in which the frequency was not fixed but related to
the amplitude. The strain response indicated the seismic internal force at the porcelain
component. In the fixed-base test shown in Figure 12, the strain at the base was about
195 µε and the corresponding stress was 21.5 MPa, which was around 60% of the allowable
stress of the porcelain material. In the rocking isolation test case, this value was lowered to
95 µε or 10.4 MPa, with a decreasing rate of 55%. After the test, the specimen returned to
an upright position without any residual tilting.
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Figure 12. Strain responses in test case #4 and #6.

Similar experimental results were further observed in the test case of 1.4 × 0.4 g.
Figure 13 shows a comparison of the acceleration at the top and the bending moment at the
base (derived from strain). The results of the rocking isolation were recorded in test case
#8, while the fixed-base case results were obtained from numerical analysis of a calibrated
non-isolation model. It is evident that, by employing the restrained rocking design, the
bending moment was reduced from 485 kN·m to 202 kN·m, achieving a reduction rate of
58%. Importantly, there was no residual tilting observed after the earthquake, indicating
the effectiveness of the self-centering capability of the rock mechanism.
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4.3. Validation of the Restrained Rocking Model

Table 2 presents a summary of the parameters utilized in the seismic response analysis,
based on the analytical model developed in Section 3. Figures 14 and 15 illustrate the
comparison between experimental results and analysis results for test case #6 and test case
#8, respectively. The differences between the predicted values and experimental values
of amplitudes of bending moment and acceleration were less than 12%, validating the



Buildings 2024, 14, 1176 14 of 19

effectiveness of the analytical model in Section 3. The rotational behaviour depicted in the
figures indicates that the structure underwent a continuous rocking motion throughout
the process, thereby cutting down the bending moment at the base. Moreover, the rotation
remained below two degrees in the 1.4 × 0.4 g test case, underscoring the effectiveness of
the rocking restrainers.

Table 2. Parameters of testing specimen.

Pole-type structure

Height 11.2 m Diameter (outside) 510 mm Diameter (inside) 400 mm
Distributive mass 632 kg/m Added mass at top 50 kg Elastic modulus of porcelain 110 GPa

Allowable stress of porcelain 36 MPa Natural Frequency 1.6 Hz Equivalent sect. stiffness 8.5 × 107 N.m2

Damping 3.5%

Design of rocking isolation at base

Width of rocking base 375 mm Number of restrainers 10 Arrangement circle diameter 770 mm

Yielding force of restrainer 40 kN Initial stiffness of
restrainer 60 kN/mm Post yielding stiffness 0.6 kN/mm
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5. Discussion on the Intensity Measure Governing the Response

This section uses the validated model to study the characteristics of the responses of
pole-type structures under different seismic excitations. A total number of 21 earthquake
records with magnitudes of 6.5 or above, as well as PGAs ranging from 0.1 g to 0.8 g, were
selected from the PEER strong ground motion database [60]. The structural model with a
restrained rocking design, as described in Table 2, was adopted in the numerical study. The
analysis results were visualized in Figures 16 and 17, including the Intensity Measures (IM)
of the input motion and the response of the structure.
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PDD are g, cm/s, cm, g, m/s, and m, respectively.

Figure 16 compares the base moment of the two structures, with the horizontal axis
representing the spectral acceleration at the fundamental period. It is evident that the
restrained rocking design achieved an average of 57% reduction in seismic internal forces
(ranging from 16% to 82%). Additionally, there is a trend indicating that, the greater the
seismic internal force in the fixed base structure, the more significant the isolation effect. For
the fixed base structure, the seismic demand is primarily controlled by spectral acceleration.



Buildings 2024, 14, 1176 16 of 19

However, no significant correlation is observed between spectral acceleration and base
moment for restrained rocking structures.

This study also investigated the seismic demand on pole-type structures with re-
strained rocking, considering intensity measures (IM) such as peak ground acceleration
(PGA), peak ground velocity (PGV), peak ground displacement (PGD), peak spectral
acceleration demand (PAD), peak spectral velocity demand (PVD), and peak spectral dis-
placement demand (PDD). The regression analysis results are shown in Figure 17. The PGA
and PAD exhibit the lowest correlation with the seismic responses, whereas the PGV and
PDD demonstrate the strongest correlation.

A seismic demand model taking base moment M as the Engineering Demand Parame-
ter (EDP) can be expressed as:

log10(M) = a + b·log10(PGV) or log10(M) = c + d·log10(PDD) (21)

In this example, the values for a and b are −0.36 and 0.73, respectively; and the
values for c and d are 0.46 and 0.67, respectively. This observation aligns with findings
from other types of rocking structures [61–63], indicating a sensitivity to major velocity
pulses. Consequently, this result underscores the importance of considering the velocity
spectrum characteristics of the construction site when defining input motion in the design
of pole-type structures with restrained rocking.

6. Conclusions

The traditional seismic isolation designs for pole-type structures typically involve
engineering the base of the structure into a rotational hinge with restraints. However, this
approach lacks a re-centring capability in the event of failure or yielding of the restrainer,
thereby posing a risk of tilting and functionality failure following earthquakes. To address
this challenge, a novel isolation design incorporating a restrained rocking mechanism at the
base of the structure was proposed. The main outcomes of the paper are outlined below:

(1) The proposed design features a width-adjustable rocking interface at the base
of the pole-type structure, surrounded by circularly arranged rocking restrainers. This
configuration disrupts the transmission path of earthquake energy while introducing a dual
mechanism for re-centring, restoring moments by gravitational force and restraining force.

(2) Experimental studies were conducted on full-scale porcelain surge arresters in
high-voltage substations. The results demonstrated a reduction in internal force by more
than 50%, with rotation controlled within two degrees under both 0.2 g and 0.4 g level
excitation. Importantly, the specimen could return to an upright position after the test.

(3) The analytical model for the pole-type structures with restrained rocking isolation
was developed and validated in this study. The establishment of analytical models provides
an effective tool for the parameter design of the isolation system.

(4) This study explored the seismic demand model for the pole-type structure with
the restrained rocking design. It was found that the structure’s response exhibited a minor
correlation with spectral acceleration but was sensitive to peak ground velocity and peak
displacement demand. This finding underscores the importance of considering the velocity
spectrum when selecting input motions in seismic design.
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