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Abstract: In the early stage of architectural design, addressing the challenges posed by negative
spaces in high-density urban environments is crucial for enhancing spatial efficiency and building
sustainability. Multiple studies employed digital methods and tools to address these issues, such
as parametric design, simulation, and genetic algorithms, to investigate architectural generation
approaches for urban negative spaces. This article proposes an integrated design process that involves
finding the location and form of negative spaces, generating solutions using slime mold and wasp
algorithms, and optimizing and analyzing solutions using the Wallacei plugin in Grasshopper. This
comprehensive approach underscores the potential of parametric design to yield a multitude of
solutions while also acknowledging the convergence challenges encountered during simulations,
particularly in optimizing for optimal sunlight exposure during the winter solstice and minimal
solar radiation in the summer. Analyzing the optimization goals and parameter values of the 15th
Pareto optimal solution in the 100th generation reveals: (1) a higher number of units leads to positive
correlation growth in both objectives; (2) within a certain number of units, parametrically generated
solutions facilitate the convergence of optimization goals, yielding optimal outcomes. Therefore,
factors such as the range of unit quantities and proportions need consideration during early-stage
parametric design and simulation. This study explores a design methodology for negative spaces in
high-density urban cities, validating the feasibility of various mainstream generation methods and
offering insights for future research.

Keywords: high density city; negative space; grasshopper; multi-objective optimization

1. Introduction

With rapid urbanization, an increasing amount of space is being allocated for pro-
duction and residential purposes, resulting in the proliferation of underutilized and func-
tionally monotonous negative spaces within cities [1]. These negative spaces often lack
openness, have limited connectivity with surrounding structures, and generally exhibit low
architectural vitality, leading to numerous negative impacts on individuals and the urban
environment [1–3]. Currently, the development of most Chinese cities is constrained by the
urban environment, and there is a growing shift in urban development towards prioritiz-
ing “quality” over “quantity”. Therefore, exploring optimization and renewal strategies
for urban negative spaces has become crucial [4–6]. Simultaneously, many international
competitions have begun to focus on various types of negative spaces within high-density
cities, investigating the relationships between individuals, negative spaces, and urban
development [7]. Numerous award-winning projects combine parametric methods with
the design of negative spaces, and this fusion of parametric design with genetic algo-
rithms has sparked a transformation in the architectural design process, holding significant
development potential in the early stages of architectural design [8,9].
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There is a growing interest in negative spaces and their integration with digital and in-
formation technologies domestically and internationally. Currently, numerous competition
entries employ parametric techniques to renovate and transform negative spaces (Table 1).
However, the majority of these initiatives primarily focus on the initial design phase, often
needing more feasibility studies and a comprehensive examination of the entire process of
parametric generative design for negative spaces [10,11].

Table 1. Competition works related to the negative spaces (2019–2023).

Competition Time Title Theme

UIA-HYP CUP 2023 Living Your Best Life: Designing for
Mental Health in High Density Sprawl

Pay attention to the mental health problems
of people in high-density cities;
Pay attention to promote coordinated
development between people and cities

UIA-HYP CUP 2022 Folding Landscapes: Prototypes for an
Urban-Rural Union

pay attention to the development of areas
connecting urban and rural area

UIA-HYP CUP 2020 City puzzle & Puzzle city pay attention to the transformation of urban
unused space into effective space

UIA-HYP CUP 2019 Happy spaces: Integrating architecture
and landscape

Pay attention to the development of marginal
urban areas.

The Architect
Teamzero Award 2022 Architectures in Linking Area Focus on the design of the connecting

area building

This article aims to approach the subject from a parametric design perspective by
establishing an architectural generative method suitable for various urban negative spaces.
This method primarily comprises the selection of negative spaces, generating multiple
solutions utilizing slime mould and the Wasp algorithms and multi-objective optimization
performance simulations using the Wallacei plugin [12–15]. Additionally, the feasibility of
this approach is validated through practical site-based design generation and simulations.

This study selected a negative space within the residential area in Guangzhou, China,
for design generation and multi-objective optimization. It was observed that the parametric
design process could generate multiple solutions. However, during the simulation of
multi-objective optimization based on winter solstice sunlight duration and summer solar
radiation, incomplete convergence results were obtained. Analysis of the experimental
results revealed various factors that need attention in the parametric design process.

The primary contributions of this research are as follows: (1) Combining high-density
urban negative spaces with parametric and information-based design, offering a novel
perspective for the early stages of the design process. (2) Proposing a parametric generative
design method for negative spaces based on the Grasshopper parametric platform. (3) Inte-
grating parametric design and multi-objective optimization algorithms for performance
simulations, establishing an architectural generative optimization design process based on
the Grasshopper platform, and significantly enhancing various architectural performance
aspects in subsequent phases.

2. Related Work

This study utilizes parametric design and multi-objective optimization methods to
optimize negative spaces in high-density cities in China. Firstly, parametric design can gen-
erate and analyze multiple visual design schemes based on requirements and algorithms.
Secondly, multi-objective optimization methods can combine parametric design optimiza-
tion parameters with the proposal’s optimization performance objectives. This method
filters and optimizes the design based on building performance, providing designers with
multiple optimized and analyzed design options.
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2.1. Urban Negative Space

Negative space refers to an overlooked or neglected aspect of architectural design
characterized by an absence of defined function, organization, accessibility, and connectivity.
The concept of negative space was initially introduced by Yoshinobu Ashihara [16] in “The
Design of External Space”, where he referred to the natural space surrounding an object as
negative space. Hannah [17] considers negative space a byproduct of the transition from
traditional to modern in urban settings—an unordered, fluid space surrounding isolated,
massive structures. Trancik [18], in “Finding Lost Space”, defined the term “lost space”
to vividly portray people’s dissatisfaction and aversion to negative spaces, asserting that
these spaces can disrupt the overall cohesion and organic nature of a city [19,20].

In this study, the negative space under discussion pertains to the connecting spaces
between buildings, often dominated by extensive, unproductive greenery lacking vi-
brancy [21,22]. Specifically, these include transitional spaces between buildings and nega-
tive green spaces within the city that remain underutilized and undeveloped.

With the acceleration of China’s urbanization process, issues related to negative space
have become increasingly important in urban planning, spatial design, and renewal and
transformation efforts [23–30]. Recently, research on negative space primarily employs
data analysis and simulation software, proposing various renewal strategies [10,31]. Bald-
issara [11] activated and constructed underutilized urban spaces using “plug-in design”
and parametric design methods. Shi [21], using residual spaces in Macau as an example,
employed spatial syntax and SPSS regression fitting methods to analyze the relationship
between pedestrians and space. They modularly transformed the remaining street spaces
to enhance spatial utilization. The existing research reveals that studies on negative space
often focus on planning and strategic aspects, lacking typified and systematic analyses.

However, in some international competitions, award-winning entries combine para-
metric and simulation technologies with negative space, offering new design perspectives
for its transformation and utilization [32,33]. UIA-HYP Cup (International Student Com-
petition in Architectural Design) and Evolo competitions have also started to address this
topic. Awardees often employ parametric design, digitization, and performance simulation
techniques in these competitions. Through processes involving data collection, design,
and post-operation, they proposed architectural solutions characterized by parametric
features. These solutions offer a new perspective and method for the initial design phase
of buildings, providing innovative approaches to addressing negative space challenges in
densely populated urban areas.

Table 2 shows competition works related to parametric design from 2020 to 2023.
These solutions provide a new perspective and approach for the initial design phase of
buildings. However, they still need to consider effectively integrating parametric design
and performance simulation optimization systematically. This study aims to integrate
various aspects, including parametric design, performance simulation, and multi-objective
algorithm optimization, to establish an integrated process for generating architecture in
negative spaces.

Table 2. Competition works related to parametric design from 2020 to 2023.

Competition Time Title Method

UIA-HYP
CUP

2020 Old City pacemaker Parametric design, Ant colony optimization,
Wasp algorithm

2022 Ploughing on the clouds Parametric design, Multi-objective optimization,
Simulate, Wasp algorithm

2022 Herd Parametric design, Multi-objective
optimization, Simulate
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Table 2. Cont.

Competition Time Title Method

Evolo

2023 Urban paper clip Parametric design, Wasp algorithm,
Information technology

2023 The Gate of Cairo Parametric design, Wasp algorithm, Kangaroo
2022 Super mask skyscraper Parametric design, Simulate, Ladybug tools, Kangaroo
2022 Urban links Parametric design, Wasp algorithm

2021 Urban Parasitic System Parametric design, Wasp algorithm, Slime Mould
Algorithm, Ladybug tools, Information design

2021 Smokestack Symbiosis Skyscraper
Purifies Air Parametric design, 3D printing, Information design

2020 Epidemic Babel Parametric design, Modularization,
Information design

These solutions provide a new approach and method for the early design stages
of architecture. However, no integrated parametric design and performance simulation
optimization was proposed. This study aims to integrate various components, including
parametric design, performance simulation, and multi-objective algorithm optimization, to
establish an integrated process for generating design solutions in negative spaces.

2.2. Parametric Design

This paper adopts a simulation-based generative design approach to address the
challenges of dealing with multiple parameters and multiple objectives and the inefficiency
of manual optimization in the design process. We combine parametric design, architectural
performance simulation, and genetic algorithm optimization to generate multiple preferred
solutions [34–39].

The slime mould algorithm is a bio-inspired intelligent algorithm that simulates
slime moulds’ foraging behavior and morphological changes. By incorporating adaptive
weights, the algorithm emulates the propagation wave of the slime mould mechanism
based on biological oscillators, generating positive and negative feedback, effectively
exploring food locations, and forming optimal paths [14]. In recent years, architects have
increasingly applied the slime mould algorithm to the planning and design of urban road
systems, demonstrating significant application potential [40]. Adamatzky [41] compared
the transportation networks formed by slime moulds on flat and three-dimensional terrains
with artificially designed solutions. They found that slime moulds could construct longer
transportation paths on three-dimensional terrains, highly similar to the paths designed
by humans.

The slime mould algorithm effectively generates optimized path selections in urban
negative spaces, offering diverse possibilities for revitalizing and utilizing such spaces.
Therefore, this study attempts to incorporate the slime mould algorithm into spatial path
planning for urban negative spaces. It aims to generate multiple spatial paths based on
actual requirements, providing a more scientifically grounded basis for activating and
utilizing urban negative spaces.

The Wasp algorithm is a virtual architectural generation plugin developed by Rossi [42]
using Python. It facilitates the discretization and aggregation of units by setting parameters
such as unit size, shape, direction, and connection rules. In the previous research on urban
negative space, it was found that many researchers used modular design to update and
transform the urban negative space [21,29]. Yu [43] explored the relationship between
variable parameters and spatial structure using parametric algorithms, generating digital
models of varying scales, which aimed to validate the application of the Wasp plugin’s
design algorithms across different spatial scales. Drude [44] utilized the Wasp algorithm to
define discrete architectural modules’ geometric shapes and connectivity logic, employing
these rules for aggregating basic units to construct structures. Simultaneously, they inte-
grated Wasp’s approach to discrete architectural modeling with intuitive design in virtual
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reality, using physical simulation as a form generation, allowing designers to aggregate
architectural modules by applying forces through controller movement in a virtual reality
environment, thus creating novel architectural forms.

This study aims to combine the rapid unit discretization and aggregation capabilities
of the Wasp algorithm with modular design methods, providing new tools for diverse
design and rapid construction in urban negative spaces.

2.3. Multi-Objective Optimization

Multi-objective optimization is a method that aids architects in performance-based de-
sign by searching for potential solutions that satisfy various performance requirements [45].
Zhou et al. [46] proposed a generative design process for Modular-integrated Construction
(MiC) based on multi-objective optimization algorithms. Comparative experiments re-
vealed that this generative design approach outperforms traditional methods in areas such
as energy efficiency and sunlight exposure. Gagnon [47] compared sequential and holistic
design methods based on multi-objective optimization, demonstrating that holistic design
methods can find more optimal solutions in a shorter time frame. Yu [39], leveraging a
multi-objective optimization plugin on the Grasshopper platform, introduced a simulation-
based parametric approach, discussing different design parameter combinations under
multiple optimization objectives. Hu et al. [15] utilized Ladybug + Honeybee, a parametric
building performance analysis tool on the Grasshopper platform, coupling parameters
such as energy consumption, solar radiation, sunlight, and thermal comfort within the
same parametric model. They employed genetic algorithms to achieve automatic form
optimization for specific performance objectives.

The Wallacei plugin for the Grasshopper platform is an evolutionary engine based on
the NSGA-II algorithm, capable of simulating and addressing multi-objective optimization
problems through genetic algorithms [48]. Jingjin Li et al. [49], utilizing the Wallacei plugin,
conducted multi-objective optimization on solar radiation, solar hours, and block capacity
for urban block buildings. The research results provided new design strategies for reno-
vating existing residential areas. Additionally, several researchers have proposed building
generative design methods based on energy efficiency. They explored generative design
methods based on parametric, deep learning, and multi-objective optimization design
based on energy consumption simulation. These methods cover various environmental
performance indicators related to lighting, comfort, and economy [50–53].

However, most existing parametric design studies focus on optimizing a specific type
of building, primarily low-rise residential and public buildings with relatively regular floor
plans. There is limited research on buildings with more complex floor plans. Regarding
the optimization design process, collaboration between different software and tools is
required to improve the efficiency of architectural generation and performance simulation.
Additionally, these methods need more systematicity and seamless integration. Further
efforts are needed to integrate and systematize these methods.

Figure 1 illustrates a literature analysis of the past decade regarding urban negative
space and parametric design. Research on negative space is increasingly gaining attention,
while studies on utilizing parametric techniques for negative space design are growing
each year, which indicates broad prospects for the intersection of negative space and
parametric design research and applications. Therefore, this paper aims to construct a
methodological system that employs parametric design and multi-objective optimization
to generate optimized solutions for urban negative spaces. The establishment, conditions,
and considerations for using this system are discussed to provide a theoretical and practical
foundation for subsequent related research.
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3. Methodology
3.1. Technical Route

This study uses parametric design methods to optimize negative spaces in high-density
urban areas. The specific steps are as follows (Figure 2):

(1) Obtain the building distribution map of the target high-density city from National
Geographic. Select suitable negative spaces for analysis based on varying building
densities.

(2) Use the Slime mould and Wasp algorithms on the Grasshopper platform to generate
multiple parametric model scenarios according to site requirements and constraints.
The optimization parameters include the number of units (N) and the vertical projec-
tion distance from the volume centroid of each unit to the optimal path (D). Figure 3a
represents the optimal path generated by the slime mould algorithm; Figure 3b illus-
trates the aggregated units generated by the Wasp algorithm; Figure 3c illustrates the
volume centroid of each unit; Figure 3d depicts the vertical shortest distance from the
volume center point of each unit to the optimal path.

(3) Define optimization performance metrics and parameters. This study’s optimization
objective includes maximizing winter solstice sunlight duration (Objective-WSD) and
minimizing summer solar radiation (Objective-SSR) for units.

(4) Build a model on the Wallacei plugin for two optimization objectives and establish a
multi-objective optimization model.

(5) Employ a non-dominated sorting genetic algorithm on the Wallacei plugin, configure
relevant parameters for multi-objective optimization, and conduct computational
analysis. Output the Pareto optimal solution if the results tend towards convergence;
otherwise, reconfigure the relevant parameters until a convergence trend appears,
and output the Pareto optimal solution.
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3.2. Research Scope
3.2.1. Information on Research Site

The assessment and definition of high-density cities typically rely on two indicators:
population density and building density [54]. In 2021, the National Geographic platform
analyzed high-density urban areas worldwide (Table 3). According to the analysis, cities in
China such as Guangzhou, Shanghai, and Beijing are categorized as high-density cities.

Table 3. High-density urban information captured from the National Geographic platform.

Share of People Living in Urban Agglomerations
of More than 1 Million 1960 to 2021 Distribution Map of High-Density Cities in China
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second only to Shanghai [55]. The development of high-density cities has brought about
challenges in the inefficient utilization of negative space in buildings, adversely impacting
the ecological environment, social harmony, and residents’ quality of life.

Therefore, as the economic hub in southern China, Guangzhou’s urban development
model is representative. Studying the issue of negative space in high-density urban ar-
eas in Guangzhou can provide a reference for other rapidly developing cities worldwide.
Moreover, as a hub of innovation in China, Guangzhou is home to numerous high-tech
enterprises and research institutions. Through technological innovation and smart city
development, new methods for efficiently utilizing negative space can be explored, driving
sustainable development in other high-density cities in China. In conclusion, Guangzhou’s
case serves as a demonstration of addressing urban negative space issues and can con-
tribute essential experiences and wisdom to urban development both domestically and
internationally.

Tianhe District, located in the central area of Guangzhou (Figure 4a), stands out as
one of the city’s most representative high-density residential areas. Its population density
reaches 24,000 people per square kilometer, ranking it as one of the highest nationwide.
The residential areas in Tianhe District are predominantly high-rise buildings, highlighting
prominent issues in the efficiency of negative space utilization in buildings. This study
selects a typical residential area in Tianhe District as its research subject, aiming to analyze
the current status and issues of optimizing the efficiency of negative space utilization in
high-density urban buildings in Guangzhou.
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The selected study site is an irregularly shaped area measuring 164 m in length and
98.3 m in width, which is predominantly covered with green vegetation but lacks accessi-
bility and practicality. Surrounding the site are nine-story framed residential structures,
with the ground floor serving as an elevated platform that can be utilized as a parking area
or commercial space. The remaining eight floors consist of residential units, each with a
height of 3 m per floor.
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3.2.2. Weather Conditions and Selected Objectives

Guangzhou is in a subtropical monsoon climate zone, characterized by long-lasting
summers and a mild yearly climate. The total annual radiation in Guangzhou ranges
between 4400 and 5000 MJ/(m2 × a) [56].

Excessive solar radiation significantly increases building energy consumption and
affects human thermal comfort and health. Therefore, reducing summer solar radiation and
building energy consumption should be one of the optimization objectives in Guangzhou.
Additionally, negative spaces are often located in the connecting spaces of buildings, which
are prone to insufficient sunlight due to shading from surrounding buildings. Inadequate
sunlight exposure can lead to mood disorders and weakened immunity in humans. Ensur-
ing adequate sunlight exposure is crucial for maintaining human health and psychological
balance. Therefore, increasing sunlight duration in winter should also be an essential
optimization objective. Considering these factors, this study selected the minimization of
Summer Solar Radiation (SSR) from 1 May to 31 August and the maximization of Winter
Solstice Duration (WSD) as two performance objectives for optimization.

3.3. Parameter Preparation before Multi-Objective Optimization
3.3.1. The Optimized Path Generated by the Slime Mould Algorithm

This study used the slime mould algorithm to plan the optimal path between residen-
tial buildings in the research site. The slime mould algorithm on the Grasshopper platform
contains four core control parameters: environment, path start point, path endpoint, and
path travel time. The specific generation steps are as follows: first, based on the site con-
ditions, a 164 m × 98.3 m × 36 m box was established as the simulation environment.
Second, the starting and ending points of the path were determined based on the main
flow of people and their destination. Finally, the core parameters for the processor were
set. The visualized results of the four slime mould paths are shown in Table 4. Factors
considered in selecting the optimal path included the coverage of the path start point
and path endpoint, the distance between the optimal path and existing buildings, and
the location of concentrated slime mould areas. Path 01 was chosen as the optimal path
(Table 4a).

Table 4. Selected optimized paths generated by the slime mould algorithm. (a) the generated results
of path 01; (b) the generated results of path 02; (c) the generated results of path 03; (d) the generated
results of path 04.

Path Generated Results

Path 01

Reset: 50 ms; Detect radius: 2 m; Select Possibility: 1
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Path Generated Results

Path 02
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algorithm include defining units, establishing rules, and conducting aggregation. The steps
for generating multiple architectural schemes are as follows: firstly, design spatial units
based on the site’s requirements to create basic unit forms. Secondly, formulate connection
rules for units of different specifications based on connectivity requirements. Finally, using
the optimal path that the slime mould algorithm generates as a foundation facilitates the
growth of units to generate multiple parametric schemes.

Define Unit Component

This study adopted a 3 m modular system for the unit dimensions, which coordinates
well with the existing buildings and allows various units to self-aggregate. Three types of
units labeled A, B, and C were selected, with their dimensions shown in Table 5.

Table 5. Size of different types of units.

Unit A Unit B Unit C

Units
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Table 6 illustrates the possible connections between Unit A and B using the combi-
nation of Unit A and Unit B as examples. Table 6 presents the distribution possibilities
of points and lines in Units A and B. For both units, there are four possible distributions
labeled as Option 1–8.
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Table 7 illustrates the six possibilities of combinations for the eight options between
Units A and B. Therefore, following these rules, there are 54 combinations for the A&A,
B&B, C&C, A&B, A&C, and B&C pairing solutions.

Table 6. Distribution possibilities of points and lines in Units A and B.

Option 1 Option 2 Option 3 Option 4
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Option 1 Option 2 Option 3 Option 4

Unit B

Option 5 × × ×
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Units Aggregation

After establishing unit and connection rules, the units will aggregate within the site
space (constrained in 164 m × 98.3 m × 36 m) [43]. Subsequently, the volume centroid
of each generated unit is computed, and unit D values in the range of 0.2 to 0.8 are
selected. Finally, based on the goals of design optimization, multiple optimized solutions
are generated by adjusting the N and D values.

3.3.3. Multi-Objective Optimization Based on the Aggregation Result

Similar to the work of Li et al., this paper also takes sunlight duration and solar
radiation as optimization objectives and refers to the relevant parameter settings of the
Wallace plugin [48,49]. After the aggregation of units, multiple parametrically controlled
design solutions can be generated. Figure 6 illustrates the steps and tools involved in
multi-objective optimization. This article introduces a method for optimizing architectural
performance generated in urban negative space based on parametric design, consisting of
three main steps.
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Firstly, diverse design alternatives are generated through preliminary parameter
control logic. The Ladybug plugin is then employed to perform meteorological analysis
on each design alternative, obtaining quantified metrics for architectural performance.
Secondly, the Wallacei plugin establishes a closed-loop model correlating building form
parameters with architectural performance metrics. Lastly, within the Wallacei plugin,
optimization objectives and parameters are input, and optimization algorithm parameters
such as iteration count, population size, and crossover probability are configured. The
multi-objective optimization process is initiated, yielding the optimal design solutions
(Figure 6).

The parametric schemes employ the slime mould algorithm to generate building routes
that best meet the residents’ needs, enhancing the efficiency of residents’ transportation.
Moreover, the optimization schemes selected based on the Wasp algorithm, combined with
prefabricated construction methods, can improve the efficiency of building construction
and renovation, restoring vitality to urban negative spaces. Lastly, using the Wallacei
plugin, the optimization parameters are integrated with the optimization performance
objectives to iteratively select optimal solutions that meet residents’ needs, invigorate
negative spaces, and promote green, sustainable, and healthy environments.

4. Simulation Result Analysis
4.1. Multi-Objective Optimization (The First Simulation)

This article employs a Windows computer with an AMD Ryzen 5 5600X 6-Core@3.70 GHz
processor (produced by AMD Company in Shanghai, China) and 16 GB RAM for multi-
objective optimization. The initial optimization analysis utilized settings of 30 individuals and
60 iterations, generating 1800 solutions and requiring 12 h for completion. Table 8 provides the
parameter settings for the first optimization analysis.

Table 8. Parameter settings for the first optimization analysis.

Generation Size Generation Count Crossover Probability Mutation Probability Random Seed

30 60 0.9 0.5 1

Table 9 analyzes the iterative trends of two optimization objectives. Table 9a,b depict
the trends in the standard deviation (SD) of each objective, respectively. The curves
represent the SD of objective values obtained in each iteration, reflecting the dispersion of
optimization objective values. A wider curve indicates a larger SD, while a narrower curve
indicates a smaller SD. Table 9c,d illustrate the trends in the average values of optimization
objectives throughout the optimization process. Table 9a shows that the duration of winter
solstice solar radiation exhibits a rightward shift as the iterations progress. The blue curve
in the graph has a broader range and a flatter slope, indicating an increased dispersion of
the winter solstice solar radiation duration with the optimization process. Furthermore,
Table 9c reveals a rapid decrease in the WSD from the 1st to the 10th generation, reaching
a minimum. Between the 10th and 60th generations, the WSD experiences fluctuating
increases. In Table 9b, the SSR shows a rightward shift with the progression of iterations.
The curve’s width gradually increases, suggesting an increasing dispersion of the objective
values. Table 9d indicates a rapid decrease in SSR from the 1st to the 10th generation,
reaching a minimum. Between the 10th and 60th generations, the summer solar radiation
undergoes fluctuating increases.

During multi-objective optimization, improvements were achieved for both investi-
gated optimization objectives. However, significant fluctuations were observed in the later
iterations. To enhance the reliability and rigor of the experimental results, we will increase
the number of iterations and adjust the crossover genetic probability in the next phase of
simulation, ensuring the accuracy of the experimental outcomes.
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Table 9. Optimization result (the first simulation). (a) Standard deviation graph for Objective-
WSD rules; (b) Standard deviation graph for Objective-SSR; (c) Mean values trendline graph for
Objective-WSD; (d) Mean values trendline graph for Objective-SSR.

Standard deviation graph for Objective-WSD Standard deviation graph for Objective-SSR
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During multi-objective optimization, improvements were achieved for both investi-
gated optimization objectives. However, significant fluctuations were observed in the later 
iterations. To enhance the reliability and rigor of the experimental results, we will increase 
the number of iterations and adjust the crossover genetic probability in the next phase of 
simulation, ensuring the accuracy of the experimental outcomes. 
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4.2. Multi-Objective Optimization (The Second Simulation)

In the second round of multi-objective optimization experiments, we configured
100 iterations, with 40 individuals participating in each iteration, which resulted in 4000
solutions and took 23 h to complete. Table 10 provides the parameter settings for the first
optimization analysis.

Table 10. Parameter settings for the second optimization analysis.

Generation Size Generation Count Crossover Probability Mutation Probability Random Seed

40 100 0.7 0.5 1

As shown in Table 11a, with the increase in the number of iterations, the standard
deviation of WSD gradually increases, indicating an expanding distribution range of WSD.
Table 11b shows that with the increase in the number of iterations, the curve distribution
shifts to the left, the values gradually decrease and approach stability, and the curve width
gradually widens, which suggests an expanding distribution range of SSR.

Table 11c shows that the WSD sharply declines to 480 h within the first 15 generations
of iterations. Subsequently, from the 15th to the 100th generation, it stabilizes within 433.69
to 577.69 h. Table 11d shows that the summer solar radiation decreases throughout the
iterative process, ultimately fluctuating between 609,218.18 and 712,840.51 kWh/m2.
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Table 11. Optimization result (the second simulation). (a) Standard deviation graph for Objective-
WSD rules; (b) Standard deviation graph for Objective-SSR; (c) Mean values trendline graph for
Objective-WSD; (d) Mean values trendline graph for Objective-SSR; (e) Fitness value chart for
Objective-WSD; (f) Fitness value chart for Objective-SSR; (g) Parallel Coordinate Plot.
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1968.78 and 3181.38 h. As the iterations progress, the values continuously increase, trend-
ing towards convergence. The values for SSR are evenly distributed across the entire 
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The fitness value chart illustrates the variation in optimization objective values for
the top ten individuals in each generation. Different-colored lines in the chart represent
a different number of iterations, ranging from blue to red in increasing order. From
Table 11e, it can be observed that, concerning the winter solstice solar radiation duration,
the variation ranges between 243.38 and 3787.88 h. Table 11f shows that, in the case of SSR,
the optimization objective values exhibit significant fluctuations with increasing iteration
numbers, and the variation range is broad.

As depicted in the parallel coordinate plot (Table 11g), each vertical axis represents
the range of variation for an optimization objective, and each line segment represents
a solution. The color of the line segments transitions from blue to red, indicating the
progression of iterations. The graph shows WSD values are primarily distributed between
1968.78 and 3181.38 h. As the iterations progress, the values continuously increase, trending
towards convergence. The values for SSR are evenly distributed across the entire range,
and with the progression of iterations, the values fluctuate throughout the range without
fully converging.

The first and second simulations changed three parameters: generation size, generation
count, and crossover probability. These changes resulted in greater diversity in solutions,
better convergence, and reduced computational complexity of the optimization process.
The results of the first and second simulations show that WSD initially decreases and then
increases with the number of iterations, while SSR gradually decreases. Finally, both values
oscillate within a certain range until complete convergence.

5. Discussion

Figure 7 illustrates the numerical distribution of the unit quantity (N) for all solutions
during the optimization process. The graph shows that the distribution of N is highest in
the range of 50–60, totaling 911 occurrences. The following most frequent distributions
are observed in 61–70, 91–100 and 141–150, exceeding 400 solutions. The least frequent
distribution is in the range of 0–10, with only 16 solutions.

Figure 8 illustrates the spatial distribution of all optimized solutions during the optimization
process. It reflects the relationship between the N and the D values along the optimal path. Firstly,
when the D value is small (0.2–0.4), the N value is concentrated between 40 and 110, indicating
that the optimal path has a significant impact on the distribution of N values. When the D value
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is significant (0.6–0.8), N is uniformly distributed within the variable range, indicating that the
optimal path minimally impacts the N value distribution.
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Figure 9 depicts the D value distribution of the unit cell center point from the optimal
path for all solutions during the optimization process. It can be observed that solutions
with a D value between 0.2–0.3 and 0.61–0.8 are concentrated, with the most occurrences in
the 0.2–0.3 range, totaling 1577 occurrences. Solutions with a D value between 0.41 and
0.6 are less frequent, indicating suboptimal performance of the optimization algorithm for
distances within this range.
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Pareto to Optimal Solution Analysis

Fifteen Pareto optimal solutions were selected from the 100th generation among the
4000 optimization results for the statistical analysis to investigate the solutions’ morpholog-
ical evolution and performance variations (Table 12).

Table 12. The selected 15 Pareto optimal solutions from the 100th generation.

NO.3961 NO.3967 NO.3968
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NO.3961 NO.3967 NO.3968 

   
WSD 3787.87 h 2610.96 h 3257.32 h 
SSR 1,550,000 kwh/m2 1,280,000 kwh/m2 1,400,000 kwh/m2 

 

NO.3970 NO.3972 NO.3973 

   
WSD 2512.56 h 1964.63 h 1533.74 h 
SSR 1,190,000 kwh/m2 996,713 kwh/m2 843,924 kwh/m2 

 

NO.3975 NO.3977 NO.3982 

   
WSD 1055.96 h 2469.13 h 1751.31 h 
SSR 668,880 kwh/m2 1,110,000 kwh/m2 938,170 kwh/m2 

 

NO.3986 NO.3988 NO.3991 

   
WSD 3267.97 h 2298.85 h 1158.75 h 
SSR 1,480,000 kwh/m2 1,080,000 kwh/m2 698,349 kwh/m2 

 

NO.3993 NO.3997 NO.4000 

   
WSD 894.45 h 1414.42 h 1233.04 h 
SSR 636,594 kwh/m2 785,963 kwh/m2 724,334 kwh/m2 
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Table 12. Cont.

NO.3993 NO.3997 NO.4000
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Statistical analysis was conducted on the optimization objectives and variables data
for the 15 Pareto optimal solutions from the 100th generation. The scatter plot in Figure 10a
shows a positive correlation between the optimization objectives WSD and SSR among
the 15 Pareto optimal solutions. Figure 10b reveals variations in WSD statics for different
optimal solutions with the same N value. Therefore, one can filter based on the relationship
between WSD and N to select Pareto optimal solutions that meet the requirements. In the
40 < N < 80 range, the 3997th solution is chosen as the optimal solution. For 81 < N < 120,
the 3977th solution is selected as the optimal solution, and for 121 < N < 150, the 3968th
solution is chosen as the optimal solution.
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Figure 10. Statical analysis. (a) The relation between Pareto solutions and statics of WSD and SSR; 
(b) The relationship between Pareto solutions and statics of WSD and N value. 

Table 13 illustrates optimal solutions for the three intervals (40 < N < 80, 81 < N < 120, 
and 121 < N < 150) that meet the optimization objective WSD and objective SSR. From the 
numerical values of the optimization parameters and objectives, it can be observed that as 
N increases, both WSD and SSR increase, though the rate of increase varies. The axono-
metric view indicates a high similarity in the distribution characteristics of units in the 
upper regions of the three proposed solutions, suggesting that the optimization algorithm 
has identified building layouts that satisfy performance goals, providing architects with 
valuable references. 

  

Figure 10. Statical analysis. (a) The relation between Pareto solutions and statics of WSD and SSR;
(b) The relationship between Pareto solutions and statics of WSD and N value.

Table 13 illustrates optimal solutions for the three intervals (40 < N < 80, 81 < N < 120,
and 121 < N < 150) that meet the optimization objective WSD and objective SSR. From
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the numerical values of the optimization parameters and objectives, it can be observed
that as N increases, both WSD and SSR increase, though the rate of increase varies. The
axonometric view indicates a high similarity in the distribution characteristics of units in the
upper regions of the three proposed solutions, suggesting that the optimization algorithm
has identified building layouts that satisfy performance goals, providing architects with
valuable references.

Table 13. Axonometric views of selected solutions.

N: 59; D: 0.71324;
WSD: 1414.42 h; SSR:785,963 kwh/m2

N: 94; D: 0.68771;
WSD: 2469.13 h; SSR: 1,110,000 kwh/m2
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For different design proposals, there are two main criteria for selecting the best solu-
tion: (1) when the values of N and D are close, designers can prioritize solutions with 
larger WSD and smaller SSR to optimize the building’s performance and human comfort; 
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larger N and smaller D to provide more public spaces for residents, enhancing the vitality 
of negative spaces. Additionally, the criteria for selecting the best solution and its impact 
on architectural design decisions may vary in different climatic regions. For example, in 
cold regions, increasing winter solar radiation appropriately plays an important role in 
the comfort of indoor spaces and human beings, and the optimization objective should be 
to increase winter solar radiation. 

6. Conclusions and Future Work 
This study focuses on the negative spaces within urban environments, employing 

parametric design on the Grasshopper platform and Wallacei multi-objective optimization 
analysis. It establishes an integrated process for generating designs and simulating per-
formance in negative spaces, providing designers with references for optimizing urban 
negative spaces through architectural design and performance analysis.  

The case study was conducted in a high-density residential area in Guangzhou, using 
WSD and SSR as optimization objectives for multi-objective design. A total of 4000 solu-
tions were generated, and the analysis is based on the 15 Pareto optimal solutions from 
the 100th generation. The results indicate a significant influence of the quantity of unit 
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and smaller SSR to optimize the building’s performance and human comfort; (2) when
the values of WSD and SSR are close, designers can prioritize solutions with larger N
and smaller D to provide more public spaces for residents, enhancing the vitality of
negative spaces. Additionally, the criteria for selecting the best solution and its impact
on architectural design decisions may vary in different climatic regions. For example, in
cold regions, increasing winter solar radiation appropriately plays an important role in the
comfort of indoor spaces and human beings, and the optimization objective should be to
increase winter solar radiation.

6. Conclusions and Future Work

This study focuses on the negative spaces within urban environments, employing
parametric design on the Grasshopper platform and Wallacei multi-objective optimization



Buildings 2024, 14, 1081 23 of 25

analysis. It establishes an integrated process for generating designs and simulating per-
formance in negative spaces, providing designers with references for optimizing urban
negative spaces through architectural design and performance analysis.

The case study was conducted in a high-density residential area in Guangzhou, using
WSD and SSR as optimization objectives for multi-objective design. A total of 4000 solutions
were generated, and the analysis is based on the 15 Pareto optimal solutions from the 100th
generation. The results indicate a significant influence of the quantity of unit cells on WSD
and SSR. Within a certain range of N value, the study demonstrates the potential to achieve
a balance between the optimization objectives of WSD and SSR through the generation
of different design alternatives, resulting in preferred solutions. Additionally, this study
focused on the hot-summer and warm-winter regions, with the optimization objectives of
reducing SSR and increasing WSD. When the study area is in a cold region, the optimization
objectives will change to increase winter solar radiation and the duration of sunlight on the
winter solstice. The change in optimization objectives will lead to changes in the criteria for
selecting the best solution and the architectural form. In the future, architects can choose
corresponding solutions based on the needs of different regions and user groups.

While this study has achieved certain results, it also has limitations that need im-
provement in future work. Specifically, the limitations include the selection of only N
and D values as optimization parameters without considering other variables that may
affect the architectural design, such as the proportion and orientation of units. The study
only addresses multi-objective optimization analysis for the light environment without
considering other performance indicators such as thermal and wind environments, limiting
the adaptability of the optimization results. Future research should focus on the interaction
between solutions and existing buildings. Through on-site measurements and data analysis,
the post-implementation effects of solutions should be continuously evaluated, and areas
for improvement should be identified to establish an effective feedback mechanism. Con-
tinuously adjusting and improving design solutions based on collected feedback will create
a dynamic iterative improvement process. Such a mechanism will help ensure that design
solutions can adapt to constantly changing environmental and functional requirements,
achieving more efficient and sustainable urban space utilization.
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