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Abstract: In the rapidly advancing field of construction, digital site management and Building
Information Modeling (BIM) are pivotal. This study explores the integration of drone imagery
into the digital construction site management process, aiming to create BIM models with enhanced
object recognition capabilities. Initially, the research sought to achieve photorealistic rendering of
point cloud models (PCMs) using blur/sharpen filters and generative adversarial network (GAN)
models. However, these techniques did not fully meet the desired outcomes for photorealistic
rendering. The research then shifted to investigating additional methods, such as fine-tuning object
recognition algorithms with real-world datasets, to improve object recognition accuracy. The study’s
findings present a nuanced understanding of the limitations and potential pathways for achieving
photorealistic rendering in PCM, underscoring the complexity of the task and laying the groundwork
for future innovations in this area. Although the study faced challenges in attaining the original
goal of photorealistic rendering for object detection, it contributes valuable insights that may inform
future research and technological development in digital construction site management.
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1. Introduction

Construction site management comprehensively covers tasks from the initial design
phase to construction and maintenance, and the need for digital construction site man-
agement is increasingly growing. In the early stages of the construction industry, paper
blueprints were used, but with the advent of computer-based software like CAD, the
storage and processing of architectural information have become digitalized. This made
it possible to overcome the limitations of 2D blueprints and allowed for the intuitive
understanding and management of building structures using 3D models.

Since the early 2000s, Building Information Modeling (BIM) technology has been
developed in response to the needs of the construction industry. It has evolved from a tool
that merely aids visual elements to an advanced tool capable of performing optimization
and estimation tasks [1]. Although BIM has brought about innovative changes in the
construction industry, its application is limited in construction, site management, and
maintenance fields due to its high dependency on on-site data [1–3].

Considering that the initial design phase accounts for 0.4% of the life cycle cost of a
building, the construction phase accounts for 16%, and the maintenance phase accounts
for 60–80%, the introduction of BIM technology to site management is essential for the
construction industry to successfully respond to the fourth industrial revolution [4–6].
However, the implementation is being delayed due to the lack of technology for creating
digital models that adequately reflect on-site information.

Digitalization research at construction sites typically involves the use of point cloud
model (PCM) methods using robots and scanning equipment [7–10]. PCM represents
objects or spaces using a 3D point dataset in space [11]. However, robots and scanners
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are expensive equipment and are not suitable for real-time site management due to their
susceptibility to on-site conditions [12–14]. Furthermore, to recognize objects in the point
cloud form for on-site safety management, as targeted in this paper, an additional process of
training a new artificial intelligence model is required. The development of a construction
site-specific artificial intelligence model for photorealistic rendering, which has not yet been
developed, is essential. Nevertheless, in the near future, construction site management us-
ing artificial intelligence will play a crucial role in supporting and optimizing major stages
of building construction [15]. Digital construction site management technology, in particu-
lar, will act as a key factor in improving efficiency and accuracy in these processes [16]. In
addition, construction site management through digitalization technology will provide new
possibilities for direct financial benefits to construction companies, thereby contributing to
the growth of the construction industry [17,18]. Therefore, construction site digitalization
technology must be easily accessible to small and medium-sized enterprises. To this end,
this study proposes a method to digitalize construction site information using only drones,
excluding expensive sensors.

Drones are used to take photos and videos at construction sites, allowing real-time
monitoring of construction project progress. In this study, drone photos will be used to con-
struct PCM models and conduct object recognition research through model photorealistic
rendering. This will efficiently establish the digitalization process at construction sites and
provide technology that is easily accessible to small and medium-sized enterprises. In addi-
tion, considering the short flight time of drones, this study will compare and analyze data
collection methods for PCM model construction in a short period. This will reduce costs
incurred during construction and maintenance stages at construction sites and improve the
overall efficiency of construction projects. Moreover, this study aims to develop technology
that connects objects to be recognized through image preprocessing techniques such as
model photorealistic rendering and completely different forms of training data that can be
used together [19]. Digital technology utilizing artificial intelligence can enhance on-site
management’s efficiency and accuracy and contribute to innovation and growth across the
construction industry. The results of this study are expected to significantly help improve
construction site safety and construction quality and reduce project schedules and costs.

In conclusion, this study proposes an efficient and economical construction site man-
agement solution for small and medium-sized construction companies by combining drone
and digitalization technologies. As future research directions, it is necessary to develop
a more precise data collection and analysis system by integrating additional sensors and
technologies into drones. This will further enhance the monitoring and management capa-
bilities at construction sites. In addition, the development of such technologies will lay the
foundation for achieving sustainable growth in the overall construction industry.

Research Questions and Objectives

This study enhances digital construction site management by harnessing the synergy
between drone imagery and artificial intelligence (AI) within the context of Building Infor-
mation Modeling (BIM). The foundation of this research is laid upon a series of research
questions and objectives meticulously crafted to dissect and understand the multifaceted
role of drone technology in revolutionizing the construction management landscape, par-
ticularly through the lens of point cloud models (PCMs) and object recognition capabilities.

Research Questions:
The first question probes the integration of drone imagery into the digital construction

site management process for creating PCM models with enhanced object recognition
capabilities. This inquiry aims to unravel the practical applications of drone technology in
capturing real-time data and their seamless integration into BIM for bolstering construction
management practices.

Subsequently, the research delves into the challenges and limitations inherent in
current photorealistic rendering techniques within the domain of PCM. By scrutinizing
methodologies such as blur/sharpen filters and generative adversarial network (GAN)
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models, this question seeks to identify viable pathways to surmount these obstacles and
amplify object detection accuracy in construction site management.

Last, the investigation extends to the ramifications of fine-tuning object recognition
algorithms with real-world datasets. This line of inquiry is pivotal in evaluating how the
precision and reliability of object detection within construction sites are influenced by the
application of real-world data for algorithm optimization.

Research Objectives:
Aligned with the research questions, the objectives of this research are structured

to provide a comprehensive examination of the potential and challenges associated with
integrating drone imagery and AI in construction site management. The initial objective
focuses on evaluating this integration for the creation of PCM models that boast superior
object recognition capabilities. Through this evaluation, the study aims to enhance practi-
cality, efficiency, and overall improvements that drone-captured imagery could usher into
BIM creation and construction site management.

In pursuit of addressing the second question, the research aims to identify and mitigate
the limitations facing current photorealistic rendering techniques in PCM. This endeavor
involves a thorough investigation into the prevailing challenges and the proposition of
innovative solutions designed to elevate object detection accuracy.

Finally, the objective underscores the enhancement of object recognition algorithms
by fine-tuning them with real-world datasets. This approach is anticipated to refine the
accuracy and reliability of AI-based object recognition algorithms, leveraging real-world
construction site data as a pivotal resource for algorithmic improvement.

Through these research questions and objectives, this study aspires to forge a path
toward innovative advancements in digital construction site management, setting a new
paradigm in how construction projects are planned, executed, and monitored in the era of
drone technology and artificial intelligence.

2. Literature Review
2.1. Construction Site Management

Research for digital construction site management has been conducted by many
scholars. As a result, enabling technologies related to BIM, sensors, unmanned aerial
vehicles (UAVs), and unmanned ground vehicles (UGVs) have been developed for use
on-site [20,21]; however, there are still no widely adopted commercial technologies in
the construction industry. The biggest issue in realizing digital site management is the
absence of a digital twin (DT) for the construction site [22–25]. Due to such problems,
the enabling technologies prepare only the minimum necessary information in different
formats, making it difficult for them to share information organically. For successful digital
construction site management, there is a need for a single integrated model and platform
that enables collaboration between these enabling technologies. In this section, we aim to
examine the current state of research in construction management, safety management,
and maintenance, which constitute a major part of construction site management, to more
clearly understand why the DT has not yet been realized and to propose solutions.

During the construction phase, research and development focus on process efficiency,
production efficiency, and monitoring logistics and work progress [23,26]. For process
efficiency, the trend is to concentrate on minimizing defects caused by various factors and
delays resulting from them. A representative method is to precisely scan site information
using equipment and sensors and prefabricate optimized frames and components through
off-site construction (OSC). These components are later assembled on-site. Since they were
produced in a factory setting with fewer external influences, defects are reduced, rework
frequency decreases, and ultimately, construction time is shortened [27,28]. Furthermore,
reducing defective components implies a proportional reduction in the time needed for
reproduction, equivalent to increased production efficiency. Additionally, AI-powered
logistics and work progress monitoring technologies have proven effective through pilot
projects [5]. Site data collection primarily utilizes UAVs and UGVs equipped with sensors
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and the collected data are later reconstructed into a PCM. After converting site data into
PCM, object recognition is conducted using algorithms or AI, and the resulting digital twin
model is highly accurate. However, as mentioned in the introduction of this paper, the
current process is not suitable for monitoring constantly changing sites due to the time
and effort required to prepare the data necessary for AI training [29,30], necessitating a
different solution.

As societal concern for safety increases, there is a growing demand for technology and
research related to safety management. Current safety management involves a safety officer
assessing risk factors for each task, taking appropriate measures, and monitoring whether
the site adheres to safety regulations [31]. However, as the scale of construction projects
increases, so does the number of tasks, and the number of safety officers is insufficient [32].
Therefore, research in safety management mainly aims to automate the safety management
process, minimize blind spots, and enable a small number of safety officers to oversee
a larger site. Representative technologies include AI and algorithm-based risk factor
identification, real-time object tracking, and worker behavior pattern analysis [33–35], all
of which involve recognizing objects, including people and equipment. However, existing
research lacks practicality when considering efficiency [36,37]. For example, research
enabling highly accurate site monitoring and safety management requires many expensive
sensors, while technologies that can cover the entire construction site are not accurate
enough. Based on construction accident statistics, the most common accidents vary by
country but include falls, entrapments, collisions, crushes, and being struck by falling
objects [38,39], all of which are difficult to predict and happen in an instant. For successful
safety management, technology that can quickly process and monitor real-time data and
accurately identify worker behavior is necessary.

In terms of maintenance-related research, it can be divided into two main directions:
improving operational efficiency and ensuring stability through preventive maintenance.
First, looking at research on operational efficiency improvement, the goal is to reduce costs
as most of the life cycle costs of a building occur during the period of use, from completion
to demolition. As operational efficiency can be optimized by clearly understanding informa-
tion about the building, attempts are actively made to detect and analyze factors affecting
operation, such as temperature, humidity, and circulation, using IoT sensors [22,40–42].
Recently, there has been a trend of introducing artificial intelligence to discover correlations
between data that are difficult for humans to intuitively grasp and to predict future data
based on past data [43]. In addition, maintaining the functionality of a building is also
important in maintenance, so preventive maintenance technologies developed through
real-time monitoring are being developed. However, while research on operational effi-
ciency improvement through data analysis is approaching commercialization, preventive
maintenance technology is relatively lacking. The main reason is that monitoring technol-
ogy is still in the research stage [44], and new technology development that can be used for
internal and external maintenance of buildings is needed.

Last, in all three areas of construction management, maintenance, and safety man-
agement, various attempts are being made using sensors and unmanned vehicles (UVs)
to digitize on-site information. Sensors show significant differences in price and perfor-
mance depending on the type, and as they cannot move without human intervention, data
collection methods using unmanned vehicles (UVs) are gaining attention [20]. In particu-
lar, among UVs, UAVs have a short flight time due to technical limitations, so UGVs are
mainly used on-site [12,14,40,45,46]. However, UGVs used to collect on-site data are often
expensive, although there are differences depending on the type. For example, Amazon’s
Spot robot, which can move around a construction site automatically while overcoming
obstacles, costs about $75,000 per unit. From a cost perspective, this can be a factor that
hinders the adoption of technology as it is unclear how much cost-saving effects can be
obtained from digitizing on-site information and how many UGVs need to be used [47].
Therefore, it is considered realistic to use relatively low-cost UAVs for data collection in
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terms of technology acceptance. However, a process capable of collecting sufficient data in
a short period of time is required to overcome the inherent short flight time.

2.2. Advancements in PCM to BIM Conversion, Photorealistic Rendering, and AI-Driven
Object Recognition

The conversion from point cloud models (PCMs) to Building Information Models
(BIM) is essential in digital construction site management. Existing methodologies utilize
automated algorithms for object identification within PCMs, followed by semantic enrich-
ment and organization into a structured BIM model [48,49]. However, these methodologies
often require significant manual intervention, especially in the semantic enrichment and
data synchronization stages, which can lead to potential inaccuracies and inefficiencies
in the generated BIM models [50]. The manual processes also extend the time required
for PCM to BIM conversion, which is not suitable for dynamic construction environments
where timely updates are crucial [51].

In photorealistic rendering, existing techniques like ray tracing and radiosity have
contributed to enhanced visual quality but may not achieve the level of realism necessary
for stakeholders in construction projects [52]. The visual appeal and informational value
of models generated through these techniques may lack the required detail and accuracy
for applications like virtual site inspections and client presentations [53]. Additionally, the
generation of realistic textures remains a challenge not adequately addressed in the existing
literature [54].

Regarding the advancement of artificial intelligence (AI) in object recognition within
vision processing, significant progress has been made [55]. However, the application
of AI, especially in complex construction site environments, often requires substantial
computational resources and meticulously curated datasets for training the models [56,57].
The challenge of collecting and preparing high-quality training data, coupled with the
demand for high computational power, is a significant barrier to the widespread adoption
of AI-driven object recognition in construction site management [58].

3. Research Method
3.1. Process

In the introduction, as previously presented, a method was proposed to perform object
recognition by creating a PCM model using drone technology and then creating a photorealistic
rendering of the model. In this section, the newly developed process is compared with the
existing process, and the differences between the two processes are confirmed.

As shown in Figure 1, the prevailing site management methodology leverages robots
and sensors to amass scanning data from the site. This collected data serve as a bedrock
for constructing a Point cloud model (PCM), subsequently necessitating the preparation of
training data for object recognition [57,59]. The process of object recognition is orchestrated
through a dedicated artificial intelligence training regimen. Nonetheless, this procedure
presents significant hurdles, chiefly the labor-intensive task of preparing training data
in PCM format—a format not easily accessible. The extensive duration extending from
scanning to object recognition significantly detracts from its applicability in real-time site
management, marking a notable limitation of this conventional approach.

Figure 1. The original process of construction site digitalization.
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The method proposed in this study uses drones instead of existing robots and sensor
technology to collect data, and the new process described in Figure 2 aims to reduce the
time and cost required to build a training dataset. The improved site management process
collects data through drone photography and constructs a PCM using the WebODM library
with the collected photos. WebODM was selected due to its compatibility with various
drone technologies, allowing for the efficient processing of aerial photographs into a 3D
model. Its ability to handle large datasets while maintaining precision is well suited for
the construction of detailed PCM models from drone imagery. Furthermore, WebODM
provides a user-friendly interface, enabling fine-tuned customization over processing pa-
rameters. This control allows the PCM construction to align with the specific requirements
of the project. Then, the whole or necessary partial areas for object recognition are extracted
from the PCM model, and the extracted images are converted to photorealistic images
using generative adversarial network (GAN) AI.

Figure 2. The proposed process of construction site digitalization.

The main shift from the existing process after creating the PCM is that object recogni-
tion is performed after generating a photorealistic rendering of the PCM model with GAN.
This step aims to reduce the computational resources needed for site management, which
is crucial for successful construction site management. When a point cloud-based model is
crafted at a construction site filled with many irregular objects for artificial intelligence use,
the most time-consuming task is setting up the training dataset to detect objects from the
PCM. Moreover, even after the artificial intelligence capable of recognizing point clouds is
ready, additional fine-tuning of the training dataset in PCM format is needed for each site
due to different shapes, which lowers its practicality [60–62]. However, if the point cloud
model is converted into a photorealistic rendering as proposed in this study, identifying
equipment and materials at the site using commonly used object recognition artificial
intelligence becomes much easier. Furthermore, this approach can significantly speed up
the process of creating BIM models through improved object detection from PCMs.

To achieve a photorealistic rendering of the PCM model, a variant of the generative
adversarial network (GAN), a generative artificial intelligence model, was employed,
inspired by the concept of transforming sketches into images. This selection emerged from
a meticulous evaluation process. Other contemporary models such as Stable Diffusion
models and Variational AutoEncoders (VAE) were also contemplated but were sidelined
due to their inconsistencies in object transformation during the generation phase. This
limitation underscored the need for a model that embodies both consistency and reliability.
The evaluation then pivoted toward analyzing the quality of generation where GANs
surfaced as the most fitting candidate. GAN surpassed other models by displaying superior
performance in aspects like generation quality, training speed, and stability [63]. Its prowess
in crafting lifelike images deemed it apt for photorealistic rendering, aligning seamlessly
with the project’s objectives.

Expanding on this aptitude, the versatility of GAN enabled it to address specific
requirements within the PCM environment, ensuring a faithful representation of intricate
details. The capability to generate high-resolution and realistic images was a pivotal factor
in the decision-making process, with GAN’s performance in these domains distinguishing
it from other models.
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The adoption of the GAN model was a judicious decision grounded on a thorough
assessment of its performance, flexibility, and congruence with project goals. It was chosen
not merely for its ability to transmute sketches into images but also for its demonstrated pro-
ficiency in generating realistic images and its adaptability to diverse scenarios. Hence, GAN
emerged as the most suitable choice for generating photorealistic rendering from sketches.

Furthermore, with an eye toward real-time site management, the expeditious and
precise YOLOv5 was selected for object recognition from a range of vision-processing
artificial intelligence tools. YOLO, an acronym for You Only Look Once, is a real-time
object detection artificial intelligence framework that predicts bounding boxes and class
probabilities of objects in images utilizing a singular convolutional neural network (CNN).
The notable speed and high accuracy of YOLO render it apt for construction site manage-
ment, which often entails dealing with a diverse array and quantity of objects [64]. Since its
inaugural release in 2015, the YOLO model has undergone iterative enhancements, leading
to the subsequent versions YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and
YOLOv8, with the attributes of each version encapsulated in Table 1.

Table 1. Explanation of YOLOv1, v2, v3, v4, v5, v6, v7, and v8.

Version Characteristics Note

YOLOv1
- Utilizes a single-convolution neural network (CNN) to

represent object class probabilities and determine
object regions as bounding boxes

- High processing speed
- Lower accuracy compared with

subsequent versions

YOLOv2
- Employs the Darknet-19 convolutional neural network

and a “logistic regression loss” loss function

- Higher accuracy compared with YOLOv1
- Capable of recognizing more

object classes

YOLOv3

- Uses the Darknet-53 convolutional neural network
and a “focal loss” loss function

- Focal loss focuses on learning hard-to-recognize
objects to improve accuracy

- Higher accuracy compared with YOLOv2
- Can detect smaller objects

YOLOv4

- Implements the CSPDarknet-53 convolutional neural
network and a CloULoss loss function, which offers
higher accuracy than IoU

- Applies mosaic data augmentation

- Higher accuracy compared with YOLOv3
- Can detect even smaller objects
- Faster processing speed

YOLOv5

- Utilizes anchor boxes with varying ratios to enhance
accuracy

- Applies random cropping and flipping augmentation
techniques

- Lower capacity compared with YOLOv4
- Easily recognizes small objects in

wider areas

YOLOv6~8

- Suggests trainable bag-of-freebies
- Used quantization and distillation methods to

improve accuracy
- A new repository for YOLO models has been

launched for training object detection, instance
segmentation, and image classification.

- Higher accuracy compared with YOLOv5
- Larger model compared with YOLOv5

Construction site management encompasses a broad spectrum, necessitating a model
proficient in wide-area recognition. Furthermore, given its intrinsic link to safety, a high
degree of accuracy in object recognition is indispensable, and the leeway for delays engen-
dered by sluggish processing speeds is scant. In light of these requisites, this study opted
for YOLOv5, revered for its expansive area scanning capability, superior object recognition
accuracy, and brisk processing speeds among the YOLO iterations. Although the later
versions of YOLO, specifically YOLOv6, 7, and 8, manifest higher accuracy compared with
YOLOv5, their larger model sizes levy a higher demand on computational resources [64,65].
Consequently, YOLOv5 represents an optimal balance between model size and accuracy,
aligning well with the project’s objectives.
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In summary, this research aimed to address the issues arising from the conventional
methods by applying a drone-based data collection process and object recognition through
photorealistic rendering. Additionally, the study proposes a new process to enhance the
safety and efficiency of construction sites by utilizing fast and accurate artificial intelligence
algorithms, such as YOLOv5, for real-time site management.

3.2. PCM Generation Using Drones

First, in the existing process, high-priced Lidar sensors were combined with drones
to create PCM models. This method enables the creation of precise PCM models by
approaching the building as closely as possible due to the measurement limitations of the
Lidar sensors. However, it is impossible to recognize the entire building at once due to the
need for proximity. Although the technology has reached the point of practicality, it has
become unusable due to equipment issues and the short flight time of drones.

Digital construction site management requires rapid, periodic site model generation [66,67].
Therefore, it was determined that the technology to create a site model based on images collected
using drone advantages such as fast movement, wide-angle photography, and recording of
shooting locations is practical. In particular, if swarm drones are used to assign specific areas of
the site, as shown in Figure 3, the efficiency will increase proportionally. Therefore, research on
technology to ensure the accuracy of PCM while securing a minimum amount of data in the
image collection process was needed for optimal process construction.

Figure 3. Explanation of the technology that creates PCM using only images by collecting images
while automatically moving to designated locations using swarm drones on the right, compared with
the traditional method of creating a PCM model in the center by manually controlling a large drone
with various sensors on the left.

In this section, a case study was conducted to determine the optimal conditions for a
drone to acquire site photos by adjusting altitude, angle, and distance while considering
the overlap rate, as shown in Table 2. The overlap rate is crucial for creating 3D models and
refers to the proportion of overlap between the collected photos, as illustrated in Figure 4.
Insufficient overlap between photos can result in errors during PCM generation, leading to
distortions. Both longitudinal and lateral overlaps are required.

The drone utilized for image acquisition in this study was DJI’s Mavic Mini 2, a
lightweight model weighing 249 g and priced at around USD 500–600, with a flight duration
of approximately 20 min. It was selected due to its adjustable camera shooting angle
although its GPS-based automatic movement feature was not utilized in this study. The
image data collected were categorized into vertical, close-, long-, and very long-range
shots. PCM models crafted based on the captured images were compared and analyzed.
Importantly, the Mavic Mini 2 is capable of capturing high-resolution images with a
resolution of 12 megapixels and videos at 4 K/30 fps. This high resolution is integral for
accurate PCM generation. Despite its cost-effectiveness, the image resolution offered by the
Mavic Mini 2 proved to be adequately suitable for the object detection tasks required in this
study, illustrating a favorable balance between cost and quality in the chosen UAV model.
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Table 2. Summary of cases according to image collection methods.

Case Shooting
Distance (m)

Shooting
Altitude (m)

Shooting
Angle from
Drone (º)

Number of
Images

Time
(Sec) Resolution Visual Judgment

Result

Vertical shooting 0~20 70 90 110 420 2.5 cm/px

Building well
recognized; windows

on the side and the
walls are not well

modeled

Close-range
shooting 10 15~60 30 110 510 0.4 cm/px Building not

recognized

Close-range and
angled shooting 10 15~60 15~60 108 630 ~1.6 cm/px Building not

recognized

Long-range
shooting 60 60 45 102 300 2.2 cm/px Building well

recognized

Long-range and
angled shooting 30 20~60 20~60 120 580 ~2.5 cm/px

Building well
recognized with less

empty space

Very long-range
shooting 100 30~120 30~60 196 460 ~5 cm/px

Building well
recognized except for

hard-to-identify
small objects

Figure 4. Diagram of overlap area between drone-captured images for 3D model generation. The
image on the left shows the drone’s movement path, and the orange squares represent the positions
where photos are taken along the path. The right image demonstrates what the “overlap” means
when capturing photos.

The drone’s altitude and angle were calculated based on the explained overlap rate. The
overlap rate criteria are based on the “Drone Cadastral Survey Manual”, shared during a
conversation with officials from the “Korea Land and Geospatial Informatix Corporation,” as
shown in Table 3. The collected images were taken by the same researcher without any post-
processing and were collected as JPG files. The shooting was performed by rotating around
the target building and repeating the process, which is the same method as automatically
capturing images while descending in a specific area to match the future on-site BIM creation
automation process.
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Table 3. Criteria for overlap rate in drone cadastral surveys based on the Korea Land and Geospatial
Informatix Corporation manual.

Category Flat Area Area with Elevation
Difference

Insufficient Matching
Points

Area with High-Rise
Buildings

Longitudinal overlap rate 65% 75% 75% 85%

Latitudinal overlap rate 60% 70% 70% 80%

Shadows occurred on the building depending on the shooting time, but that part
was not considered and was used as a dataset. The reason is to determine whether the
recognition is possible even if a slight shadow hides the building or objects, and ultimately,
the shadow did not affect the research progress as a variable. Since the goal of this study is
to check whether objects are recognized within the created model, not the precise model
creation for safety diagnosis or inspection, the resolution was not analyzed. The PCM
created by LiDAR sensors also cannot collect sensitive building information such as mold or
wall discoloration unless it is very close, as the resolution is 3 cm to 10 cm when collecting
data from a long distance. This point was considered during the analysis.

The shooting target was set as the university building where the researcher is affiliated,
the reason being that it was difficult to obtain permission for drone shooting for research
purposes at a construction site due to safety issues. Instead, a site similar to an apartment
construction site was chosen where a building exists in a particular shape and there is a
parking lot nearby where vehicles pass. Therefore, the research target was the buildings
around the College of Engineering at Dankook University. The research building consists
of four 5-story buildings in a row, with roads surrounding the building and vehicles parked
on the road, making it a suitable target for the AI to recognize buildings, roads, vehicles,
and other objects. For medium- and long-range shooting, the entire school premises were
captured, as shown in Figure 5, and a PCM was created, including the target buildings.

Figure 5. Exemplary captured images, shooting while rotating around the building.
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3.3. Vertical Shooting Dataset

We assessed whether the entire building could be converted to a PCM by taking vertical
shots of the target building. The purpose was to determine if images taken vertically, similar
to those from satellites, could be used for research. Image collection was conducted at
an altitude of 60 m, and as shown in Figure 6, the drone moved horizontally at regular
intervals while shooting. As a result, the overall shape appeared well in Figure 7, but there
was a lack of information on vertical surfaces, and when zooming in on the model, the
expression of the building’s side was inadequate. Nevertheless, the overall shape of the
building was well represented, and it was judged that vertical shooting data could be used
under limited circumstances.

Figure 6. Vertical shots.

Figure 7. Vertical shot PCM data.

3.4. Close-Range Shooting Dataset

We examined two cases of close-range shooting. First, the building was shot from a
horizontal distance of 10 m, raising the altitude by 15 m at a time, as shown in Figure 8.
Second, to check the impact of the camera lens angle on the model’s completion, the lens
angle was changed by 15 degrees at the same distance as Figure 9. Ultimately, the building
modeling failed, as shown in Figure 10. This failure was judged to be due to a lack of
correlation information about the target building in each image, making it difficult to clearly
understand the relationship between the images.
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Figure 8. Close-range shots.

Figure 9. Close-range and angle shots.

Figure 10. Close-range shot PCM data.

3.5. Long-Range Shooting Dataset

In long-range shooting, we used a method of shooting at regular altitudes and simul-
taneously changing altitudes and lens angles. Long-range shooting images have all the
objects to be recognized within the camera’s field of view, so the number of altitudes and
lens angle changes is relatively low, as shown in Figures 11 and 12. PCM models created
based on long-range shooting images showed higher overall completeness than those
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created with close-range shooting images. However, the completeness of small objects was
relatively lower, as shown in Figures 13 and 14.

Figure 11. Long-range shots.

Figure 12. Long-range and angle shots.

Figure 13. Long-range shot PCM data.
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Figure 14. Long-range and angle shot PCM data.

3.6. Very Long-Range Shooting Dataset

The very long-range shooting was conducted at various altitudes based on a horizontal
distance of 100 m, as shown in Figure 15. In very long-range shots, each image contained a
wide range of fields, but small objects other than buildings appeared challenging to distinguish.
Various altitudes and lens angles were used as the basis for image collection, and as a result,
noise from small objects increased in the PCM model, as shown in Figure 16. Considering
that the accuracy of the PCM model based on long-range shooting images was higher than in
other cases, it was confirmed that shooting should occur at an appropriate distance.

Figure 15. Very long-range and angle shot PCM data.

Figure 16. Very long-range and angle shot PCM data.
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4. Discussion

In this chapter, we investigate methods for the photorealistic rendering of the gener-
ated PCM model. We considered two techniques for the photorealistic rendering of the
model: the super resolution technique and the generative adversarial network (GAN).
Super resolution technique is a technology that transforms low-resolution images into
high-resolution images and is suitable for enhancing the quality of images when textures
have already been applied to the model. However, the super resolution technique is used
to enhance the pixel resolution and does not inherently add realistic textures or other
photorealistic qualities to the images. Therefore, for this study, which uses PCM technology
that consists of a simple collection of 3D points, it was determined that using GAN to
generate images similar to actual building photos and applying real building textures to
the PCM model would be more advantageous. Therefore, this chapter summarizes the
research results performed using GANs for photorealistic rendering of buildings.

4.1. Data Preprocessing and Noise Reduction

Before the actual model rendering, object recognition was performed on the non-
rendered model to create a control group. As a result, as shown on the left of Figure 17, it
was confirmed that AI, which was trained only with general images, could not recognize
objects in PCM without rendering. The cause was determined to be the low recognition
rate due to empty spaces between points in the on-site point cloud model acting as noise.
Therefore, a preprocessing filter was applied to reduce noise and solve the problem of
unrecognized objects. Furthermore, although there are various objects at the actual con-
struction site, only buildings and cars were selected to be recognized in this research stage
since the purpose is to identify the possibilities of new processes.

Figure 17. YOLO object detection from PCM without filter (left); YOLO object detection from PCM
with filter (right).

To fill the empty spaces between points in PCM, it is necessary to expand the area of
all points. For this, blur and sharpen filters were used concurrently for model rendering.
As shown in Figure 18, the blur was applied first to expand the area of each point within
the point cloud, and the sharpen function was used to correct the blurred image to make it
clearer. The most widely used blur types—average, median, bilateral, and Gaussian—were
used. Average blur divides the image into square areas and blurs it by calculating the
average value with surrounding areas. Median blur removes noise during the blurring
process. Bilateral blur considers the color and distance of the image, maintaining sharp
areas while blurring, and Gaussian blur uses the Gaussian function to blur the image.

Furthermore, in cases where the gaps between points are wide, a single filter may
not be enough to sufficiently fill the surrounding empty space so that AI can recognize it.
Therefore, filters were applied a minimum of 1 to a maximum of 6 times, and the sharpen
function was always used before applying the next blur to prevent excessively blurred
situations where objects could not be recognized. Moreover, by varying the type and order
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of blur when repeatedly applying the blur, the optimal blur/sharpen filter combination for
model rendering was found.

The mean squared error (MSE) is one of the widely used comparison metrics in
image processing, which calculates the average of the squared differences between pixel
values of the original image and the filtered image. Therefore, a smaller value means
the two images are more similar. The peak signal-to-noise ratio (PSNR) is a variation of
the MSE, representing the signal-to-noise ratio between the original and filtered images.
PSNR is usually expressed in dB units; a higher value means better image quality. These
techniques were used to compare filtered data visually, allowing for structural similarity to
be compared as well. To calculate these metrics, the original image and the filtered image
were directly compared, and the scikit-image library in Python was used for calculations.

Figure 18. Blur/sharpen filter process.

As a result of applying the blur/sharpen filter, as partially shown in Figure 19b–f,
the degree of photorealism in the rendered model varied significantly depending on the
combination and the number of repetitions of blur types. The MSE and PSNR values in
the images are the average values of several images. When comparing filter performance,
the similarity order is determined to be c-d-b-e-f. This result also affected the YOLO AI
object recognition results, as shown in Figure 17, where applying the filter increased the
recognition rate from 0% to 66%. However, the photorealistic rendering created using the
blur/sharpen filter tended not to recognize smaller objects, and the increase in recognition
rate occurred mainly for relatively larger objects. Moreover, not all combinations of blur
filters resulted in an increased recognition rate, and there were cases where the recognition
rate decreased depending on the filter combination.

As mentioned in the introduction, the YOLO AI used for recognition does not require
a separate data refinement process and utilizes quickly accessible images from the internet.
The training dataset consists of ordinary photos from the “PKLot Image Dataset” [68],
and “facadesArchitecture Image Dataset” [69], as shown in Figure 20, and can be easily
expanded through data crawling, depending on the situation.

Based on the results, further research was conducted on the method to create images
most similar to actual photos using filters alone. The four blur filters—average, median,
bilateral, and Gaussian—were applied with repetitions ranging from 1 to 6 times. The
number of combinations increased by 4ˆ6 for each iteration, resulting in 4096 combinations.
Object recognition was performed for all combination cases, and the average recognition ac-
curacy values were calculated and summarized in the scatter plot shown in Figure 21. Each
plot in the scatter plot represents the average accuracy obtained from object recognition
using a specific combination. The results indicate that excessive filter combinations signifi-
cantly reduce the correlation between images, and there seems to be a limit to achieving
photorealistic rendering using noise filters alone.

Even so, it was confirmed that the possibility of better object recognition with a photo-
realistic rendering of PCM models created through filter application, without additional
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fine-tuning to the AI, is higher than with the original PCM models. However, the 45–61%
object recognition accuracy is insufficient for practical use in on-site management. This
result seems to be due to the low resolution of the PCM models, and a PCM model closer
to actual photos is needed for successful on-site management.

Figure 19. (a) The original image of PCM-based PCM, (b–f) exemplary filter combination.
(b) MSE = 1146.46, PSNR = 17.54 dB. (c) MSE = 1103.24, PSNR = 17.70 dB. (d) MSE = 1199.40,
PSNR = 17.34 dB, (e) MSE = 1472.52, PSNR = 16.45 dB. (f) MSE = 1622.87, PSNR = 16.03 dB.

Figure 20. Car dataset (left); building dataset (right).
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Figure 21. YOLO 20: YOLO object detection accuracy results based on the frequency of blur/sharpen
filter applications. Four sites were evaluated, revealing specific combinations of blur/sharpen filter
applications that enhanced the accuracy of object detection in images.
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4.2. Generative Adversarial Networks (GAN)

Thus, to increase the PCM’s photorealistic rendering resolution, we used a generative
adversarial network (GAN) AI model to transform sketches into images. GAN models
have the advantage of turning sketches into high-quality images, making it possible to
obtain more refined photorealistic rendering of PCM models than the blur/sharpen filter if
PCM models are defined as sketches and photorealistic rendering is performed.

The internal structure of GAN, as shown in Figure 22, is composed of a generator
model and a discriminator model. The generator model aims to create random data, while
the discriminator model aims to distinguish between actual and generated data. These two
models compete, with the generator model trying to deceive the discriminator model and
the discriminator model trying to differentiate the generated data from the actual data. In
this way, the generator model can create data similar to actual data.

Figure 22. Structure of GAN AI model.

To use GAN, the training dataset must be composed of noisy and corresponding
noise-free data. However, collecting or generating separate PCM training data for model
photorealistic rendering contradicts one of the goals of this study, which is to minimize
the training data. To solve this problem, we automatically generated a training dataset by
adding point cloud noise to drone-captured images used to create the on-site PCM using
WebODM, as shown in Figure 23.

Figure 23. GAN training dataset: drone-captured photo (left); photo after adding point cloud noise (right).

Furthermore, the versatility of the GAN AI model is enhanced by training it with
construction site images captured under a variety of environmental conditions. This
strategy enables the model to learn how to generate images where adverse environmental
effects, which could otherwise impede object detection by acting as visual noise, are
effectively minimized or eliminated. This approach ensures that the GAN AI model can
produce images with reduced environmental noise, thereby facilitating more accurate object
detection in varied site conditions.

After the training was completed, we rendered the PCM model using GAN, as shown
in Figure 24’s “After photorealistic rendering (middle)”. Subsequently, the same YOLOv5
model used for object recognition after applying the blur/sharpen filter in Chapter 3 was
used for object recognition in the photorealistic rendered PCM model.
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Figure 24. Before photorealistic rendering (left); after photorealistic rendering (middle); object
detection from photorealistic rendered PCM model (right).

As a result of object recognition, the detected objects increased in number and accuracy
compared with when the blur/sharpen filter was applied. However, we observed that
the resolution of the photorealistic rendered model varied significantly depending on the
photo. The variation in resolution affected object recognition rates, necessitating additional
recognition rates and accuracy for actual site management. GAN is one of the highest-
performing AI models for converting sketches to images among existing models [40,41].
While achieving photorealistic rendering using a super-large AI model is possible, equip-
ping such infrastructure on a construction site is practically challenging, and creating a
more refined photorealistic model is complex.

4.3. Fine-Tuning of YOLO v5

After confirming the feasibility of the basic GAN model, we conducted a fine-tuning
process on the YOLOv5 model for additional accuracy improvement. Fine-tuning refers to
training an already trained model with a new dataset tailored to a specific situation. By adding
a new training dataset based on the already trained model, the weights within the neural
network are updated, improving performance. This method may contradict the research goal
of reducing the effort required to acquire training data. However, fine-tuning can have a
meaningful impact on accuracy even when using a small amount of high-quality data, such as
50 images [70]. In this study, we applied this fine-tuning technique to the YOLOv5 AI model.

For fine-tuning, additional training datasets were used, consisting of photos containing
actual buildings and cars on-site for the purpose of recognizing buildings and cars. As a
result of the tuning, the object recognition accuracy increased to (a) 48%, (b) 77%, (c) 100%,
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and (d) 82%, as shown in Figure 25. Overall, it showed an increase of 48–82%, and it can
be said that the recognition rate was successfully raised using the fine-tuning technique.
However, there is a problem with no data on the equipment and buildings deployed on the
initial construction site. This problem can be solved by synthesizing photos of objects to be
introduced or placed on-site with actual site photos, as shown in studies [71,72], to create
additional training datasets for fine-tuning.

(b) 

(c) 

(d) 

Figure 25. Cont.
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(b) 

(c) 

(d) 

Figure 25. Before fine-tuning (left); after fine-tuning (right).

4.4. Comparative Analysis of Results

The results from different steps of the research are summarized in Table 4 below
for a better comparison. Initially, the blur/sharpen filter was used to make the model
look more realistic, which helped the YOLOv5 AI, using a standard training dataset,
to recognize objects in the model. However, to improve the image quality further, a
generative adversarial network (GAN) sketch-to-image AI model was used instead of the
blur/sharpen filter. This change resulted in better-quality images, which in turn improved
object recognition accuracy.

Table 4. Results of object detection from each phase.

Phase Explanation Results

Blur/sharpen filter

- Photorealistic rendering of PCM-based PCM models
was carried out by applying the blur/sharpen filter

- The photorealistic rendered model reduced noise,
allowing objects to be well recognized.

GAN

- GAN, a sketch-to-image AI model, was used to
achieve higher-resolution photorealistic rendering of
PCM models.

- The photorealistic rendered model showed a higher
level of completion than the blur/sharpen filter.

Fine-tuning

- The training dataset for the object recognition AI
YOLOv5 model was changed to recognize objects in
the PCM model rendered by GAN.

- It showed the highest object recognition accuracy.
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Despite this improvement, the accuracy was still not good enough for on-site man-
agement. Therefore, a fine-tuning process was carried out to obtain better accuracy. For
fine-tuning, real objects from the site were labeled to create a new training dataset. Through
this fine-tuning process, the object recognition rate and accuracy were improved, even
when the image quality was low. This step showed that fine-tuning could help in improving
object recognition, which is crucial for better management of construction sites.

4.5. Limitations

This study encountered limitations beginning with the photorealistic rendering pro-
cess. The application of blur/sharpen filters and GAN models for this purpose did not
meet the expected success. These methods did not achieve the original goal of creating
photorealistic rendering for object detection, indicating potential shortcomings in the choice
of methods or their application.

Building on this issue, the constraints related to data and training further affected
the study. The automatic generation of training data and minimal usage of additional
training data may have limited the accuracy of the models. Specific construction site data,
experimental design, and additional testing scenarios might have enhanced the results.

These technological challenges dovetail with the sensitivity of resolution and distance
in the object recognition process. The effectiveness of recognition at close range sharply
contrasted with decreased accuracy as distance increased. This divergence points to a need
for further research to optimize recognition at varying distances.

Furthermore, the practical and scalability challenges of implementing high-quality
rendering using advanced AI models pose barriers to application on construction sites. The
methods may not be directly applicable or scalable to diverse environments, potentially
limiting their broader use.

Finally, these limitations underscore the future research needs highlighted by the study.
The necessity for developing more advanced rendering algorithms or integrating other
technologies like LIDAR presents a pathway to address the current limitations and lead to
more robust digital construction site management applications.

5. Conclusions and Future Research

This study highlights the potential of drone imagery in enhancing digital construction
site management and Building Information Modeling (BIM) creation, particularly through
improved object recognition within point cloud models (PCMs). A crucial finding is the
need for precise adjustments in drone flight parameters—altitude, camera angles, and
distances during image capture—to create accurate PCM models. The application of image
preprocessing techniques, generative adversarial network (GAN) models for texture genera-
tion, and the refinement of object recognition algorithms with extensive real-world datasets
has shown promise in enhancing the accuracy of object recognition. These advancements
have significant implications for construction project management, including:

(1) Enhanced precision in project planning and monitoring: Accurate PCM models allow
for detailed site analysis and monitoring, supporting informed decision-making based
on precise, real-time data.

(2) Improved safety and risk management: Advanced object recognition capabilities can
identify potential safety hazards and ensure compliance with safety protocols, thereby
mitigating risks and enhancing onsite safety.

(3) Optimized resource allocation: Detailed insights into site conditions and progress
from accurate digital models facilitate better resource allocation, reducing waste and
increasing efficiency.

(4) Streamlined collaboration and communication: Digital models that accurately re-
flect the construction site condition improve communication among stakeholders,
facilitating effective collaboration and coordination.
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However, several limitations were encountered:

(a) The aim of achieving photorealistic rendering for object detection using blur/sharpen
filters and GAN models was not fully met, indicating a need for alternative or re-
fined methods.

(b) The effectiveness of object recognition varied with distance, suggesting further re-
search is needed to optimize recognition at varying distances.

(c) Practical and scalability challenges emerged when attempting to implement high-
quality rendering using advanced AI models on construction sites, indicating the
methods may not be directly applicable or scalable to diverse environments.

These include challenges in achieving photorealistic rendering for object detection and
the variable effectiveness of object recognition algorithms at different distances. Future re-
search could explore the development of advanced rendering algorithms or the integration
of technologies like LIDAR to overcome these challenges. Additionally, the automation of
drone flight paths and image capture methods through AI-driven algorithms could further
enhance the efficiency and accuracy of PCM model creation, significantly contributing to
the digitalization of construction sites and improving productivity and innovation within
the construction industry.
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