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Abstract: Road potholes have a well-known impact on driving quality and safety. Therefore, timely
mitigation of potholes is critical for the safety of road users. However, efficient and timely mainte-
nance relies on the presence of an effective process for pothole detection. Currently, transportation
agencies primarily rely on manual inspection and road user reporting. These methods are subjective,
prone to inaccuracy, and some are also laborious and time-consuming. An ideal pothole detection
system would be accurate, objective, automated, and relatively inexpensive. In this context, accuracy
encompasses three distinct performance areas: detection, localization, and size estimation. This study
explores the potential of utilizing a mobile light detection and ranging (LiDAR) for accurate detection
and size estimation, along with a global navigation satellite system (GNSS) receiver for localization,
to develop an effective pothole surveillance system. To achieve this objective, the study proposes
a four-step framework. Firstly, the LiDAR data are processed to generate ring-wise cross-sectional
images. Secondly, a deep learning object detection network is trained to predict the presence and
size of potholes. Thirdly, the ring-wise inferences are aggregated to produce a final decision. Lastly,
the aggregated inferences are synchronized with GNSS locations to generate inspection maps. The
system’s performance was validated using multiple road strips, never seen by the model, containing
potholes of different sizes and shapes. The results demonstrated the effectiveness and accuracy of
the proposed system. Overall, this research contributes to the research on LiDAR-based pothole
inspection by proposing a novel four-step framework and incorporating it into an end-to-end pothole
detection system, which can greatly improve the efficiency of pothole maintenance and enhance the
safety of road users.

Keywords: LiDAR; AI; pothole; maintenance management system

1. Introduction

Among all the pavement distresses, potholes are the most critical type since they pose
a major safety concern to the traveling public. Not only do potholes cause damage to the
vehicles of the traveling public, but they can also be responsible for life-threatening acci-
dents, especially when encountered at highway speeds. In 2016, the American Association
of Automobiles (AAA) surveyed across the states to assess the adverse effects of potholes.
The survey results indicated that the vehicle repair cost associated with pothole damage
is approximately USD 3 billion per year [1]. In addition, poor road condition is reported
to be one of the major reasons for road accidents [2]. Therefore, the pothole maintenance
program always remains to be the priority for all transportation agencies.

Pothole formation is inevitable. Despite various strategies that agencies have em-
ployed to prevent the formation of potholes, the most successful outcome has been a
reduction in their formation rather than complete eradication. Therefore, transportation
agencies are forced to spend millions of dollars to run pothole repair programs as a part of

Buildings 2024, 14, 1078. https://doi.org/10.3390/buildings14041078 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14041078
https://doi.org/10.3390/buildings14041078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-3083-6242
https://orcid.org/0000-0002-5677-1280
https://doi.org/10.3390/buildings14041078
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14041078?type=check_update&version=1


Buildings 2024, 14, 1078 2 of 25

their overall pavement maintenance. It is reported that each state department of transporta-
tion spends approximately USD 5.5 million per year on the porthole repair program [3].

Every transportation agency has its pothole detection system as a part of the pothole
repair program. Many agencies still rely on a manual inspection where the inspectors travel
across the area that falls under the agency’s jurisdiction and report pothole locations based
on visual inspection. Not only does this process yield erroneous results due to human
error, but it may also lead to traffic accidents due to distracted driving [4]. Therefore, the
agencies are moving toward a more automated approach to detecting potholes. In current
practice, many agencies rely on the data collected by the digital inspection vehicle (DSV) for
pothole prediction. Nonetheless, that only solves half of the problem since the data need
further manual revisions to extract any information related to potholes [5]. In addition, the
agencies can only afford the DSV survey annually or bi-annually due to budget constraints.
Hence, DSV data are not a viable solution when it comes to pothole detection since these
data require continuous monitoring.

Over the past decade, significant advancements have been made on the sensor front,
which has made sophisticated sensors available at a relatively lower cost. This has encour-
aged many researchers to use such low-cost sensors to develop a standalone system for
pothole detection. Among the sensors used for pothole detection, the camera is the most
commonly used due to (1) its availability at a very low cost, (2) the interpretability of the
image captured by the camera, and (3) the advancement of AI-based object detection from
the image [6–8]. However, cameras have limitations. The images captured by cameras do
not contain enough information to extract the dimension of the pothole (i.e., depth, width,
and length) with reasonable accuracy [8,9]. While cameras remain a widely used option,
there is an opportunity to explore the feasibility of alternative sensor types to enhance
pothole detection and provide more precise dimensional data.

Light detection and ranging (LiDAR) is a remote sensing technology that uses laser
light to measure distances with high precision. It is known for its ability to capture high-
resolution, detailed spatial information, making it valuable in various fields. Over the
past decades, LiDAR has been in a wide range of areas including, but not limited to,
infrastructure asset management, surveying and mapping, and pavement condition assess-
ment [10–12]. In recent years, the auto industry-grade mobile LiDAR has been used in areas
like robotics, autonomous driving systems, and traffic monitoring [10,13]. The massive de-
mand for such auto industry-grade LiDAR has led to a significant reduction in production
costs, rendering it a potentially cost-effective solution for pavement condition assessment.

Keeping that in mind, this study explores the potential of auto industry-grade LiDAR
for pothole detection. To this end, a low-cost auto industry-grade LiDAR is integrated as
part of a pothole detection system. A comprehensive data processing pipeline is proposed
that includes preprocessing point cloud, pothole detection from the point cloud using a
state-of-the-art You Only Look Once (YOLO) object detection model and post-processing of
the data. The study also focuses on testing the developed system on multiple testing strips
at different highway speeds to demonstrate the reliability of the system.

2. Background

The use of LiDAR in asset management is not new. Many researchers have successfully
demonstrated the use of LiDAR in the field of infrastructure asset management. For
example, Yen et al. [14] assessed the ability of the geodetic survey-grade LiDAR to update
pavement and roadside assets since this approach was found to be more precise and detail-
oriented compared to the traditional image-based approach. In a similar study conducted
by He et al. [15], the researchers used an airborne LiDAR system for infrastructure mapping.
The result of the study indicated that the point cloud data from LiDAR can be successfully
used to detect assets like bridges, culverts, and smaller objects like traffic signals, billboards,
light poles, and barriers.

The application of LiDAR in pavement condition assessment has gained prominence
in recent years. Studies have found success in evaluating road roughness using LiDAR
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point cloud data [16–18]. While the first study used airborne LiDAR to classify the roadway
roughness, the latter two studies used stationary LiDAR. The results of these studies found
a strong correlation between the roughness derived from LiDAR point cloud and other
existing standard methods. Other researchers have evaluated the use of LiDAR to identify
more localized distresses. For example, Biçici & Zeybek [19] used the point cloud data
collected from airborne LiDAR to evaluate distresses such as cracking, potholes, and rutting.
The results of the study strongly suggested that the LiDAR point cloud data can be utilized
to evaluate distresses, especially potholes, with great accuracy. Ravi et al. [20] evaluated the
potential of LiDAR to detect foreign object debris (FOD) in airport pavements. The study
experimented with 15 different FOD to evaluate the viability of LiDAR in classifying them.
The result of the study concluded that the LiDAR point cloud was sufficient to identify
the FOD in airport pavement. Ravi et al. [21] tested a similar LiDAR setup for pothole
detection in highways. The study was able to detect potholes with LiDAR point clouds
at unprecedented accuracy within 1-2 cm. The researchers also recommended conducting
further research on the use of LiDAR to determine other distresses such as rutting.

One common feature in the studies mentioned above is that these LiDAR studies
used geodetic-grade LiDAR. Geodetic-grade LiDAR can obtain very high accuracy but
may end up being a costly solution for the agencies for a job such as pothole detection
that requires continuous monitoring. In addition, the process involved in these studies
requires the data collected by LiDAR to be stored and post-processed. To create a more
cost-effective solution, it is crucial to use relatively less expensive LiDAR and implement
real-time post-processing to mitigate data storage expenses.

In recent years, with the rise of autonomous vehicles, relatively cheaper auto industry-
grade LiDAR has captured the attention of researchers. Although primarily used for
facilitating the self-driving feature of a vehicle, it has great potential to be used in evaluat-
ing pavement conditions. In a very recent study, Manasreh et al. [4] successfully conducted
experiments to evaluate shoulder drop-off using an autonomous vehicle platform inte-
grated with auto industry-grade LiDAR. The theme of the study was to use the LiDAR
data collected by an autonomous vehicle platform for roadside drop-off assessment. The
researchers proposed three different approaches to assess the severity of shoulder drop-off
using LiDAR point cloud. The study achieved an overall accuracy of 97% in assessing the
severity of shoulder drop-offs. The findings suggest that cost-effective LiDAR systems may
serve as promising tools for evaluating various road distresses, including potholes. If such
LiDAR technology proves efficient in pothole detection, it can be an economical solution for
transportation agencies. Therefore, research is needed to investigate the efficacy of low-cost
LiDAR use for pothole detection.

3. Methodology
3.1. Overview of the System Hardware

Figure 1 shows the system used for the study. As shown in Figure 1, the sensors were
mounted on a portable rigid frame that can be mounted on a pick-up truck. The system
comprised a LiDAR, global navigation satellite system (GNSS), and a camera. LiDAR was
used to scan the pavement and obtain spatial information from the point cloud. LiDAR
point clouds contain 3D geospatial information which can be used to obtain 3D geospatial
information of pavement. The GNSS was used for georeferencing the location of the
pothole detected from LiDAR point clouds. In this study, the LiDAR used was an OS-0
manufactured by Ouster®. The LiDAR has a 90◦ vertical field of view (FOV) covered by
128 rings. A GNSS system manufactured by Intertial Labs® was used for georeferencing.
The sensors were connected to a laptop, which served as the control hub for operating and
managing data collection and evaluation.
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Figure 1. The data collection system: (a) top view, (b) side view.

3.2. Overview of System Software

The LiDAR and GPS data collection, point cloud pre-processing, and pothole detection
were implemented in a robot operating system (ROS) framework. ROS is an open-source
platform that provides tools, libraries, and conventions aimed at robot software devel-
opment. The workflow of data collection, pre-processing, and detection is illustrated in
Figure 2. In this study, ROS was used for collecting both point cloud and GPS signals. In
addition, a custom ROS node was created to (1) receive the point cloud and GPS signal
and perform the pre-processing and detection from the point cloud, and (2) publish the
bounding box information of the detected pothole and the associated GPS location. The
custom ROS node was developed using Python® and implemented in the ROS environment
using the library named rospy.
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3.3. Outline of Proposed Algorithm

The approach introduced in this research utilizes LiDAR-captured point cloud data
for identifying potholes and employs GPS data for precise georeferencing. The framework
for data processing is demonstrated by a flowchart shown in Figure 3. As shown in
Figure 3, the proposed pipeline for pothole detection can be divided into three components,
including pre-processing, pothole detection, and post-processing. Each component consists
of sub-components that are described in the following sections.
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3.4. LiDAR Ring Overlap Adjustment

The OS-0 LiDAR generates 128 rings across the vertical field of view (FOV) for a
single scan. The scanning frequency of the LiDAR is 10 Hz (0.1 s). Depending on the
mounting angle, the LiDAR’s vertical FOV can capture a wide range along the traffic
direction. Therefore, the number of selected LiDAR rings was continuously updated for
each scan based on the speed of the vehicle to focus on the area of interest.

The LiDAR ring selection process was designed to minimize the gap between rings
and maintain an overlap of 6 to 8 inches between successive scans. It is important to
note that keeping the overlap between two subsequent scans within a reasonable limit
is important since too much overlap will result in detecting the same pothole twice in
two subsequent scans. In contrast, having no overlap between the scans has the risk of
missing potential potholes.

The required area to be covered by LiDAR rings to maintain an overlap between
two subsequent scans depends on the velocity of the vehicle. Therefore, the rings were
dynamically selected based on the instantaneous speed of the vehicle. The principle based
on which the LiDAR ring selection criterion was established is demonstrated in Figure 4.
As shown in Figure 3, if the vehicle is moving, for example, at a speed of 70 mph (31.3 m/s),
it will move 3.13 m in 0.1 s. Therefore, the FOV of the LiDAR along the traffic direction
must be more than 3.13 m to have an overlap of area along the traffic direction with the
next scan. To accommodate overlap at the speed of 70 mph, the rings were selected so that
the minimum FOV of the LiDAR is 3.29 m to have an overlap of 0.16 m (6.3 inches) between
the subsequent rings.



Buildings 2024, 14, 1078 6 of 25

Buildings 2024, 14, x FOR PEER REVIEW 6 of 25 
 

55 mph and 70 mph, respectively. The study was designed to evaluate potholes on the 
highways; therefore, the ring selection process needs to be modified to evaluate local roads 
where speed limits are lower. 

 
Figure 4. Schematic diagram of the overlap between two subsequent LiDAR scans at a speed of 70 
mph. 

Table 1. Ring selection and area coverage at different speeds. 

Speed (mph) Selected Ring # FOV along the Traffic Direction Overlap 
65 < speed ≤ 70 #47–#78 3.19 0.17 
60 < speed ≤ 65 #48–#78 3.09 0.19 
55 < speed ≤ 60 #49–#78 2.87 0.19 

≤55 #53–#84 2.59 0.19 

3.5. Point Cloud Pre-Processing 
Once the LiDAR rings were selected, the point clouds were adjusted for rotation and 

subsequently trimmed along the transverse (y-axis) and vertical (z-axis) direction with 
respect to traffic direction to focus on the area of interest along the pavement surface. 
Trimming was performed by setting threshold limits along the y-axis and z-axis to elimi-
nate the point clouds that do not belong to the road surface. Rotation of the point cloud 
was required since the LiDAR was positioned at a 35° angle to concentrate on the targeted 
pavement area (Figure 1). 

Finally, the LiDAR field of view (FOV) in the traffic direction (x-axis) was modified 
based on the x-coordinate values of the point cloud. This adjustment was aimed to remove 
excess areas caused by variations in curvature along the perpendicular direction (y-axis). 
The minimum trimming threshold was set as the median x-value of the closest rings, while 
the maximum threshold was the median value of the farthest rings. These thresholds were 
applied to filter out point clouds beyond the limits. Figure 5 illustrates how selecting and 
trimming rings along the traffic direction impacts a point cloud scan. 
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Table 1 summarizes the selected rings and the estimated overlap between them. As
indicated in Table 1, the minimum and maximum speeds accounted for in this study were
55 mph and 70 mph, respectively. The study was designed to evaluate potholes on the
highways; therefore, the ring selection process needs to be modified to evaluate local roads
where speed limits are lower.

Table 1. Ring selection and area coverage at different speeds.

Speed (mph) Selected Ring # FOV along the Traffic Direction Overlap

65 < speed ≤ 70 #47–#78 3.19 0.17
60 < speed ≤ 65 #48–#78 3.09 0.19
55 < speed ≤ 60 #49–#78 2.87 0.19

≤55 #53–#84 2.59 0.19

3.5. Point Cloud Pre-Processing

Once the LiDAR rings were selected, the point clouds were adjusted for rotation
and subsequently trimmed along the transverse (y-axis) and vertical (z-axis) direction
with respect to traffic direction to focus on the area of interest along the pavement surface.
Trimming was performed by setting threshold limits along the y-axis and z-axis to eliminate
the point clouds that do not belong to the road surface. Rotation of the point cloud was
required since the LiDAR was positioned at a 35◦ angle to concentrate on the targeted
pavement area (Figure 1).

Finally, the LiDAR field of view (FOV) in the traffic direction (x-axis) was modified
based on the x-coordinate values of the point cloud. This adjustment was aimed to remove
excess areas caused by variations in curvature along the perpendicular direction (y-axis).
The minimum trimming threshold was set as the median x-value of the closest rings, while
the maximum threshold was the median value of the farthest rings. These thresholds were
applied to filter out point clouds beyond the limits. Figure 5 illustrates how selecting and
trimming rings along the traffic direction impacts a point cloud scan.

3.6. Pothole Detection

The pothole was detected by using a state-of-the-art YOLO object detection model.
YOLO employs an end-to-end convolutional neural network that simultaneously predicts
bounding boxes and class probabilities in a single step, without the need for separate stages
or processes. This study utilized the YOLO v5 (version of YOLO) object detection model [22]
to detect potholes from the converted histogram. The details of the model architecture
of YOLO v5 can be found in Jocher et al. [22]. In this study, YOLO v5 was chosen for
two reasons: (a) it is one of the most stable versions of YOLO object detection models, and
(b) it has very high accuracy reported by previous studies [23]. It is worth mentioning that
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other object detection models can also be used to serve the same purpose. Nonetheless,
YOLO v5 was chosen for pothole detection in the current study for its reputation of being
one of the most accurate and fastest object detection models.

Buildings 2024, 14, x FOR PEER REVIEW 7 of 25 
 

 
Figure 5. Rotation and trimming of the point cloud. 

3.6. Pothole Detection 
The pothole was detected by using a state-of-the-art YOLO object detection model. 

YOLO employs an end-to-end convolutional neural network that simultaneously predicts 
bounding boxes and class probabilities in a single step, without the need for separate 
stages or processes. This study utilized the YOLO v5 (version of YOLO) object detection 
model [22] to detect potholes from the converted histogram. The details of the model ar-
chitecture of YOLO v5 can be found in Jocher et al. [22]. In this study, YOLO v5 was chosen 
for two reasons: (a) it is one of the most stable versions of YOLO object detection models, 
and (b) it has very high accuracy reported by previous studies [23]. It is worth mentioning 
that other object detection models can also be used to serve the same purpose. Nonethe-
less, YOLO v5 was chosen for pothole detection in the current study for its reputation of 
being one of the most accurate and fastest object detection models. 

The pothole detection part of the study was performed in two steps. First, the pre-
processed rings were converted into 2D histograms. After that, the 2D histograms were 
passed in as model input for pothole detection. 

This study focused on developing a real-time pothole detection framework. There-
fore, the performance of the object detection model was evaluated based on two key fac-
tors: (a) the accuracy of detection, and (b) inference speed. Initially, two different architec-
tures of YOLO v5 models, including YOLO v5-small (YOLO v5s) and YOLO v5-nano 
(YOLO v5n) were trained. There is a wide range of model architecture available for each 
YOLO v5. Typically, the larger model architectures are used for performing image recog-
nition in a very complicated scenario where the model may be required to detect numer-
ous classes of the image. The larger model architecture may yield higher accuracy com-
pared to the smaller model, but it may require higher computational resources. Since this 
study focused on detecting one object class (that is, pothole) and also in real-time, smaller 
model architectures were selected to carry out the study. 

To compare the performance between YOLO v5s and YOLO v5n, models were 
trained on the collected pothole dataset. The training dataset consisted of 9330 2D histo-
grams. Of the total training dataset, 50% consisted of histograms with potholes of different 

Figure 5. Rotation and trimming of the point cloud.

The pothole detection part of the study was performed in two steps. First, the prepro-
cessed rings were converted into 2D histograms. After that, the 2D histograms were passed
in as model input for pothole detection.

This study focused on developing a real-time pothole detection framework. Therefore,
the performance of the object detection model was evaluated based on two key factors:
(a) the accuracy of detection, and (b) inference speed. Initially, two different architectures
of YOLO v5 models, including YOLO v5-small (YOLO v5s) and YOLO v5-nano (YOLO
v5n) were trained. There is a wide range of model architecture available for each YOLO
v5. Typically, the larger model architectures are used for performing image recognition
in a very complicated scenario where the model may be required to detect numerous
classes of the image. The larger model architecture may yield higher accuracy compared
to the smaller model, but it may require higher computational resources. Since this study
focused on detecting one object class (that is, pothole) and also in real-time, smaller model
architectures were selected to carry out the study.

To compare the performance between YOLO v5s and YOLO v5n, models were trained
on the collected pothole dataset. The training dataset consisted of 9330 2D histograms. Of
the total training dataset, 50% consisted of histograms with potholes of different dimensions
and shapes and rest of the 50% of training dataset was background histograms. The
background histograms were a mixture of data including rumble strips from both shoulder
and centerline, rutting, and random noises in the point cloud that may be shaped like
potholes. The trained models were tested using a completely independent testing dataset
of 4079 2D histograms that included 1000 histograms of potholes of different sizes, shapes,
and from different pavement types. As mentioned earlier, the performance of the models
was judged based on the accuracy and the speed of inference. The accuracy of the models
was measured based on the following parameters:

Precision: measures the proportion of the positive classifications identified by the
model that are actually correct. It is also known as the “true positives”, among all
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the instances predicted as positive. It can be calculated using the following formula
(Equation (1)).

Precision =
TP

TP + FP
(1)

where:
True Positives (TP) are the number of instances that are correctly classified as positive

by the model.
False Positives (FP) are the number of instances that are incorrectly classified as

positive by the model when they are actually negative.
Recall: measures the proportion of the actual positives classified correctly by the

model. In other words, it measures the ability of the model to correctly identify all relevant
instances from the total number of actual positive instances. Recall can be calculated using
the following formula (Equation (2)):

Recall =
TP

TP + FN
(2)

Overall Accuracy: measures the overall correctness of a classification model in terms
of predictions across all classes. Overall accuracy is calculated as follows (Equation (3)):

Overall Accuracy =
Number o f Correct Predictions

Total number o f Predictions
(3)

3.6.1. Point Cloud Rasterization

After the selected LiDAR rings were separated into individual point cloud rings, the
individual ring was converted to 2D histograms. The algorithm to convert the LiDAR rings
to a histogram involved creating 640 bins in the transverse direction and 320 bins in the
longitudinal direction. Then, each data point was mapped into an appropriate bin based
on its position in both y and z-direction. Figure 6 shows the histogram created from an
individual ring.

Buildings 2024, 14, x FOR PEER REVIEW 8 of 25 
 

dimensions and shapes and rest of the 50% of training dataset was background histo-
grams. The background histograms were a mixture of data including rumble strips from 
both shoulder and centerline, rutting, and random noises in the point cloud that may be 
shaped like potholes. The trained models were tested using a completely independent 
testing dataset of 4079 2D histograms that included 1000 histograms of potholes of differ-
ent sizes, shapes, and from different pavement types. As mentioned earlier, the perfor-
mance of the models was judged based on the accuracy and the speed of inference. The 
accuracy of the models was measured based on the following parameters: 

Precision: measures the proportion of the positive classifications identified by the 
model that are actually correct. It is also known as the “true positives,” among all the 
instances predicted as positive. It can be calculated using the following formula (Equation 
(1)). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑇𝑃𝑇𝑃 𝐹𝑃 (1)

where: 
True Positives (TP) are the number of instances that are correctly classified as positive 

by the model. 
False Positives (FP) are the number of instances that are incorrectly classified as pos-

itive by the model when they are actually negative. 
Recall: measures the proportion of the actual positives classified correctly by the 

model. In other words, it measures the ability of the model to correctly identify all relevant 
instances from the total number of actual positive instances. Recall can be calculated using 
the following formula (Equation (2)): 𝑅𝑒𝑐𝑎𝑙𝑙  𝑇𝑃𝑇𝑃 𝐹𝑁 (2)

Overall Accuracy: measures the overall correctness of a classification model in terms 
of predictions across all classes. Overall accuracy is calculated as follows (Equation (3)): 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  (3)

3.6.1. Point Cloud Rasterization 
After the selected LiDAR rings were separated into individual point cloud rings, the 

individual ring was converted to 2D histograms. The algorithm to convert the LiDAR 
rings to a histogram involved creating 640 bins in the transverse direction and 320 bins in 
the longitudinal direction. Then, each data point was mapped into an appropriate bin 
based on its position in both y and z-direction. Figure 6 shows the histogram created from 
an individual ring. 

 
Figure 6. Conversion of point cloud to 2D histogram. Figure 6. Conversion of point cloud to 2D histogram.

3.6.2. Pothole Detection from Raster Images

Figure 7 demonstrates a schematic view of the prediction process of potholes from
the point cloud. As shown in Figure 7, the selected LiDAR rings from the pre-processing
step are converted to 2D histograms. The batch of histograms is then passed as an input
for YOLO v5 object detection model. Finally, the model detects potholes from the input
histograms. The LiDAR rings were fed into the model as a batch of images to take advantage
of the parallel computing capability of the graphical processing unit (GPU) which in turn
significantly improved the efficiency and inference speed of the model.
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3.7. Post-Processing

The YOLO object detection model produces the results from any detection that it
may make from individual rings. The results included the coordinates of the rectangle
on the 2D space of the histogram (xmin, ymin, xmax, and ymax), the confidence of each
prediction, and the identification of the ring number where the model detected a pothole.
The most important and challenging task of this study was to obtain the pothole numbers
and dimensions associated with the detected potholes. This was accomplished with the
post-processing algorithm indicated in Figure 3. The subsections of the post-processing are
described below.

3.7.1. Pothole Count

The FOV of a single scan may contain multiple potholes. The accuracy of the pothole
count was dependent on the correct grouping of the LiDAR rings related to a specific
pothole. The main idea was to compare the overlap between two subsequent rings and
if there was an overlap of more than 20% between a ring and the next ring, the next ring
was considered to be a part of the same pothole. The overlap here means the overlap of
the bounding box x-coordinates between two consecutive detections. Figure 8 illustrates
two overlapping bounding boxes associated with the same pothole and Figure 9 shows
two non-overlapping bounding boxes associated with different potholes. Although having
the overlap between the bounding boxes was the primary criterion for the rings to be
considered a part of the same pothole, it was not the only criterion since a pothole can be
located far away and still share an overlap along the x-axis with another pothole. Therefore,
a robust algorithm was developed to account for all possible scenarios when counting the
number of potholes within a single scan. The proposed algorithm is presented in Figure 10.
As shown in Figure 10, the process started by adding the first identified ring to the initial
pothole group. After that, the algorithm compared the remaining rings with the first one,
calculating their degree of overlap.
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If the overlap along the x-axis between two consecutive LiDAR rings exceeded a
predetermined threshold, the corresponding ring was incorporated into the existing pothole.
Otherwise, the ring was considered to be part of a different pothole. In addition to meeting
the threshold criterion, a detected ring was considered to be part of the same pothole group
only if the difference in their ring numbers was no more than 2 units. This allowed the
correct identification of potholes that are located away from each other but within the
overlapping threshold along the x-axis. This process iterated over all selected LiDAR rings,
ensuring that each ring was correctly allocated to an appropriate pothole group.

3.7.2. Pothole Dimension Measurement

The width and depth of the pothole were estimated directly from the YOLO bounding
box information. Figure 10 shows an image where a pothole is detected with a bounding
box. The property of the bounding box is illustrated in Figure 11. As shown in Figure 11,
xmin, ymax is the abscissa and ordinate of the upper left corner of the bounding box and
xmax, ymin is the abscissa and ordinate of the lower right corner of the bounding box.
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Using these coordinates, the width and depth/height of the bounding box can be obtained
from xmax − xmin and ymax − ymin. Here, the width of the bounding box is the number
of pixels confined within xmax − xmin and the depth of the bounding box is the number of
pixels confined within ymax − ymin. The pixels are finally converted to pothole width and
depth using Equations (4) and (5).

Width= (xmax − xmin)(
xrange

total pixel along x direction
) (4)

Depth = (ymax − ymin)(
yrange

total pixel along the y direction
) (5)

where,
xrange = trimming limits long the x-axis selected at the pre-processing;
yrange = trimming limits along the y-axis selected at the pre-processing.
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Figure 11. Prediction bounding box.

To measure the accuracy of the predicted width and depth of the pothole measured
from the detection bounding box, the predicted width and depth of the potholes were com-
pared against the actual depth and width. The actual depth and width of the potholes were
obtained by point-clicking on the point cloud after extracting the scan of the corresponding
pothole. The procedure for determining the depth and width of potholes is depicted in
Figure 12. In this illustration, each red dot corresponds to a coordinate in the 2D space,
acquired by selecting specific points within the 2D frame. The coordinates corresponding
to the width were recorded by picking the coordinates at the left and right edges of the
pothole from the point-click, while the coordinates of the bottom and top points of the
pothole were recorded for depth calculation. Finally, the depth and width were computed
utilizing Equation (6).

Width or Depth =

√
(x1 − x2)2 + (y1 − y2)2 (6)
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Figure 13a,b present the comparison between the actual width and depth vs. the
estimated depth from the bounding box. For both cases, a very high coefficient of correlation
(R2) was observed between the actual and estimated values. However, it is interesting to
note that both depth and width estimated from YOLO bounding box coordinates were
slightly higher than the actual width. This overestimation of the dimension could be
attributed to (a) the thickness of the bounding box itself, and (b) the inconsistency while
measuring the true dimension of the pothole. Consequently, adjustments were made in the
width and depth estimation equations to account for this overestimation. The equations
used to obtain depth and width after adjusting are presented below (Equations (7) and (8)).

Width = 1.04 ×
[
(xmax − xmin)×

(
xrange

totalpixel

)
× 3.28 × 12

]
− 1.6445 (7)

Depth = 0.98 ×
[
(ymax − ymin)×

(
yrange

totalpixel

)
× 3.28 × 12

]
− 0.1703 (8)
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Figure 14 demonstrates the methodology for the pothole length determination. The
length of the pothole was estimated as the difference between the average x value of the
furthest detected ring and the average x value of the nearest detected ring. However, first,
the whole trimmed scan section was divided into 18 subsections. It was necessary to divide
the whole section into 18 subsections to negate the huge discrepancy in average x value of a
ring due to the curvature. The average of the x values for each ring within the subsections
was calculated. To obtain the length of the pothole, first the subsection that contained
the pothole was determined. After that, the length was determined by calculating the
difference of average x value between the furthest detected ring and the nearest detected
ring within the subsection. The length of the potholes obtained using the algorithm was
compared with actual pothole length (Figure 15). As indicated by Figure 15, very good
correlation was observed between and predicted and actual length.

3.8. Georeferencing

The georeferencing of the detected pothole was accomplished by simply synchronizing
the timestamp of LiDAR and the GPS device. The GPS device used in this study had a
higher frequency for scanning. Therefore, linear interpolation technique was employed to
match the closest possible GPS timestamp with the corresponding LiDAR timestamp.
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4. Results and Discussion
4.1. Performance of the Object Detection Model

The summary of the results of YOLO v5s and YOLO v5n model performances on the
test dataset is illustrated as the confusion matrices in Figure 16. The left confusion matrix
in Figure 16 summarizes the predicted outcome of YOLO v5s and the one on the right
side summarizes the predicted outcome of YOLO v5n. It can be noted that both models
performed equally well in terms of overall prediction accuracy. Out of 3572 non pothole
histograms, YOLO v5s predicted nine false positives, whereas YOLO v5n predicted fifteen
false positives. Additionally, out of 1000 pothole histograms, YOLO v5s yielded eight true
negative predictions and YOLO v5n yielded ten true negative predictions.

The outcomes presented in the confusion matrix were employed to compute the
model’s recall, precision, and overall accuracy, which are visually depicted in Figure 17.
As anticipated, YOLO v5s consistently outperformed YOLO v5n across all performance
metrics. Nevertheless, it is noteworthy that the disparities between the two models were
minor across all the performance metrics. Consequently, based on the outcomes derived
from the confusion matrix, as well as precision, recall, and overall accuracy, it is reasonable
to conclude that the performance of both models can be regarded as equivalent.
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Figure 18 illustrates the inference speed of the two models. The inference speed
was tested on a laptop with core i9 processor and NVIDIA RTX A2000 GPU with 4 GB
VRAM. The inference speed shown in Figure 18 represents the speed of the model on a
batch of 32 rings. It is important to note that the speed of the model was tested on batch
of 32 rings since the maximum number of selected rings was 32 during the point cloud
pre-processing step.

As shown in Figure 18, the average inference speed of YOLO v5s was 97.8 ms for a
batch of 32 histograms. On the contrary, the average inference speed for YOLO v5n for a
batch of 32 histograms was 55.4 ms. It is important to note that achieving a faster inference
speed was imperative since the study focused on real-time detection of potholes. Consider-
ing a comparable performance in terms of all the accuracy matrices and significantly faster
inference speed, the YOLO v5n object detection model was chosen for the study.
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Figure 18. Inference speed comparison between YOLO v5s and YOLO v5n.

4.2. Effect of Background Images on the Prediction Accuracy

The background images were added as a part of the training dataset to reduce the
number of false positives. In order to evaluate the effect of the percentage of background
images in the training dataset on false positives and false negative, two different testing
datasets were created, including (a) a testing dataset of 3500 histograms that contain no
potholes to test the false positives of the model, and (b) a testing dataset of 1000 histograms
that comprises only potholes to test the false negatives of the model. The addition of
background resulted in remarkable results in terms of reducing the false positives. The
effect of background images on reducing the false positives is shown in Figure 19. As
shown in Figure 19, if background images were not added at all, the model produced 5%
false positives. The percentage of false positives reduced to less than 1% when the training
dataset was mixed with 25% background images. The percentage of false positives further
dropped to 0.4% when the percentage of false positives increased to 50%. No significant
improvement was observed in terms of false positives when percentage of background
images was increased from 50 to 75%. On the other hand, the addition of background
images did not affect the false negative detection. Therefore, a dataset with 50% background
images was used to train the YOLO model.

4.3. Validation of the Accuracy of the Developed System
4.3.1. Accuracy of Pothole Count Algorithm

The accuracy of the pothole count algorithm was tested under different circumstances.
Figure 20 presents a case where the pothole count algorithm was tested. Figure 20a shows
the image of the section that has three potholes and Figure 20b shows the corresponding
point cloud collected by the LiDAR.

Table 2 presents the summary of the information obtained from a single scan that
contained three potholes. It is noteworthy that the algorithm detected three potholes which
are exactly what the corresponding image confirmed. Furthermore, the detected number of
pothole rings for pothole #1, #2, and #3 were seven, four, and thirteen, respectively which is
what the point cloud image depicts, which further validates the accuracy of the algorithm.

Additionally, the algorithm resulted in an accurate estimation of depth, length, and
width compared to the actual dimensions. The estimated and the actual length, width, and
depth for potholes #1, #2, and #3 are summarized in Table 2. It is noted that the maximum
difference between the actual and the estimated values was 1.73 inches, 1.09 inches, and
0.16 inches for length, width, and depth, respectively. In general, the results indicated that
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the algorithm was able to detect the rings associated with individual potholes and thereby
result in an accurate count in the pothole number and estimate the length, width, and depth
for each pothole.
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Table 2. Summary of the potholes detected from a single scan.

Pothole # Scan #
Estimated

Length
(in)

Actual
Length

(in)

Difference
in Length

(in)

Estimated
Width

(in)

Actual
Width

(in)

Difference
in Width

(in)

Estimated
Depth

(in)

Actual
Depth

(in)

Difference
in Depth

(in)
# of Rings

Pothole #1 156 18.16 18.60 0.44 17.31 16.22 1.09 2.11 2.06 0.05 7

Pothole #2 156 7.58 8.10 0.52 16.08 15.10 0.98 1.82 1.79 0.03 4

Pothole #3 156 32.62 34.35 1.73 8.78 9.10 0.32 1.68 1.52 0.16 13

4.3.2. Testing the Accuracy of the System

The pothole detection system was tested on an approximately one-mile strip of State
Route 126 in Cincinnati, OH. The location of the section is shown in Figure 21a. Figure 21b
demonstrates the pothole location detected by the system. The section had a total of
19 potholes of different sizes and shapes. First, the number of potholes in the section
was identified from the recording of the video captured throughout the section while
driving. The number of potholes was further verified after extracting each frame from
the recording and manually going through each frame to determine the exact count of the
pothole number. The actual dimensions of the potholes were measured from the LiDAR
scans of the corresponding image frame. The number of potholes identified from the image
frames and the dimensions measured from the LiDAR scans corresponding to the image
frames were used as ground truth for verification.
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Table 3 presents the summary of the outcome obtained by running the pothole de-
tection system in the section at a speed of 55 mph. As shown in Table 3, all the existing
19 potholes were detected by the system. Table 3 also presents the predicted vs. actual
dimensions of the detected potholes. In general, very good agreement can be noted between
the actual depth, width, and length, and the predicted depth, width, and length of the
detected potholes. It can be noted that the maximum difference in depth between the
predicted and the actual value was observed to be 0.27 inches. The maximum difference
in width was observed to be 2.40 inches and the maximum difference for the length of
was observed to be 2.63 inches. Figure 22 illustrates the side-by-side comparison of the
actual vs. predicted depth, width, and length of the potholes, which further confirms the
agreement between the predicted and the actual dimensions.

Table 3. Summary of the potholes detected on Interstate 75 South.
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1 2.08 2.11 0.03 9.31 10.22 0.91 9.44 10.10 0.66 4 39.2050 −84.4698
2 1.54 1.60 0.06 14.32 15.00 0.68 4.35 6.30 1.95 3 39.2051 −84.4706
3 1.57 1.51 0.06 14.73 14.50 0.23 8.37 8.93 0.56 3 39.2052 −84.4707
4 2.32 2.11 0.21 15.50 13.10 2.40 3.01 5.22 2.21 2 39.2052 −84.4708
5 1.30 1.43 0.13 9.18 8.33 0.85 6.51 7.10 0.59 3 39.2052 −84.4708
6 1.38 1.49 0.11 11.59 11.66 0.07 3.68 6.31 2.63 2 39.2052 −84.4708
7 2.80 2.66 0.14 11.82 13.89 2.07 11.81 11.36 0.45 5 39.2052 −84.4711
8 3.11 3.05 0.06 12.52 15.10 2.58 14.11 14.33 0.22 7 39.2052 −84.4711
9 3.37 3.22 0.15 20.86 20.41 0.45 4.60 5.33 0.73 2 39.2053 −84.4720

10 2.26 2.33 0.07 10.98 12.21 1.23 5.15 5.23 0.08 3 39.2054 −84.4724
11 2.88 3.10 0.22 13.68 13.10 0.58 11.93 12.93 1.00 6 39.2054 −84.4724
12 2.10 2.06 0.04 11.55 11.23 0.32 8.63 8.69 0.06 3 39.2055 −84.4733
13 2.27 2.21 0.06 7.52 7.32 0.20 16.99 17.22 0.23 6 39.2056 −84.4740
14 1.17 1.33 0.16 8.65 8.20 0.45 4.55 6.23 1.68 3 39.2057 −84.4742
15 1.79 1.68 0.11 9.06 8.33 0.73 4.83 5.10 0.27 3 39.2063 −84.4759
16 2.32 2.41 0.09 10.27 9.62 0.65 10.03 12.10 2.07 4 39.2063 −84.4760
17 1.57 1.52 0.05 13.19 12.28 0.91 18.21 19.10 0.89 5 39.2064 −84.4762
18 1.90 1.88 0.02 13.90 15.95 2.05 4.55 4.93 0.38 3 39.2050 −84.4694
19 2.16 2.11 0.05 8.20 9.02 0.82 58.90 60.88 1.98 18 39.2050 −84.4698

4.4. Testing the Consistency of the System

Achieving consistency in both the accuracy of pothole detection and the precision of
dimension measurement is a crucial benchmark for evaluating the efficiency of systems
like the pothole detection system developed in this study. This includes ensuring not only
reliability in identifying the number of potholes but also precision in accurately measuring
their dimensions.

The consistency of the developed system was evaluated by running the system twice
at the same speed (55 mph) and at different speeds (55 mph and 65 mph) on a section
located on I-71N in Cincinnati, OH. The location of the tested section is shown in Figure 23.
The section had a total of four potholes which was confirmed by the recording of a video
of the section. The results of running the system at the same and different speeds are
described in the following sections.
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4.4.1. Testing the Repeatability of the System Results

To evaluate the performance of the system at the same speed, two runs were recorded
with the system. Both runs were operated at a consistent speed of 55 mph. Additionally,
both runs started and ended at the same milepost for fair comparison. Table 4 presents the
depth, width, and length of the detected potholes from the two runs and their comparison
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to the actual depth, width, and length. First, it can be noted that both runs detected
all four potholes. The comparison between the actual and predicted dimensions is also
illustrated in Figure 24. A very good agreement can be observed between the predicted
and the measured dimensions. The maximum error associated with depth was observed
to be 0.27 inches in Run 2. For width, the maximum error was 1.09 inches in Run 2, and
for length, the maximum error was found to be 5.15 inches. The findings suggest that the
low-cost LiDAR utilized in this study demonstrates the capability to generate high-quality
results, with error levels comparable to those reported in a prior study involving high-grade
geodetic LiDAR [4].

Table 4. Summary of the potholes detected by two runs at 55 mph.
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1 2.67 2.76 2.94 0.09 0.27 14.33 13.89 15.34 0.44 1.01 12.10 11.31 10.59 0.79 1.51
2 1.88 1.66 1.85 0.22 0.03 11.94 12.63 10.85 0.69 1.09 11.61 8.93 10.66 2.68 0.95
3 2.12 2.08 2.16 0.04 0.04 9.11 9.39 10.04 0.28 0.93 26.53 23.58 21.38 2.95 5.15
4 1.92 1.94 1.82 0.02 0.10 9.61 8.12 9.22 1.49 0.39 11.47 11.46 9.41 0.01 2.06
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(a) depth, (b) width, and (c) length.

Table 5 presents the latitude and longitude of the potholes detected from Run 1 and
Run 2, and the difference in location obtained from the runs. It can be observed that the
difference in the detected location corresponding to all potholes was well within reasonable
limits with the maximum difference being 2.01 m.

Table 5. Locations of the potholes detected by the two runs at 55 mph.

Pothole #
Run 1 Run 2 Difference in Pothole

Location (m)Latitude Longitude Latitude Longitude

1 39.14084 −84.4837 39.14085 −84.4837 1.28
2 39.14092 −84.4836 39.14094 −84.4836 2.01
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Table 5. Cont.

Pothole #
Run 1 Run 2 Difference in Pothole

Location (m)Latitude Longitude Latitude Longitude

3 39.14144 −84.4831 39.14145 −84.4831 1.3
4 39.14328 −84.4727 39.14328 −84.4727 1.13

4.4.2. Testing the Performance of the System at Different Highway Speeds

Table 6 summarizes the pothole dimensions obtained from running the developed
system on the same testing strip at 55 mph (Run 2 in the previous section) and 65 mph. The
difference in depth, width, and length resulting from the runs at 55 mph and 65 mph is
also illustrated in Figure 25. As presented in Table 6, the highest errors associated with
depth, width, and length were 0.47 inches, 1.87 inches, and 7.23 inches, respectively. It
is noted that the difference between the predicted values for depth, length, and width
and their respective actual measurements were more pronounced when the system was
operated at 65 mph, as opposed to when the system was running at 55 mph. The greater
difference associated with higher speed could be attributed to the vibration of the car
causing variation to the LiDAR angle.

Table 6. Summary of the potholes detected at 55 mph and 65 mph.
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The locations of the potholes detected at 55 mph and 65 mph are presented in Table 7.
The maximum difference was observed to be around 2.5 m.

Table 7. Locations of the potholes detected by the two runs at 55 mph and 65 mph.

Pothole #
55 mph (Run 2) 65 mph Difference in Pothole

Location (m)Latitude Longitude Latitude Longitude

1 39.1408514 −84.4836757 39.1408598 −84.4836526 2.2
2 39.1409417 −84.4835966 39.1409237 −84.483596 2
3 39.1414454 −84.4831496 39.1414564 −84.4831238 2.53
4 39.1432827 −84.4727397 39.1432729 −84.4727203 1.99

It is important to note that the accuracy and robustness of the system were evaluated
at different highway speeds on the highway network. Further evaluation of the systems is
recommended on road networks with slower speed limits in future studies. In addition,
systematic testing is required to evaluate the efficacy of the system in different weather
conditions, including the effect of snow and rain on the accuracy of the system, which was
beyond the scope of this study.

5. Summary and Conclusions

This research investigated the capabilities of integrating an automobile industry-
grade LiDAR into a cost-effective pothole monitoring system suitable for routine use by
transportation agencies. The system was underpinned by a comprehensive algorithm
encompassing three key stages: (1) point cloud pre-processing, (2) object detection utilizing
a custom-trained deep learning network, and (3) post-processing to consolidate object
detection outcomes for pothole dimensions. Additionally, the system synchronizes with
GNSS to pinpoint the precise location of detected potholes. The algorithm was implemented
in ROS framework for continuous and real-time data collection and reporting. The accuracy
of the proposed system was tested at different highway speeds on multiple test strips
that contained potholes of different sizes and shapes. The objective was to validate the
accuracy and consistency of the monitoring system. The performance was measured in
terms of pothole identification, estimating pothole dimensions, and pothole location under
different circumstances.

The validation results indicated that the proposed system achieved 100% accuracy in
detecting all potholes within the test strip across varying highway speeds. The dimensions
estimated using the proposed algorithm demonstrated promising accuracy. The error asso-
ciated with depth, width, and length was within 0.27 inches, 2.58 inches, and 5.15 inches,
respectively, at a driving speed of 55 mph. At 65 mph, the error was 0.47 inches, 1.87 inches,
and 7.23 inches for depth, width, and length, respectively. The results indicated that the
error slightly increased with driving speed. Nonetheless, the errors were still well within
practical limits. The difference in GPS localization of the detected potholes across different
runs was about 2.5 m. In general, the observed errors were as low as the errors reported by
previous studies that used high-end surveying-grade LiDAR sensors.

The validation results suggest that the developed system coupled with the proposed
algorithm was able to generate very promising results in terms of pothole detection, sizing,
and localization with great consistency. Therefore, the proposed low-cost monitoring
system has the potential to be used by transportation agencies for pothole monitoring
programs. Nonetheless, the following points can be addressed in future research to make
the system more holistic.

1. Evaluate the effect of adverse weather conditions on the proposed framework. For ex-
ample, the effect of rainy or snowy conditions on LiDAR data and framework results.

2. Perform deeper evaluation of the effect of vehicle driving speed. The results suggested
that the system can be reliably used at highway speeds. Nevertheless, the system
needs to be tested at lower speeds to understand the effect of driving speed on the
performance of each component of the framework.
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