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Abstract: Shared public buildings have become centers of innovation, integrating advanced technolo-
gies to meet evolving societal needs. With a heightened emphasis on occupants’ health and well-being,
these buildings serve as hubs for technological convergence, facilitating seamless connectivity and
intelligent data analysis and management. Within this context, environmental monitoring emerges
as a foundational element, pivotal to all aspects of building management. This article provides
findings from the nationally funded RE-START project, which focuses on shared public buildings,
with special regard to educational and medical facilities. The project explores enhanced indoor air
quality monitoring, focusing on CO2 concentration that is directly correlated with occupancy, as a
fundamental element for developing health and safety protocols, energy efficiency strategies, the
integration of smart building technologies, and data-driven energy management. The intersection of
environmental monitoring, energy efficiency, security, and IoT technologies in in indoor spaces is
relevant. The outcomes of the study reveal the delicate nature of all the involved components, which
need to be carefully developed in an integrated manner.

Keywords: environmental monitoring; CO2 concentration; energy efficiency; technological integration;
digital technologies; occupant health; IoT environments; sensor technologies; machine learning;
building management

1. Introduction
1.1. Background and Motivation

In today’s urban landscape, shared public buildings have evolved into hubs of innova-
tion, blending advanced technologies with evolving societal needs. From environmental
monitoring and energy efficiency to security and access control, these spaces have become
focal points for integrating diverse technological solutions. With the rise of digital tech-
nologies and heightened emphasis on occupants’ health and well-being, these buildings
have emerged as centers of technological convergence. Leveraging internet technologies,
they facilitate instant information sharing and streamlined coordination, epitomizing our
commitment to shaping a sustainable and cutting-edge future: environmental monitoring
stands as the foundational keystone, pivotal to all aspects.

This paper describes part of the work developed in the framework of the RE-START
project supported by the Tuscany Region. The project involves academic structures, in
particular the Department of Energy, Systems, Territory and Constructions Engineering
and the Department of Information Engineering of the University of Pisa, and a medical
structure, Fondazione Toscana Gabriele Monasterio (FTGM). The Monasterio Foundation is
a Research Center of the Regional Health Service. The Foundation was established by the
National Research Council and the Tuscany Region for the management and development
of specialized healthcare activities and medical research. There are two locations for the
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activities: the San Cataldo-CNR Hospital in Pisa and the “Heart Hospital” in Massa, both
of which are in Tuscany, Italy. While the project had been initially conceived to address the
post-emergency context, it has then been re-elaborated to address long-lasting objectives
concerning the sharing of public buildings, where the different aspects of environmental
stewardship, energy efficiency, and occupant safety converge.

1.2. State of the Art

In recent years, there has been a significant surge in technical–scientific literature focus-
ing on the monitoring of environmental parameters such as temperature, humidity, light,
and concentrations of various pollutants. Several recent studies collectively contribute to
advancing understanding and strategies for maintaining high-quality indoor air across
diverse settings—see for instance [1] for a comprehensive review of indoor air quality,
European legislation, and insight in the Italian research, and [2] for cross cutting issues
related to the analysis of the building sector in the Industry 4.0 era. Baqer et al. in [3]
address Internet of Things (IoT) sensory technology’s development for optimal indoor air
quality in hospitals, emphasizing taxonomy, challenges, motivations, and recommended
solutions. Alonso et al. propose a methodology using de-trended cross-correlation for
pollutant selection to ensure excellent indoor air quality [4]. Shen et al. in [5] conducted
a literature review focusing on creating a satisfactory indoor environment for healthcare
facilities’ occupants. In an extensive exploration of environmental monitoring, Butt et al. [6]
provide a comprehensive review focusing on optical waveguide and fiber-based sensors.
Broday and Gameiro da Silva [7] examined the pivotal role of IoT in evaluating and com-
municating indoor environmental quality (IEQ) in buildings. Anik et al. [8] proposed a
cost-effective, scalable, and portable IoT data infrastructure for indoor environment sensing.
Soheli et al. [9] presented a smart greenhouse monitoring system utilizing IoT and artifi-
cial intelligence, demonstrating the integration of advanced technologies in agricultural
environments. These studies collectively contribute valuable insights into the evolving
landscape of environmental monitoring and IoT applications. Furthermore, the integration
of data-driven models, now commonplace, plays a pivotal role, particularly in applications
like crowd management in commercial buildings. The integration of machine learning
and deep learning methods has been also demonstrated in recent works [10,11], with the
objective of developing occupant-centric paradigms [12] or, in general, digital twins for
optimizing the building’s environmental performance [13], leading to IoT solutions for
energy efficiency [14].

However, a closer examination of the literature reveals that data collection often serves
diverse and not always clearly defined purposes. Generic references to “comfort” are
common, necessitating a critical analysis of the multifaceted landscape of environmental
monitoring. Indeed, most of the literature spans from individual houses and residential
buildings to shared public structures of diverse types, which are currently receiving con-
siderable attention, not only concerning health but also in terms of energy consumption
patterns. However, in many of such articles, the true objective of data collection is often
unclear. Today, this type of data holds significant importance, extending beyond generic
environmental parameter monitoring. Indeed, they prove highly valuable for facility man-
agement and, crucially, for controlling environments, addressing aspects such as occupancy
and optimizing system operations [15]. Today, the availability of substantial data from
environmental monitoring, facilitated by advancements in computer systems, could be
highly beneficial for developing building models based on these data. This enables the
implementation of various strategies for optimized building management, potentially in
combination with artificial intelligence and machine learning models [16]. This growth is
attributed, on one hand, to the widespread availability of diverse sensor technologies and
the increasing need for precise control over environmental conditions. Initially driven by
comfort considerations, the emphasis has shifted towards environmental safety, especially
in the wake of events such as the COVID-19 pandemic.
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1.3. Paper Contributions

The present work addresses, in a comprehensive fashion, several aspects that generally
aim at laying the groundwork for sustainable and resilient building management practices,
as summarized below:

(i) Enhanced Indoor Air Quality Measures—In the wake of COVID-19, there has been a
heightened emphasis on managing shared spaces to ensure both energy efficiency and
compliance with stringent safety regulations. This involves re-evaluating ventilation
systems and implementing measures to enhance indoor air quality, which are crucial
for the well-being of occupants;

(ii) Health and Safety Measures—With a renewed focus on occupant health and safety,
understanding and managing occupant density and flow within buildings has be-
come paramount. This includes considerations for optimizing indoor air quality and
ventilation systems to mitigate health risks;

(iii) Energy Efficiency—Heating, Ventilation and Air Conditioning (HVAC) systems stand
out as significant energy consumers in buildings. Balancing the imperative of indoor
air quality and safety with the need for energy efficiency poses a significant challenge,
as evidenced in [17]. The project aims to explore strategies for optimizing HVAC
systems to achieve a balance between energy conservation and occupant comfort;

(iv) Integration of Smart Building Technologies—Leveraging advancements in smart building
technologies, particularly the proliferation of various sensors like Z-Wave wireless
sensors, offers new opportunities for monitoring indoor parameters. These sensors
provide invaluable insights into building performance and comfort, facilitating in-
formed decision-making regarding system operation and maintenance;

(v) Data-Driven Energy Management—The data acquired from monitoring indoor parame-
ters require careful analysis to extract meaningful high-level insights. Through the
application of machine learning and data-driven modeling techniques, the project
seeks to unlock the full potential of monitoring data, enabling more effective energy
management strategies.

The overarching goal of this paper, inspired by a reassessment of commercially avail-
able sensor technologies and their reliability, is to showcase the potential of environmental
data monitoring. Emphasis is placed on CO2 and movement sensors, their network integra-
tion, and the management and analysis of collected data, potentially employing advanced
machine learning methods. An integral aspect of environmental monitoring is the con-
nection to human presence within shared spaces. Parameters such as CO2 concentration,
obtained through sensors, offer valuable anonymous insights. Elevated CO2 levels become
a formidable indicator of crowded environments, as also explained by Franco and Leccese
in ref. [18].

The utilization of movement data, available from some modern sensors, poses chal-
lenges, as the direct correlation between movement and the actual number of people in an
environment is not always straightforward. The utility of these insights lies in the optimal
management of diverse structures, aiming not only for sustained environmental comfort
but, more importantly, for energy conservation. The article concludes by presenting results
from a long-term monitoring effort spanning various facilities, including educational and
outpatient healthcare settings. Detailed monitoring with the acquisition of data unveils
substantial value in crafting advanced data-driven building models, entirely bypassing
the need for traditional physical models. This data-driven approach provides a more
flexible and efficient perspective in understanding and optimizing building dynamics. Our
project, originated from other original publications of some of the authors of the present
paper [19,20], searches to navigate this complexity by devising a comprehensive framework
that addresses these multifaceted challenges in an aggregate manner. By harmonizing
different elements—such as environmental monitoring, energy management, and IoT
infrastructure—we endeavor to unlock synergies that yield tangible benefits across diverse
domains. Starting from the theme of environmental monitoring and the availability of
various monitoring data, these can be used for different purposes, all aimed at improving
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facility management. Among the various parameters, CO2 concentration is considered
as a fundamental one. Within educational facilities, the availability of monitoring data
can enable the effective regulation of energy systems (lighting, heating, and ventilation),
thus achieving energy-saving objectives. In healthcare facilities, on the other hand, man-
aging monitoring data can be useful for maintaining safety conditions, particularly in
areas with hospitalized patients, and for analyzing the functioning of patient reception
and management protocols, especially in the case of caregivers and accompanying persons
attending outpatient spaces. Currently, the management of medical visits and instrumental
examinations is handled through Booking Centers (CUP), which orchestrate flows from a
global patient and persons safety perspective, trying to mitigate the possible occurrence of
peaks of occupants, which may occur anyway under unexpected circumstances.

2. Environmental Monitoring: Sensors and Facilities

Environmental measurements inside shared buildings are common and widely con-
ducted for different purposes. Monitoring and measuring different parameters within
indoor spaces provide valuable insights into the performance, comfort, and safety of the
built environment. Common measurements include temperature, humidity, CO2 levels,
other air quality parameters such as volatile organic compounds (VOCs) or particulate mat-
ter (PM), light levels, energy consumption and occupancy monitoring. Figure 1 provides a
scheme in which the importance of environmental sensors in buildings is shown. Among
the various measurements that environmental sensors can provide, one with significant
relevance is the concentration of CO2. The concentration of CO2 serves not only as a general
indicator of thermal and humidity comfort, but it also, due to its correlation with human
occupancy, can be utilized for other purposes where the building occupancy is essential,
and other occupancy sensors (such as cameras) are inappropriate (e.g., for privacy reasons).
However, it is worth noting that CO2 measurements are more intricate and complex com-
pared to other metrics. In the following section, we delve into the diverse array of sensors
employed in shared public buildings, examining their functionalities, and assessing their
suitability for the unique requirements of universities and healthcare facilities.
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2.1. Analysis of Sensor Types and Functionalities

The evolution of sensor technology over the past 50 years has been characterized
by miniaturization, integration, digitalization, increased accuracy, energy efficiency, and
enhanced connectivity, as summarized in Table 1. These advancements have significantly
expanded the range of applications and capabilities of sensors in industrial and civil sectors.
The evolution of sensor technology has been extended to environmental monitoring sensors,
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initially focused on indoor air quality but progressively expanding to encompass energy
efficiency, safety, and disability support concerns.

Table 1. Evolution of sensors for building automation purposes: from classic analogic sensors to
modern IoT sensors.

Classic Analogic Sensors Modern Sensors

Technology and
Miniaturization

Larger and bulkier. The technology was
less advanced, and sensors relied on

analog signal processing.

Due to miniaturization and advancements,
microelectronics (MEMS) are smaller, more compact,

and capable of higher precision

Integration and
Multifunctionality

Stand-alone devices with limited
integration capabilities. Each sensor had

a specific function

Multifunctional, capable of measuring multiple
parameters simultaneously. Sensors are often integrated

into complex systems and networks

Digital Signal Processing

Analog signal processing was
predominant. The output from sensors

was often analog and required additional
processing for interpretation

Digital signal processing is prevalent. Modern sensors
often provide digital outputs, compatible with digital

systems. This allows for easier integration, data
storage, and analysis

Wireless Connectivity
Communication between sensors and

other devices often relied on
wired connections

Sensors are equipped with wireless communication
capabilities, allowing them to be part of the Internet of
Things (IoT). This enables remote monitoring, real-time
data transmission, and integration into smart systems

Accuracy and Sensitivity Sensor accuracy and sensitivity were
good compared to today’s standards

Advances in materials, manufacturing processes, and
calibration techniques have led to sensors with good

accuracy and sensitivity

Cost and Accessibility Sensor technology was often expensive,
limiting widespread adoption

Advances in manufacturing have led to reduced
production costs, making sensors more

affordable and accessible

We now survey sensors that may be used for CO2 monitoring. For simplicity, we
examine three classes of sensors that could cater to three different technological advance-
ments. First, we consider reliable analog sensors whose performance has been previously
documented in other evaluations and reported in scientific papers. As a second class,
we have also considered conventional commercial home automation sensors capable of
network integration. Finally, we have evaluated the ability of self-built sensors by eval-
uating the market’s offerings for those that could be network-enabled through simple
communication protocols.

In detail, we first consider the Chauvin Arnoux 1510 sensor: this device allows for
the simultaneous detection of temperature, relative humidity, and CO2 concentration in
ppm (Figure 2). The sensor is quite reliable in terms of measurement and has been tested in
different contexts [18]; data can be retrieved from the instrument either by downloading
or by connecting via Bluetooth to the device. In the second class, we test the Z-Wave
sensor [21] from Smart-D-Home, and the 4-in-1 sensor and the 9-in-1 sensor (Figure 3).
These sensors have also proven to be quite reliable in terms of measurement results, and
upload data to an external network connected to an external gateway. While the method is
conceptually interesting, it is weak from a cybersecurity standpoint as the gateway could be
susceptible to cyber-attacks. In addition, mesh networks as in the Z-Wave communication
protocol require a gateway for every cluster of sensors, which implies that at least one
gateway is required for every building.

As a third example, considering low cost sensors for building monitoring [22], we have
tested a self-assembled sensorized platform, constructed by connecting different digital
sensors to a specific Arduino ESP32 board (Figure 4). In this case, the server collecting
data from the several sensors and the communication protocols may be devised to achieve
desired cyber-security levels. Also, a single server is required to gather all the data across
different buildings served by the same wireless network.
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The three types of sensors tested correspond to three different concepts of measure-
ment system and to three different data management methods, given that the first requires
reduced interaction with the network (it is accessible only via Bluetooth connection) while
the others can be inserted more easily on the internet.

However, particular care should be dedicated to selecting the most appropriate sensors,
since they usually require long calibrating procedures, and usually suffer from less accurate
measurements, compared with the other commercial products. In some cases, we have also
noticed that the measured values also fail to follow the trend of actual values (i.e., they
measure decreasing values of CO2/temperature, when CO2/temperature is increasing). As
an example, Figure 5 compares the temperature measurements of the first and the last sensor,
placed in the same position. In this case, although the two sensors qualitatively appear to
provide the same measurements, the first sensor registers a total increase in temperature of
approximately 2 ◦C, while the second sensor registers an increase of approximately 1 ◦C.
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Table 2 compares the accuracy of the sensors of the three classes in terms of measurements
of CO2 concentration. In this case as well, not all sensors are equally accurate, and the
self-built sensorized platforms using sensors dedicated to IoT networks tend to be less
accurate in detection, both for reasons related to the electronics and due to the indirect
methodology adopted for measuring CO2 concentration.
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sensor (a) and a modern sensor for an IoT network (b).

Table 2. Specific characteristics of the sensors used for the measurements of CO2 concentration.

Feature/Sensor
Technology CA 1510 Smart D Home

9 in 1 Sensiron SGP30

Range 0–5000 ppm 0–5000 ppm 400–60,000 ppm ± 50 ppm

Method
Non-dispersive
infrared (NDIR)

technology
Non declared

Indirect measurements
of ethanol and hydrogen

concentration

Accuracy High Average Low

Flexibility Low (cannot be
read from remote)

Low (one gateway per
building, data cannot be

simply downloaded)
High

Simplicity of use High High

Low
(sensors need to be
self-assembled and
self-programmed)

Cyber-security High
Low

(it is mainly intended for
domestic applications)

High

2.2. Characteristics of Examined Facilities: Universities and Healthcare Settings

The study focused on two types of structures, academic and healthcare facilities; in
both, the post-pandemic re-opening phase has been critical and linked to the direct moni-
toring of occupancy. While concerns regarding the occupancy of indoor spaces have been
recently relaxed, it is still convenient to maintain certain best practices that were estab-
lished during the pandemic period, including environmental parameter monitoring, which
can still enable the indirect anonymous detection of occupancy. Both healthcare facilities,
especially those with low-intensity care, and educational institutions share common traits
as shared public buildings, with occupancy patterns that are not always uniform but suffer
from predictable peak times. They also exhibit significant differences, as their users and
objectives vary considerably. In the case of university didactic facilities, the focus of the
energy optimization may primarily concern the management of plant operation and the con-
sequent energy use, whereas in healthcare settings, the priority is to minimize unforeseen
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overcrowding issues leading to the risky exposure to transmissible diseases. Interestingly,
similarities can be observed between these two types of structures in terms of this aspect. In
the context of our research, those structures present unique characteristics and operational
requirements that necessitate tailored approaches to environmental monitoring and safety
protocols, despite the anonymous aspect of the data collection process. This is mandatory
in healthcare settings, due to the sensitivity of data management. Figures 6 and 7 show,
respectively, a typical teaching structure of the University of Pisa and the two healthcare
structures of the Gabriele Monasterio Foundation (FTGM). Universities, as centers of edu-
cation and research, typically accommodate diverse populations with varying schedules,
leading to fluctuating occupancy levels throughout the day. In contrast, healthcare facilities,
particularly those providing continuous care, require stringent safety measures and precise
environmental control to ensure patient well-being and regulatory compliance.
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Both settings prioritize factors such as indoor air quality, temperature regulation, and
occupant comfort. A summary of the main descriptive characteristics of the considered
structures is reported in Tables 3 and 4. The structures that have been taken into considera-
tion have a further common feature, which is that they are characterized by a significant
level of energy consumption, due to the operation of mechanic ventilation systems, and
the winter and summer heating/air conditioning systems. For this reason, it is important
to monitor the occupancy of rooms in the buildings in order to modulate the operation
of HVAC systems based on actual occupancy levels, as this would allow for significant
advantages in terms of energy savings. In the following section, we now investigate and
compare the capabilities of the three classes of sensors for environmental monitoring. While
commercial sensors appear to provide more accurate measurements, self-assembled sen-
sors are still attractive because they provide cost-effective solutions, which may be more
convenient for large-scale deployment in university campuses and medical facilities. By
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evaluating the performance and applicability of the sensors in the different settings, our
research aims to inform decision-making processes regarding the implementation of envi-
ronmental monitoring systems in universities and healthcare facilities. Through targeted
sensor deployment and data-driven insights, stakeholders can enhance occupant comfort,
improve safety protocols, and optimize resource allocation to meet the unique needs of
each environment.

Table 3. Some data about the relevance of the didactic buildings of the University of Pisa.

Number of
Classrooms Total Seats Surfaces of Structures for

Didactic Activities (m2) Total Students

386 25,000 70,000 45,800

Table 4. Some data about the activity of FTGM (Fondazione Toscana Gabriele Monasterio).

Number of
Structures Hospital Beds Hospitalized Patients

in One Year
Outpatient Visits

in a Year

2
Pisa

Massa

132
44 in Pisa

78 in Massa
7000 120,000

3. Environmental Parameter Control for Indoor Air Quality and Possible Use for
Energy Efficiency Purposes

This structured approach allows for a comprehensive exploration of the monitoring
and control challenges in university and healthcare facilities, while also providing a detailed
analysis of methodologies and insights derived from measurement campaigns, with a
specific focus on CO2 monitoring. As previously mentioned, environmental parameter
control can serve various objectives. Firstly, it offers informative data for users of the
facilities. Secondly, it can help highlight any operational anomaly within the structure,
such as unexpected overcrowding, reduced occupancy, or other noteworthy situations
related to safety concerns (e.g., the presence of toxic or harmful substances) or other
anomalies. Recently, there has been growing interest in integrating environmental control
with energy management systems. Following the COVID-19 pandemic, many states have
implemented stringent regulations regarding air circulation and HVAC system operation,
leading to significant energy wastes in some cases. In this context, the monitoring of
CO2 levels becomes particularly relevant, serving as an indirect indicator of occupancy
within enclosed spaces; although not sufficient to precisely define a contagion hazard in the
healthcare facilities, it can be considered as fair proxy information. In this section, based
on the analysis of data collected from the analyzed structures, we aim to evaluate current
situations deserving attention and the potential energy-saving benefits achievable. We
present insights gleaned from measurement campaigns conducted within university and
healthcare facilities, with a particular focus on CO2 monitoring, as already discussed by
Franco, Crisostomi and Hammoud in ref. [23].

3.1. Monitoring and Control Challenges

In this subsection, we examine the unique challenges encountered in monitoring and
controlling environmental parameters within the university and healthcare facilities under
analysis. Factors such as fluctuating occupancy levels, diverse user requirements, and regu-
latory compliance pose significant challenges that must be addressed to maintain indoor
environmental quality, considering the different specifications and the different uses of
the different structures under analysis. Among the environmental monitoring parameters,
the detection of CO2 concentration stands out as particularly significant. Elevated CO2
levels inherently signify poor air quality, especially indoors, posing not only comfort is-
sues but also the risk of pathogen transmission, as highlighted by the recent COVID-19
experience. Acceptable CO2 levels vary based on activity and environment. A healthy
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environment maintains CO2 concentrations below 800 ppm, while acceptable levels may be
under 1200 ppm, with levels exceeding 1500 ppm (such as, for example, 1900 ppm) war-
ranting attention and brief exposure (Figure 8). Ventilation, whether natural or mechanical,
maintains health standards. Distinctions are crucial based on building usage and occupants,
notably in healthcare and educational settings catering to diverse demographics.
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Figure 8. Indicative level of CO2 concentration in indoor environment.

In Figure 9, monitoring data from two areas of the “hospital wards” section of the
facility depicted in Figure 6b are presented. Each monitoring session lasted approximately
1 h. As shown, CO2 concentration levels consistently remained well below 800 ppm,
with minimal fluctuations linked to specific situations. The monitoring of environmental
parameters is inherently significant, but there are variables whose specific monitoring can
provide valuable insights and serve as an indirect indicator of occupancy levels.
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Figure 9. CO2 concentration in two different parts of “hospital wards” of the structure in Figure 7b
(hospital ward (a) and nurses’ room (b)).

In Figures 10 and 11, measurements taken in a specific room of the building used
for didactic activity at the University of Pisa, shown in Figure 6a, are presented. The
characteristics of the room tested (room 8) are shown in Table 5.
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Figure 10. Data from the monitoring analysis (temperature (a) and CO2 (b)) of the room 8 in Table 5
in the situation described as Case 1 in Table 6.
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Figure 11. Data from the monitoring analysis (temperature and CO2) of the room 8 in Table 5 in the
situations described as Case 2 in Table 6.

Table 5. Specific characteristics of the classrooms of the University of Pisa tested in some activities.

Room Volume
(m3)

Surface
(m2) Max Occupancy

2 428 131 140

8 1206 224 288

The data reflect monitoring experiments conducted under two similar climatic condi-
tions with significantly varied occupancy levels (low occupancy in the case of Figure 10
and maximum occupancy level in the case of Figure 11).

Figure 10 displays temperature and CO2 concentration data in a classroom described
as Case 1 in Table 6 where a three-hour examination took place, focusing on the second and
third hours. Occupancy conditions and dynamics are outlined in the Case 1 of Table 6, with
no mechanical ventilation during operation. Figure 11, on the other hand, depicts data from
a more dynamic event in the sameclassroom, and on the same day of the week (Saturday),
but in a different occasion (final degree examination). Climatic conditions were similar on
both days, with reduced differences. Occupancy and dynamics are further defined as Case
2 of Table 6.

Table 6. Specific characteristics of the sensors used for the measurement of CO2 concentration.

Case Period Max Occupation Sequency Ventilation

1 9:50–11:50 25
All the students are

present in the room for
the whole time

OFF

2 8:30–12:00 280

0–10 (8:30–9:30)
270–280 (9:30–10:30)

0–10 (10:30–11:00)
220–230 (11:00–12:00)

OFF (8:30–10:30)
ON (10:30–12:00)

As observed, while temperature data are sensitive to capacity and ventilation vari-
ations, CO2 concentration emerges as a highly reliable and sensitive indicator of human
presence, thus holding greater significance for facility management.

3.2. Methodologies for Ensuring Optimal Comfort and Safety Standards

This subsection explores various methodologies employed to maintain optimal com-
fort and safety standards in shared public buildings. From advanced HVAC systems to
strategic ventilation strategies, we analyze the effectiveness of different approaches in
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meeting the diverse needs of occupants while ensuring compliance with safety regulations.
By analyzing the data collected during these campaigns, we uncover intriguing findings
regarding indoor air quality, ventilation effectiveness, and occupant comfort.

In Figures 12 and 13, the results in terms of temperature and CO2 concentration in the
structure shown in Figure 7a are presented from a long-term trial spanning approximately
12 days (from Wednesday, 13 September 2023, to Monday, 25 September 2023). Data were
collected at 10 min intervals, resulting in 144 data points per day.
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Figure 13. CO2 concentration from a 12-day analysis of the medical structure shown in Figure 7a.

The data were collected in the most crowded area of the structure, corresponding
to a waiting room for outpatient visits. Upon observing the collected data, a certain
periodicity in CO2 concentration results can be noticed. Starting from nighttime values
just above 400 ppm, similar to typical outdoor conditions, the peaks of CO2 concentrations
are generally above 1000 ppm, but always remain below 1200 ppm. As evident from the
CO2 concentration data analysis, the curves closely resemble each other and allow for
the clear identification of the 8 weekdays (Monday to Friday), the pre-holiday days (two
Saturdays), and the two holiday days (Sunday), albeit with slight differences. Similarly,
it is observed that the ventilation system effectively maintains levels below the 1200 ppm
threshold. The results shown in Figures 12 and 13 were detected with Smart D Home 9-in-1
type sensors. If the temperature data are significantly affected by climatic temperature
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fluctuations, those linked to the CO2 concentration appear to be very reliable and capable
of effectively identifying the crowded conditions of the structure, allowing for the detection
of possible inconsistencies in the visit booking system. As can be seen, in fact, there is a
clear periodicity in the pattern of the peaks of CO2 concentration levels.

3.3. Insights from Measurement Campaigns: Focus on CO2 Monitoring and Optimization of
HVAC Operation

In this section, we try to explain the reason why CO2 concentration can be directly
correlated with the occupancy. In a closed volume, the rise in CO2 concentration over
time dC{CO2}(t)/dt depends on the volume of the space, on the number of occupants,
on their activity, and on the characteristics of ventilation. In a closed room of volume V
with Nocc number of occupants, where

.
r is the production rate of CO2 of each occupant

(value depending on the type of person and on the activity), the rate of increase in CO2
concentration with time can be described by the law

dC{CO2}(t)
dt

=

.
r Nocc

V
(1)

The rate of CO2 increase can also be reformulated in terms of the volume available for
each person (V/Nocc). In general, the volume is not truly closed because of the air change
rate due to infiltrations, natural ventilations, or mechanical ventilation, if active.

As discussed in [18] by one of the authors of the present paper, the CO2 concentration
at general time t, C{CO2}(t), in general terms can be expressed by the following equation:

C{CO2}(t) = C{CO2}(t0) exp
(
−Q

V
t
)
+

(
C{CO2}ext +

.
r Nocc

Q

)(
1− exp

(
−Q

V
t
))

(2)

where C{CO2}(t0) is the concentration measured at the initial time, C{CO2}ext is the con-
centration in the external environment,

.
r is the production rate of each occupant (value

depending on the type of person and on the activity), Nocc is the number of occupants, V
is the volume of the room and Q is the air change rate, which considers both natural and
mechanical ventilation (if present). According to Equation (2), it is possible to compute the
airflow rate required to maintain a certain level of CO2. Assuming the starting value of the
CO2 concentration, C{CO2}(t0), equal to the outdoor value (CCO2,out = CCO2,0), and that the
CO2 generation rate (r) is constant, the trend of CO2 concentration can be inferred to be:

C{CO2},eq = C{CO2}(t0) +

.
r Nocc

Q
(3)

When people leave the room and it remains empty, the CO2 concentration typically
drops proportionally to the rate of air exchange, until it reaches the external levels. This
can be described by the following equation:

C{CO2}(t) = C{CO2}ext +
(

C{CO2}(t0)− C{CO2}ext

)
·e−

Q
V t (4)

From a conceptual point of view, it would seem quite easy to build a physical model
of CO2 evolution. However, as can be noticed from Equation (1), concentration depends
on many variables that act in a combined manner, and none of them can usually be easily
determined. Thus, the monitoring data can be very useful for developing a control system
for ventilation systems.

The CO2 concentration data, along with other environmental parameters, can be uti-
lized to develop a model for the optimal control of operation. This model incorporates
building characteristics, outdoor temperature, occupancy levels, and ventilation type (nat-
ural or mechanical), with airflow rate serving as input data. The model yields trends in
energy consumption, CO2 levels, and indoor temperature as output. A building model
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(containing information about geometrical parameters and main physical characteristics) is
essential for assessing energy demands, which are contingent upon the specified input pa-
rameters. Figure 14 provides a possible structure of the control system for the HVAC system
implemented in a public shared building, similar to the one represented in Figure 6a. The
model uses the characteristics of the building, the outdoor temperature, Tout, the number of
occupants (Nocc), and the required ventilation rate, QTOT (natural, QNV and/or mechanical,
QMV), obtaining as output the trends of energy consumption, the CO2 concentration, and
the indoor temperature Tint, that must be close to the defined set-point value (Tset-point).
The model of the building is necessary to evaluate the energy demands, which depend on
the input parameters set.
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By meticulously analyzing the methodology associated with HVAC system operation
control based on real occupancy profile and using the Demand Controlled Ventilation (DCV)
strategy, it has been observed that adapting the HVAC system’s operation to these specific
conditions can result in relevant energy saving compared to conventional pre-COVID-19
approaches, which typically relied on fixed-time scheduling (benchmark).

Via the results described in Figure 15, it can be observed how the control of the
CO2 concentration, applied to the teaching structure of Figure 6a, in which mechanical
ventilation is activated according to the actual occupancy of the building, can lead to
significant energy savings, which increased significantly during the phase following the
COVID-19 pandemic. Figure 15 compares three control strategies of the HVAC system:
(i) The first strategy, denoted as CS1, represents the solution that was applied to manage
the structures during the pandemic emergency, when the ventilation was operating at full
capacity during the full time of operation of the structure (from 8:00 to 24:00 for 310 days
in a year). (ii) The CS2 strategy, considered as a reference strategy, is the one that was
typically active before the COVID phase, when only the temperature control system was
active during the operation of the building, while the ventilation system was only activated
at some specific hours. (iii) The CS3 strategy implements controlled demand ventilation,
capable of varying the ventilation itself based on the maintenance of appropriate CO2
concentration conditions referring to the typical occupancy profile. Strategy CS3 permits
obtaining the advantages envisaged by CS1 (i.e., in terms of indoor air quality) while
spending less energy than CS2 (i.e., when mechanic ventilation was used less). This
comparison emphasizes the potential of designing energy efficiency strategies, and even
more significant energy savings may be obtained if more sophisticated control strategies
were to be designed.
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4. Utilization of Monitoring Data for Management Using Machine Learning Methods

The availability of environmental monitoring data is inherently valuable. Hypotheti-
cally, a facility manager equipped with such data could utilize them for control purposes
and to regulate the operation of systems within the facility. Another avenue worth explor-
ing is the development of machine learning models to forecast potential scenarios based
on external data inputs. An intriguing aspect could involve clustering the acquired data
to identify correlations between “external” variables and the facility’s operation (e.g., day
of the week, time of day, external weather conditions). Essentially, this approach could
empower the acquired data with predictive capabilities. While this approach may not be
applicable to data concerning environmental safety, it can certainly be implemented to
optimize the operation of energy systems. In addition to enhancing facility management
strategies, the utilization of monitoring data coupled with machine learning methods offers
significant potential for achieving energy savings and optimizing resource allocation.

By harnessing predictive analytics, facilities can develop sophisticated models that
analyze historical monitoring data to identify energy consumption patterns and anticipate
future trends. Through machine learning techniques such as regression analysis, decision
trees, and neural networks, these models can accurately forecast energy demand and rec-
ommend proactive measures to minimize waste and optimize energy usage. For example,
predictive models can identify peak usage times and suggest adjustments to HVAC systems
or lighting schedules to coincide with periods of lower demand, thus reducing energy
costs without compromising occupant comfort. Furthermore, by integrating real-time mon-
itoring data with machine learning algorithms, facilities can implement dynamic energy
management strategies that respond in real-time to changing environmental conditions
and occupancy patterns. This data-driven approach not only reduces energy consump-
tion and associated costs, but also contributes to sustainability goals by minimizing the
facility’s environmental footprint. Ultimately, the integration of predictive analytics with
real-time monitoring data empowers facilities to implement proactive and energy-efficient
management strategies that enhance both operational efficiency and occupant comfort.
The measurement of CO2 concentration serves as an effective indicator of human presence
in a public space. In another article, the authors of this study analyzed the correlation of
this value with occupancy [18,23,24]. However, managing a public space involves several
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variables that contribute to complicating the scenario. Within the same context, external
elements can also intervene, altering the picture even with the same level of occupancy.
These variables may include climatic conditions as well as external boundary conditions
related to the presence of ventilation in the environment. Ventilation systems may be active,
or the windows of a room or of a space may simply be open or partially open. If it is true
that the analysis and clustering of monitored data can be valid as predictive tool, the case
is valid to use in association with machine learning methods.

To understand this, we observed the same event over an extended period, involving a
remarkably similar number of people occupying the same space at the usual times and on
the usual days of a week. In ref. [24], a dataset formed by collecting measurements over ten
different days, during the lectures of the same classes from 8:30 to 12:30, is described. The
time step of the measurements is 10 min, resulting in a total of 40 h of records, and about
240 samples overall. The data were collected during classes of the same professors, with
the objective of maintaining similar conditions (e.g., in terms of the number of students
in the room, and their activity during the classes). During the first two hours, the number
of students was in a range between 100 and 120, while in the following two hours it
ranged from 40 to 80. The classroom is detailed in Figure 6b, and the data are presented
in Table 5 (room 2). As evident from the data analysis in Figure 16, which illustrates CO2
concentration measurements across ten different events, there is significant variability in
the collected data.
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Figure 16. Monitoring data obtained in the ten-day analysis (from 18 April to 23 May) in a classroom
of the University of Pisa, defined as room 2 in Table 5.

This leads to the consideration of developing a machine learning method capable
of utilizing the data acquired over the ten days in different climatic conditions but with
similar conditions of occupancy, to yield sufficient data for developing a predictive tool.
The method has been explained in detail in a recent paper by two of the authors of the
present paper in ref. [24]. As depicted in Figure 17, derived from ref. [24], the various
predictive methods (four distinct types) calibrated on the 10 datasets prove to be more
reliable than a method based solely on physical data. This underscores the potential of
using machine learning methods in a predictive context. Developing a building behavior
model based on machine learning algorithms can enable the creation of prediction methods
that, in addition to monitoring data, can be highly beneficial in enhancing the management
of these buildings.
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Predictive analytics, powered by machine learning algorithms, enables one to antici-
pate and address issues before they escalate, leading to more proactive maintenance and
cost savings. By analyzing previous data on energy consumption for the same structure, as
well as equipment performance and occupancy patterns, predictive analytics can forecast
future trends, ensure the correct management of HVAC plants and identify potential issues,
such as equipment failures or energy inefficiencies.

5. Internet of Things (IoT) Network Architecture for Innovative Sensor Management

In addition to monitoring activities and the development of methodologies for op-
timizing systems and defining protocols, our work has also involved the integration of
monitoring data into a network. The role of Internet of Things technology (IoT) in dis-
tributed energy systems aiming to achieve energy efficiency, avoid energy wasting, and
improve environmental conditions is largely discussed in the recent technical literature,
as for example [25,26]. IoT technology includes utilizing smart sensors and renewable
energy integration.

Both educational and healthcare facilities are geographically dispersed, and it would
be highly beneficial to manage the data remotely.

To address this, we have developed the capability to interface the data through an
internal IoT network. This allows the acquired data to be made available in real time.
Sensors equipped with an IP address communicate with the IoT network, enabling all
authorized users to access the data in real-time. An IoT network is an interconnected system
of physical devices, appliances, and other objects embedded with sensors, software, and
network connectivity, enabling data collection and exchange. These devices communicate
with each other and with centralized systems via the Internet, allowing for remote control,
monitoring, and automation. This approach maintains the highest level of network security.
Furthermore, these data could be managed by an application, the data of which could be
made available to all users with network access credentials. All network users, by logging
in with their credentials, could access these data. Figure 18 provides the architecture of the
IoT system, as developed in the present work. It consists of three tiers: field level, control,
and cloud for the data. It has four essential components:

- Sensors and Arduino ESP32 Nano IoT Microcontrollers for transmitting environmental
data via the MQTT protocol (MQTT Client/Publisher);

- Server (MQTT Broker) for managing, processing, and visualizing collected data;
- Hidden WPA2-Personal Local WiFi network for communication between devices;
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- Remote PC for connecting to the central server to view and perform operations on
data via VPN.

Within the server, a suite of software is installed for receiving, processing, and storing
MQTT messages. The suite includes:

- MQTT Broker (Mosquitto) for receiving and routing MQTT messages;
- Node-RED for processing data retrieved from the broker;
- InfluxDB for storing data in a local database and the real-time visualization of graphs

and values on a suitable dashboard.
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From a computational standpoint, the IoT network appears to be a reliable system
for visualizing the acquired monitoring data within the facilities. However, the issue of
reliability persists, particularly concerning self-built sensors, which still exhibit quantitative
unreliability. The advantage of the IoT network is that all facility monitoring systems can
be controlled centrally using an internal network of the facility, which is intrinsically safer
from the point of view of possible cyber-attacks, and this is very relevant in the case of
healthcare facilities, which carry a lot of sensitive data about patients. The advantage of
using assembled sensors is also that of low cost, despite all the problems related to the
reliability of the measurements, which we discussed in Section 2. The architecture proposed
in this section is only one of the possible ones capable of being implemented in a system
like the one described in Figure 1.

6. Conclusions

The paper has presented collaborative research between the University of Pisa and the
Gabriele Monasterio Foundation, addressing different aspects of smart facility management.
Through a complete analysis of the different aspects, the analysis developed in this work
tries to clarify the importance of environmental monitoring, the reliability of sensors,
and the possibilities of using internal IoT networks to optimize the use of shared public
buildings, with different purposes. If for a healthcare facility the main issue is checking
compliance with space-use protocols and safety regulations, in the case of educational
facilities, the aim may also be to obtain significant energy savings. The main findings
concern four specific fields of activity.

- Effectiveness of Environmental Monitoring

The study examined the efficacy of environmental monitoring and data management,
highlighting the importance of CO2 concentration measurements. These metrics are used
to understand building occupancy levels and inform us about the effectiveness of building
use protocols and energy system management strategies. Monitoring helps reduce energy
consumption. In a didactic structure, using Demand-Controlled Ventilation (DCV) based
on CO2 monitoring, it is possible to achieve over 30% annual energy savings in HVAC
systems, compared to what can be achieved with a conventional method, using controlled
demand ventilation based on CO2 monitoring. Energy savings reach over 60% if the
scenario in which mechanical ventilation is active during the entire opening period is taken
into consideration.

- Sensor Technology Evaluation
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Three types of sensors were evaluated, ranging from traditional electronic sensors for
stand-alone monitoring to advanced network-compatible sensors. Although numerous
latest-generation sensors are available, not all offer consistent quantitative reliability, partic-
ularly when it comes to CO2 concentration monitoring. Accurate calibration is essential
for the use of this type of sensors, especially those that are marketed to be inserted into
IoT-type networks.

- Predictive Modeling

The data collected by environmental monitoring sensors constitute a precious resource
for the creation of predictive models, which, using automatic learning algorithms, will
allow predictive programming of flow management and plant operation, allowing the
optimization of plant management operations. However, it should be noted that in any
case, the predictive algorithms based on environmental monitoring data, although not
capable of predicting unexpected dynamics, are still more reliable than physical models.

- Potential of IoT Networks

The project assessed IoT network capabilities for centralized monitoring across pe-
ripheral facilities. Test cases demonstrated the viability of local IoT networks, though
cybersecurity concerns necessitate careful consideration. External server-based data flow
solutions are discouraged due to security risks. The testing of an IoT network architecture
has shown promise in facilitating data monitoring and circulation, enhancing the overall
efficiency of the environmental management systems. Prospects of the activity concern
the development of a user-friendly app for environmental monitoring, allowing facility
managers to access real-time data and optimize system performance remotely.

Another relevant element is the integration with Smart Building Technologies; further
integration with smart building technologies could enhance the capabilities of environmen-
tal monitoring systems, enabling more sophisticated data analysis and system automation.
The methodologies developed in this project can be extended to other sectors beyond educa-
tion and healthcare, such as commercial buildings and residential complexes, contributing
to broader sustainability initiatives.

From an energy analysis perspective, it is important to highlight that the methodology
developed can be valuable in defining energy-saving strategies, provided they do not
conflict with other regulations. Furthermore, it can be particularly useful in the context of
creating facilities with renewable energy-based generation systems. This aligns with the
aim of developing structures that will approach Zero Energy Buildings standards.
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