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Abstract: The dynamic behavior of liquid storage tanks is one of the research issues about fluid–
structure interaction problems. The analysis errors of the dynamics of multiple adjacent tanks can exist
if neglecting soil–tank interaction since tanks are typically supported on flexible soil. In the present
paper, the dynamics of a group of baffled cylindrical storage tanks supported on a circular surface
foundation and undergoing horizontal excitation are analytically examined. For upper multiple
tank–liquid–baffle subsystems, accurate solutions to the velocity potential for liquid sloshing are
acquired according to the subdomain partition technique. A theoretical model is utilized to portray
the continuous sloshing of each tank. For the soil–foundation subsystem, a lumped-parameter
model is used to characterize the impacts of soil on upper-tank structures using Chebyshev complex
polynomials that present the fitting results of horizontal, rocking, and coupling impedance functions.
Then, a model of the soil–foundation–tank–liquid–baffle system is constructed on the basis of the
substructure approach. The present sloshing frequencies, sloshing height, and hydrodynamic shear as
well as the moment under rigid/soft soil foundations are compared to the available exact results and
the numerical results to prove the validity of the present model. The error of the maximum sloshing
height between the present and the numerical solutions is within 5.27%; the solution efficiency of
system dynamics from the present model is 40–50 times faster than that from the ADINA model. A
detailed parameter analysis of the dynamic characteristics and earthquake responses of the coupling
system is presented. The research novelty is that an equivalent analytical model is presented, and
it allows for investigating the dynamics of soil-supported multiple cylindrical tanks with a baffle,
providing acceptable accuracy and high calculation efficiency.

Keywords: multiple tanks; annular baffle; fluid–structure interaction; analytical model; soil–structure
interaction; dynamic response

1. Introduction

Storage tanks are popularly utilized to deposit chemical products, oil, liquefied gas,
and water. The safety of liquid storage tanks has become a hotspot issue in the area of fluid–
structure interaction since the leakage of the contained liquid can cause serious damage to
economic stability, environmental protection, and civil life. In addition, the research on the
anti-sloshing performance of the internal structures of tanks can prevent increasing the shell
material thickness to withstand the hydrodynamic pressures to some extent. Therefore, it
is of great significance to investigate the dynamics of storage tanks. Zhao et al. [1] utilized
an improved smoothed finite-element approach to simulate large LNG tanks with excellent
accuracy and efficiency. Xiao et al. [2] developed a liquid supplement system for the
tuned liquid damper undergoing loads. Cheng et al. [3] employed the shake table test to
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investigate responses of concrete tanks undergoing near-field and far-field seismic actions.
Xu et al. [4] performed experiments to obtain liquid effects on the earthquake behavior of
slender structures. Tsao et al. [5] investigated the sloshing damping in a container with
porous media using an equivalent mechanical model. Luo et al. [6] used the shaking-table
tests and numerical simulation method to examine the sloshing heights of containers
undergoing earthquake movement.

The measures of vibration control are utilized to enhance the safety of primary struc-
tures in civil and mechanical engineering [7]. In terms of the design for storage tanks,
internal baffles with various configurations are commonly used to reduce the sloshing [8,9].
Scholars analyzed dynamic responses in liquid storage tanks equipped with baffles nu-
merically [10,11]. Yu et al. [12] employed numerical simulations to study dynamics in a
container equipped with impermeable and permeable baffles. Wang et al. [13] presented an
improved particle method to obtain shallow-liquid sloshing in a baffled container. Zhang
et al. [14] analyzed sloshing diminution in a container with elastic baffles using a numerical
technique. Xue et al. [15,16] numerically performed the investigation on reducing sloshing
in containers with a baffle and a porous material layer. Al-Yacouby and Ahmed [17] con-
ducted a numerical investigation of baffle effects on the sloshing pressure of a rectangular
container. Furthermore, experimental methods can be also utilized to obtain the dynamics
of storage tanks with baffles [18]. Wang et al. [19] analyzed responses in baffled tanks
subjected to irregular excitations by using numerical models and experiments. George
and Cho [20] performed sloshing experiments to acquire the optimal baffle design for a
storage tank. Among the above available research, the numerical approaches could require
great computational effort; the laboratory experiments may have high costs, as well as time
and labor consumption. Wang et al. [21,22] first proposed the liquid subdomain partition
technique to obtain exact solutions to sloshing characteristics and responses in a baffled
cylindrical container. On the basis of the subdomain partition technique, Sun et al. [23]
developed a theoretical model with discrete mass springs to replace continuous liquid
sloshing in baffled storage tanks while providing high accuracy and calculation efficiency.

In practical engineering, liquid storage tanks are commonly built on a soil foun-
dation [24]. Lee and Lee [25] obtained the base shear and moment of a liquid storage
tank resting on rigid soil under three-directional excitation. Jing et al. [26] considered
structure–soil–structure interaction and analyzed the responses of a storage tank under-
going earthquake movement using three-dimensional numerical models. Analysis errors
of dynamic behaviors may exist under the circumstance of neglecting the effect of soft
soil on upper structures [27]. Xu et al. [28] developed a shaking-table test approach to
analyze the dynamic behaviors of a tank that incorporates soil–structure interaction. Bi
et al. [29] proposed a model for investigating the hydrodynamic pressures of a storage
tank under earthquakes with various incidence angles taking coupled acoustic–structural
interaction into account. Jaramillo et al. [30] presented an efficient model considering soil–
foundation–structure interaction and obtained influences of soil flexibility on earthquake
responses of sloshing involving soil–tank interaction. Rezaiee-Pajand et al. [31] proposed a
two-dimensional model for obtaining the analytical solutions to the dynamic properties of
a deformable storage tank surrounded by soil. Hashemi et al. [32] presented a mechanical
analytical model of analyzing soil–tank interaction considering lateral translation and
rigid-base rocking motion. On the basis of soil model theory and potential liquid theory,
Lyu et al. [33] developed a mechanical calculation model for evaluating the earthquake
response of a container resting on a soil foundation.

In an effort to increase computation efficiency and reasonably image soil–structure
interaction, the substructure approach is widely applied to the dynamic analysis of soil–tank
systems [34]. The dynamic soil impedance is the key to the substructure method. Luco and
Mita [35] calculated the data of soil impedances for the surface foundation on the elastic half
space using the mixed boundary value method. A lumped-parameter model (LPM) made
up of spring dampers with frequency independence is developed to simulate impedances in
domain analysis [36]. Wang et al. [37] utilized Chebyshev complex polynomials to represent
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dynamic impedances of various foundations with uneven geometries while supplying
numerical stability and good convergence. Then, Meng et al. [38] presented an equivalent
analytical model for investigating earthquake responses of a rectangular soil-supported
tank equipped with dual baffles by using the substructure method.

There exists a difficulty in solving mathematically the dynamic performance of soil-
supported multiple baffled tanks with continuous liquid, which need tedious derivation
and large amounts of calculation [39]. In order to conveniently conduct parametric studies
and avoid unnecessary complications, it is of great benefit to establish a mass-spring
theoretical model. In the present paper, an analytical lumped-mass model for dynamic
properties and seismic responses of a group of soil-supported tanks with a single baffle
undergoing horizontal and rocking movements is derived. Mechanical models with mass-
spring systems are used to reflect continuous liquid in each rigid tank; for the lower
soil-foundation system, the LPMs for horizontal, rocking, and coupling soil impedances
are employed to investigate soil–tank interaction based on the Chebyshev polynomials,
which also give the fitting results in comparison with elastic half-space results. According
to the substructure technique, a governing equation of the soil–tank system is obtained.
The present reduced results of the sloshing height, hydrodynamic shear, and moment
are compared with reported exact results and numerical results on a rigid foundation.
Furthermore, the present sloshing frequencies and surface heights of the baffled tanks
on a soil foundation are compared with numerical results from ADINA to further prove
the practical applicability and reliability of the coupling model. Impacts of parameters
including the soil stiffness, baffle position, and size, as well as liquid height on dynamic
behaviors, are discussed in detail.

2. Materials and Methods

As shown in Figure 1, a soil–foundation–tank–liquid–baffle system is considered. A
coordinate system Oxyz, whose origin is positioned at the circular base center, and an
inertial coordinate system O′x′y′z′ are utilized to reflect the sloshing of group tanks. The
foundation is placed on the elastic half-space surface composed of isotropic homogeneous
soil. All the rigid cylindrical tanks, whose bottom centers are on the y axis, are fixed
on a rigid foundation. The tanks are partially filled with incompressible, inviscid, and
irrotational liquid. Thus, the liquid velocity potential function meets the Laplace equation
according to the potential flow theory. The normal vector for the velocity potential at the
interface keeps consistent with that for the rigid boundary ignoring the deformation of
the tank material. The interconnecting piping and other transmission equipment among
the tanks are neglected. In Figure 2, the mth (m = 1, 2, . . . , V) tank with an annular rigid
baffle is undergoing horizontal excitation

..
ug(t), with horizontal motion along the x axis

and rocking movement about the y axis. rs represents the circular foundation radius. Hm
and hm stand for the storage liquid height and internal baffle height for the mth tank,
respectively. R1m and R2m stand for the baffle inner radius and the mth tank inner radius,
respectively. The thicknesses of the baffles are extremely small compared with the radiuses
of tanks and thus their influence on liquid sloshing can be omitted. The linear sloshing
theory is employed considering the small sloshing amplitude of the free surface remaining
planar under the circumstance of a small earthquake [40]. Define dimensionless heights
of baffles, liquid height, and inner radius of baffles as β1m = hm/Hm, β2m = Hm/R2m and
γm = R1m/R2m of the mth tank, respectively.

In Figure 3, on the basis of the subdomain partition technique, the whole liquid
domain can be divided into the subdomains Ωm

i (i = 1, 2, 3, 4). φm
i (r, θ, z, t) stands for

the corresponding liquid velocity potential in the mth tank. Γm
l (l = 1, 2, 3) denote three

artificial interfaces. Γm
f1 and Γm

f2 represent the free surfaces, respectively. φm
i should conform

to the Laplace equation:

1
r

∂

∂r
(r

∂φm
i

∂r
) +

1
r2

∂2φm
i

∂θ2 +
∂2φm

i
∂z2 = 0 (1)
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Figure 1. The multiple tank system on the elastic half-space surface.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 30 
 

elastic half space

surface foundation

 
Figure 1. The multiple tank system on the elastic half-space surface. 

 
Figure 2. The mth cylindrical tank equipped with a baffle in the soil–tank system undergoing hori-
zontal excitation. 

In Figure 3, on the basis of the subdomain partition technique, the whole liquid do-
main can be divided into the subdomains ( 1, 2, 3, 4).m

i iΩ =   ( , , , )m
i r z tφ θ   stands for the 

corresponding liquid velocity potential in the thm  tank. ( 1, 2, 3)m
l lΓ =  denote three ar-

tificial interfaces. f 1
mΓ  and f2

mΓ  represent the free surfaces, respectively. m
iφ  should con-

form to the Laplace equation: 
2 2

2 2 2

1 1( ) 0
m m m
i i ir

r r r r z
φ φ φ

θ
∂ ∂ ∂∂ + + =

∂ ∂ ∂ ∂
 (1)

The two adjacent subdomains m
iΩ   and '

'( )m
i
i iΩ <   should conform to continuity 

conditions for the pressure and velocity at the artificial interface m
lΓ : 

' ',
m m m m
i i i i

l lt t
φ φ φ φ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂n n

 (2)

where nl stands for the normal vector at the interface. Based on the linearized theory for 
the free-surface sloshing, the sloshing displacement m

if  of the subdomain m
iΩ  has 

x

z

R1m

R2m

rs

hm
Hm

O

free surface 

annular baffle 

surface foundation 

 

  

 

Figure 2. The mth cylindrical tank equipped with a baffle in the soil–tank system undergoing
horizontal excitation.

The two adjacent subdomains Ωm
i and Ωm

i′ (i < i′) should conform to continuity
conditions for the pressure and velocity at the artificial interface Γm

l :

∂φm
i

∂t
=

∂φm
i′

∂t
,

∂φm
i

∂nl
=

∂φm
i′

∂nl
(2)

where nl stands for the normal vector at the interface. Based on the linearized theory for
the free-surface sloshing, the sloshing displacement f m

i of the subdomain Ωm
i has

∂φm
i

∂t

∣∣∣∣
z=Hm

+ g f m
i = 0, (i = 1, 2) (3)

in which g stands for the gravity acceleration and f m
i satisfies the integral equation:

f m
i =

∫ t

0

∂φm
i

∂z

∣∣∣∣
z=Hm

dt, (i = 1, 2) (4)
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Figure 3. The subdomains and artificial interfaces of each tank.

The velocity potential can be represented as the summation of the convective veloc-
ity potential φmC

i (r, θ, z, t) and impulsive velocity potential φmI
i (r, θ, z, t). φmC

i (r, θ, z, t) and
φmI

i (r, θ, z, t) conform to the Laplace equation and conditions for the continuity and boundary:

∇2φmC
i = 0, ∇2φmI

i = 0, (i = 1, 2, 3, 4) (5)

∂φmC
i

∂t
=

∂φmC
i′

∂t
,

∂φmC
i

∂nl
=

∂φmC
i′

∂nl
(6)

∂φmI
i

∂t
=

∂φmI
i′

∂t
,

∂φmI
i

∂nl
=

∂φmI
i′

∂nl
(7)

∂φmC
i

∂r

∣∣∣∣∣
r=R2m

= 0,
∂φmI

i
∂r

∣∣∣∣∣
r=R2m

=
.
u(t) cos θ, (i = 1, 3) (8)

∂φmC
i

∂z

∣∣∣∣∣
z=0

= 0,
∂φmI

i
∂z

∣∣∣∣∣
z=0

= 0, (i = 3, 4) (9)

∂φmC
i

∂z

∣∣∣∣∣
z=hm

= 0,
∂φmI

i
∂z

∣∣∣∣∣
z=hm

= 0, (i = 1, 3) (10)

∂φmC
i

∂t

∣∣∣∣∣
z=Hm

+ g f mC
i = −

∂φmI
i

∂t

∣∣∣∣∣
z=Hm

− g f mI
i , (i = 1, 2) (11)

in which
.
u(t) stands for the horizontal absolute velocity of the cylindrical storage tank.

f mC
i and f mI

i reflect sloshing displacements related to φmC
i (r, θ, z, t) and φmI

i (r, θ, z, t), re-
spectively. f mC

i and f mI
i also meet the integral equations:

f mC
i =

∫ t

0

∂φmC
i

∂z

∣∣∣∣∣
z=Hm

dt, f mI
i =

∫ t

0

∂φmI
i

∂z

∣∣∣∣∣
z=Hm

dt, (i = 1, 2) (12)

Combined with Equations (5) and (8)–(10), φmI
i (r, θ, z, t) can be expressed as

φmI
i =

.
u(t)r cos θ, (i = 1, 2, 3, 4) (13)

Substituting Equations (12) and (13) into Equation (11) yields
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∂φmC
i

∂t

∣∣∣∣∣
z=Hm

+ g f mC
i = − ..

u(t)r cos θ, (i = 1, 2) (14)

The generalized coordinates qm
n (t) can be introduced by using the superposition

method. φmC
i can be expanded based on the modes for free sloshing and has the follow-

ing form:

φmC
i = cos θ

∞

∑
n=1

.
qm

n (t)Φ
mi
1n(r, z), (i = 1, 2, 3, 4, n = 1, 2, 3, . . .) (15)

where Φmi
1n(r, z) stands for the nth order mode of Ωm

i and satisfies the following equations
and boundary conditions:

∇2Φmi
1n = 0, (i = 1, 2, 3, 4) (16)

∂Φmi
1n

∂r

∣∣∣∣∣
r=R2m

= 0, (i = 1, 3) (17)

∂Φm3
1n

∂z

∣∣∣∣∣
z=0

= 0,
∂Φm4

1n
∂z

∣∣∣∣∣
z=0

= 0 (18)

∂Φm1
1n

∂z

∣∣∣∣∣
z=hm

= 0,
∂Φm3

1n
∂z

∣∣∣∣∣
z=hm

= 0 (19)

∂Φmi
1n

∂z

∣∣∣∣∣
z=Hm

−
ω2

1n
g

Φmi
1n

∣∣∣∣∣
z=Hm

= 0, (i = 1, 2) (20)

Φmi
1n = Φmi′

1n ,
∂Φmi

1n
∂nl

=
∂Φmi′

1n
∂nl

(21)

where the fundamental frequencies ω1n corresponding to the sloshing modes Φi
1n(r, z)

were acquired via the subdomain partition technique. Seventeen terms for series expansion
are utilized to guarantee four effective digits of calculation results.

Introducing Equations (12) and (15) into Equation (14) obtains

∞

∑
n=1

..
qm

n (t)Φ
mi
1n(r, z)

∣∣∣
z=Hm

+ g
∞

∑
n=1

qm
n (t)

∂Φmi
1n(r, z)
∂z

∣∣∣∣∣
z=Hm

= − ..
u(t)r, (i = 1, 2) (22)

By multiplying both sides of Equation (22) by Φ1m(r, z)|z=Hm
(m = 1, 2, 3, . . .) and

integrating rdr from 0 to R2m, the spatial coordinate r can be removed. Based on sloshing
modes orthogonality [22], the movement-governing equation regarding each generalized
coordinate qm

n (t) has the following form:

Mm
1n

..
qm

n (t) + Km
1nqm

n (t) = −
..
u(t) (23)

where

Mm
1n =

R2m∫
0

r
(

Φ1n(r, z)|z=Hm

)2
dr

/ R2m∫
0

r2Φ1n(r, z)
∣∣∣
z=Hm

dr (24)

Km
1n = g

R2m∫
0

r[(∂Φ1n(r, z)/∂z)Φ1n(r, z)]|z=Hm
dr

/ R2m∫
0

r2Φ1n(r, z)
∣∣∣
z=Hm

dr (25)

According to φm
i = φmC

i + φmI
i , the sloshing displacement for the free surface gives
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f m
i = −cos θ

g

(
∞

∑
n=1

..
qm

n (t)Φ
mi
1n(r, z)

∣∣∣
z=Hm

+
..
u(t)r

)
, (i = 1, 2) (26)

The hydrodynamic pressure is derived as the following form based on the Bernoulli
equation:

Pm
i = −ρ

∂φm
i

∂t
= −ρ cos θ

(
∞

∑
n=1

..
qm

n (t)Φ
mi
1n(r, z) +

..
u(t)r

)
, (i = 1, 2, 3, 4) (27)

in which ρ stands for liquid density. Taking external excitation along the θ = 0 direc-
tion into consideration, the hydrodynamic shear can be gained through integrating the
hydrodynamic pressures over the wall:

Fm
wall =

∫ 2π

0

∫ Hm

hm
Pm

1 (R2m, θ, z, t) cos θR2mdzdθ +
∫ 2π

0

∫ hm

0
Pm

3 (R2m, θ, z, t) cos θR2mdzdθ (28)

The hydrodynamic moments acting on the rigid wall, rigid bottom, and annular rigid
baffle with respect to the bottom center yield, respectively,

Mm
wall =

∫ 2π

0

∫ Hm

hm
Pm

1 (r, θ, z, t)|r=R2m
z cos θR2mdzdθ +

∫ 2π

0

∫ hm

0
Pm

3 (r, θ, z, t)|r=R2m
z cos θR2mdzdθ (29)

Mm
bottom =

∫ R1m

0

∫ 2π

0
Pm

4 (r, θ, z, t)|z=0r2 cos θdθdr +
∫ R2m

R1m

∫ 2π

0
Pm

3 (r, θ, z, t)|z=0r2 cos θdθdr (30)

Mm
ba f f le =

∫ R2m

R1m

∫ 2π

0
Pm

1 (r, θ, z, t)|z=hm
r2 cos θdθdr−

∫ R2m

R1m

∫ 2π

0
Pm

3 (r, θ, z, t)|z=hm
r2 cos θdθdr (31)

Equations (28)–(31) can be derived as per the forms in Appendix A.
Supposing that qm∗

n (t) = Mm
1nqm

n (t) and
..
qm∗

n (t) = Mm
1n

..
qm

n (t), Equation (23) is de-
rived as

Am∗
1n

..
qm∗

n (t) + Am∗
1n ω2

1nqm∗
n (t) = −Am∗

1n
..
u(t) (32)

in which Am∗
1n (Am∗

1n = Am
1n/Mm

1n) and qm∗
n (t) denote the nth convective mass of the equiv-

alent model and the corresponding displacement relative to the rigid tank boundary,
respectively. Introducing

..
qm

n (t) =
..
qm∗

n (t)/Mm
1n into Equation (26) and truncating the corre-

sponding series into N item, Equations (33)–(37) yield

f m
i = − 1

g

(
N

∑
n=1

..
qm∗

n (t)
Mm

1n
Φmi

1n(r, z)

∣∣∣∣∣
z=Hm

+
..
u(t)r

)
, (i = 1, 2) (33)

Fm
wall = −

N

∑
n=1

[ ..
qm∗

n (t) +
..
u(t)

]
Am∗

1n −
(

ρπR2
2mHm −

N

∑
n=1

Am∗
1n

)
..
u(t) (34)

Mm
wall = −

N

∑
n=1

[ ..
qm∗

n (t) +
..
u(t)

]
Bm∗

1n −
(

1
2

ρπR2
2m H2

m −
N

∑
n=1

Bm∗
1n

)
..
u(t) (35)

Mm
bottom = −

N

∑
n=1

[ ..
qm∗

n (t) +
..
u(t)

]
Cm∗

1n −
(

1
4

ρπR4
2m −

N

∑
n=1

Cm∗
1n

)
..
u(t) (36)

Mm
ba f f le = −

N

∑
n=1

[ ..
qm∗

n (t) +
..
u(t)

]
Dm∗

1n −
(
−

N

∑
n=1

Dm∗
1n

)
..
u(t) (37)
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in which Bm∗
1n = Bm

1n/Mm
1n, Cm∗

1n = Cm
1n/Mm

1n, Dm∗
1n = Dm

1n/Mm
1n. According to Equations

(34)–(37), and taking hydrodynamic moments acting on a rigid wall, rigid bottom, and
annular rigid baffle into consideration simultaneously, the impulsive mass for the model has

Am∗
10 = ρπR2

2mHm −
N

∑
n=1

Am∗
1n (38)

The equivalent heights of the convective and impulsive masses can be derived as,
respectively,

Hm∗
1n =

Bm∗
1n + Cm∗

1n + Dm∗
1n

Am∗
1n

(39)

Hm∗
10 =

(
1
2 ρπR2

2m H2
m −

N
∑

n=1
Bm∗

1n

)
+

(
1
4 ρπR4

2m −
N
∑

n=1
Cm∗

1n

)
+

(
−

N
∑

n=1
Dm∗

1n

)
ρπR2

2mHm −
N
∑

n=1
Am∗

1n

(40)

Based on Equation (32) and Equations (38)–(40), a mechanical analytical model of
liquid sloshing of each storage tank with a baffle and subjected to horizontal excitation
is built in Figure 4. The stiffness for the spring of the nth mass in the mth tank stands for
km∗

1n = ω2
1n Am∗

1n . The mechanical model presents impulsive and convective masses, includ-
ing the corresponding heights. By using the equivalent parameters in Equation (32) and
Equations (38)–(40), the convective component of liquid sloshing can be directly obtained,
which is a linear combination of N terms of sloshing modes. By introducing the parame-
ters into Equation (32), the generalized displacement qm∗

n (t) is solved; then, the sloshing
height, hydrodynamic shear, and moment can be easily acquired from Equation (33) to
Equation (37).

As the crux of the substructure approach, the impedance function K(ω) stands for the
force–displacement relationship for the soil foundation. The dynamic flexibility function
F(ω) has the normalization form with respect to the static flexibility Fs:

F(ω) =
1

K(ω)
= FsFd(a0) (41)

where Fd(a0) denotes the dynamic flexibility coefficient. a0 (a0 = ωrs/Vs) represents the
normalized frequency. vs. stands for the shear-wave velocity of the soil. rs stands for the
radius of the rigid circular surface foundation. The nested LPM is employed to conquer the
frequency dependence of the soil impedance. The dynamic flexibility coefficient Fd(a0) can
be fitted using a ratio of the Chebyshev polynomials:

Fd(a0) = Fd(λ) ≈
Q(0)(λ)

P(0)(λ)
=

1 + q(0)1 λ + q(0)2 λ2 + . . . + q(0)Ns
λNs

1 + p(0)1 λ + p(0)2 λ2 + . . . + p(0)Ns
λNs + p(0)N+1λNs+1

(42)

where λ = ia0/a0max, a0max stands for the approximate frequency maximum. Ns stands
for the complex polynomial degree. The undetermined coefficients in Equation (42) are
acquired through the least square approach. The dynamic flexibility F(ω) is derived as

F(ω) =
1

1
Fs
+ iω δ0rs

VsFs
+ 1

Fs
χ1

+ 1

iω
δ1rs
VsFs

+ 1
Fs
χ2

+ 1

iω
δ2rs
VsFs

+ 1

. . .
+ 1

Fs
χNs

+ 1

iω
δNs rs
VsFs

(43)
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in which the more detailed expressions of non-dimensional coefficients for springs χj and
dampers δj of the nested LPM can refer to the available literature [37].
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Figure 4. A mass-spring theoretical model of continuous sloshing. Figure 4. A mass-spring theoretical model of continuous sloshing.

On the basis of the substructure technique, the equivalent analytical model of liquid
sloshing is directly assembled with the soil LPM, as depicted in Figure 5 (Ns = 3). On
the basis of the D’Alembert principle, one can acquire the governing equation of the
soil–foundation–tank–liquid–baffle coupling system:

M
{ ..

U
}
+ C

{ .
U
}
+ K{U} = −M{ξ} ..

ug (44)

where M, C, and K stand for the matrices of mass, damping, and stiffness for the an-
alyzed structural system, respectively. Detailed expressions are given in Appendix B.

{U} =
{{

q1∗
n
}

N1
, · · · , {qm∗

n }Nm
, · · · ,

{
qV∗

n
}

NV
, u0,

{
uj
}

, ϕ0,
{

ϕj
}}T

reflects the displace-
ment vector. qm∗

n represents the horizontal displacement of the nth spring-mass oscillator
relative to the tank boundary. Nm is the order of the convective mass. u0 and ϕ0 are the
base horizontal displacement and rotational angle relative to those at bedrock, respectively.
uj and ϕj (j = 1, . . . , Ns) denote the horizontal displacement and rotational angle for
the degrees of freedom in LPMs relative to those at bedrock, respectively. The coefficient

vector {ξ} =


0, . . . , 0,︸ ︷︷ ︸

V
∑

m=1
Nm

1, 0, . . . , 0︸ ︷︷ ︸
2Ns+1



T

represents the influences of the direction of the

excitation on the system load.
..
ug(t) stands for the bedrock acceleration along the θ = 0

direction. The Newmark-β technique under the constant average acceleration is adopted
to solve the response equation. To unconditionally ensure the stability and convergence
of the present method, the control parameters of the Newmark-β technique, as shown in
Equations (45) and (46), are taken as γ = 1/2 and β = 1/4:

.
u1 =

.
u0 + (1− γ)h

..
u0 + γh

..
u1 (45)

u1 = u0 + h
.
u0 +

(
1
2
− β

)
h2 ..

u0 + βh2 ..
u1 (46)

in which, h denotes the time step.
..
u0 and

..
u1 are, respectively, the initial and final accel-

erations during the time step.
.
u0 and

.
u1 are, respectively, the initial and final velocities
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during the time step. By using the mechanical parameters in Equations (32), (38)–(40) and
Equation (43), the base shear and moment are directly acquired:

Fb =
V
∑

m=1

Nm
∑

n=1
Am∗

1n

[ ..
qm∗

n +
..
u0 +

..
ϕ0Hm∗

1n +
..
ug

]
+

V
∑

m=1
Am∗

10
[ ..
u0 +

..
ϕ0Hm∗

10 +
..
ug
]

+Mt
[ ..
u0 +

..
ϕ0yt +

..
ug
] (47)

Mb =
V
∑

m=1

Nm

∑
n=1

Am∗
1n Hm∗

1n

[ ..
qm∗

n +
..
u0 +

..
ϕ0Hm∗

1n +
..
ug

]
+

V
∑

m=1
Am∗

10 Hm∗
10
[ ..
u0 +

..
ϕ0Hm∗

10 +
..
ug
]

+Mtyt
[ ..
u0 +

..
ϕ0yt +

..
ug
]
+ Jt

..
ϕ0

(48)
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Figure 5. The soil–foundation–tank–liquid–baffle theoretical model for s =3N . 

  

Figure 5. The soil–foundation–tank–liquid–baffle theoretical model for Ns = 3.

3. Comparison Studies
3.1. Lumped-Parameter Model of Soil

According to the mixed boundary value approach, the dynamic flexibility coefficients
of the surface foundation versus the dimensionless frequency a0 (a0 ∈ [0, 8]) and the
Poisson ratio for soil υs = 0.45 are acquired by Luco and Mita [35]. The horizontal
and rocking flexibility coefficients obtained from Luco and Mita [35] are fitted utilizing
Chebyshev polynomials. Figure 6 illustrates the horizontal, rocking, and horizontal–rocking
coupling impedances with two fitting orders (Ns = 4, 10) in comparison with the solutions
to the elastic half space given by Luco and Mita [35]. It is seen that the nest LPM shows
excellent simulation without oscillation if Ns is considered as 10. The corresponding spring
and damping coefficients for Ns = 10 are given in Table 1. Table 2 gives the poles of
the nested LPMs, with Ns = 4 and 10 for the horizontal dynamic flexibility coefficient.
According to the stability conditions [41], the LPM is dynamically stable in the domain
analysis when

∣∣∣SF
j

∣∣∣ < 1 for j = 1, 2, . . ., Ns + 1, where poles SF
j are zeros of the denominator

polynomial for Equation (42). The Chebyshev complex polynomials with Ns = 10 are
employed in the present analysis.
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in comparison with elastic half space results: (a) horizontal coefficient; (b) rocking coefficient;
(c) horizontal–rocking coupling coefficient.

Table 1. Coefficients of springs and dashpots of nested LPMs for υs = 0.45 and Ns = 10.

Coefficients
Stiffness

Coefficients
Damping

Horizontal Rocking Coupling Horizontal Rocking Coupling

χ1 0.0228 10.1443 −17.9219 δ0 0.6087 0.3240 0.2100
χ2 −0.0237 −2.3112 14.4598 δ1 −0.0007 0.2408 −3.2432
χ3 −2.6666 2.7886 3.3592 δ2 0.0715 −0.5935 2.3946
χ4 0.0918 −0.5068 −1.4551 δ3 −0.0844 0.2458 −0.3367
χ5 −0.0537 −0.1302 17.5500 δ4 0.0115 −0.3857 0.8684
χ6 0.0498 0.1224 0.5198 δ5 −0.0212 0.0044 −1.0668
χ7 −0.0397 −11.7026 −0.8707 δ6 0.0127 1.0363 −0.4268
χ8 −0.0977 −0.1990 0.8167 δ7 −0.0338 −0.9123 0.0270
χ9 1.4040 0.2217 1.5495 δ8 −0.0411 −0.0112 1.9549
χ10 0.0120 0.0005 −1.7211 δ9 0.0507 0.0805 −0.8394

- - - - δ10 −0.0232 0.0064 0.6216
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Table 2. The poles SF
j′ (j′ = 1, 2, . . . , Ns + 1) of the horizontal dynamic flexibility coefficient for

υs = 0.45.

j
′

Ns=4 Ns=10

SF
j
′

∣∣∣∣SF
j
′

∣∣∣∣ SF
j
′

∣∣∣∣SF
j
′

∣∣∣∣
1 0.7515 0.7515 0.5549 + 0.7283i 0.9156

2 −0.0867 +
0.4438i 0.4522 0.5549 − 0.7283i 0.9156

3 −0.0867 −
0.4438i 0.4522 −0.1816 + 0.7132i 0.7359

4 −0.1891 0.1891 −0.1816 − 0.7132i 0.7359
5 −0.0509 0.0509 0.0616 + 0.7288i 0.7314
6 - - 0.0616 − 0.7288i 0.7314
7 - - −0.2303 + 0.3120i 0.3878
8 - - −0.2303 − 0.3120i 0.3878
9 - - −0.2327 + 0.0892i 0.2492
10 - - −0.2327 − 0.0892i 0.2492
11 - - 0.0860 0.0860

3.2. Response of the Soil–Tank System

The densities of soil, tank, and base are, respectively, 2000 kg/m3, 7800 kg/m3, and
2500 kg/m3 in the present analysis. The tank heights are equal to 1.2H. The tank thickness
is 0.003R2. The circular base thickness is 0.05H. By introducing artificial interfaces, Wang
et al. [22] acquired exact results of linear sloshing responses of the rigid cylindrical container
with an annular baffle on a rigid foundation under horizontal excitation. Figure 7 illustrates
the sloshing displacement at wall f wall between the present and exact results on a rigid foun-
dation for the baffle inner radius γ = 0.4, 0.6, 0.8 with R2 = 0.508 m, β1 = 0.7, β2 = 1.0, and
Vs= 1000 m/s under the excitation

..
ug(t) = −0.001v2 sin vt (v = 5.811 rad/s). Figure 8

depicts the base shear Fb and base moment Mb between the present and exact results
on a rigid foundation for β1 = 0.9, β2 = 1.0, γ = 0.6 and Vs= 1000 m/s under the same
excitation. It is clear from Figures 7 and 8 that present reduced results with Vs= 1000 m/s
(representing rigid soil) show excellent agreement with the available exact results under a
rigid foundation, which implies the feasibility of the present method. In Figure 9, the time
histories of the present sloshing displacement at wall f wall under various vs. are compared,
with linear numerical results [42] under rigid foundation for β1 = 0.2, β2 = 1.0, γ = 0.4,
R2 = 0.508 m, and

..
ug(t) = −0.002v2 sin vt (v = 5.8 rad/s). It is clear from Figure 9 that

the dynamics of the tank with β1 = 0.2 keep consistent with those without a baffle due to
the fact that the effects of the baffle approaching the bottom are almost negligible [42]. The
solution under a flexible foundation is similar to the linear numerical result [42] under a
rigid foundation. The result also implies that soils with different stiffnesses have little effect
on the sloshing height.

Consider two cylindrical tanks supported on a surface foundation. The present results
of f wall are compared with finite-element results from the ADINA model to further verify
the correctness and effectiveness of the theoretical model. The parameters are given as
follows: R21 = R22 = 10 m, β11 = β12 = 0.8, γ1 = γ2 = 0.5, rs = 25 m, and Vs= 300 m/s.
The liquid heights are β21 = 0.5 for the broad tank and β22 = 1.0 for the slender tank. In
Figure 10, the analysis type of the ADINA structure is dynamic implicit. The potential
interfaces are adopted to simulate boundary conditions of liquid. The three-dimensional
linear potential-based element of liquid using 8064 elements and the three-dimensional
solid element using 17,780 elements are employed to imitate the liquid domain and soil,
respectively. It produces, theoretically, responses free from boundary effects. Meanwhile,
taking the radiation damping into account if considering an infinite horizontal extent of the
soil domain, however, induces heavy computational expense. If considering the smaller
width of the soil domain, the computational accuracy of the system responses cannot be
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ensured [43]. According to the available literature [44], the soil domain width is suggested
to be about 8–10 times the foundation width. Therefore, the soil domain is founded with a
500 m width. The boundary of the soil is defined by the infinite region. The first third of
the convective sloshing frequencies compared with the finite-element results are presented
in Table 3. It is clear that the maximum relative error for the first third of the sloshing
frequencies is −3.18%. Figure 11 illustrates the sloshing displacements at walls f wall of the
two tanks in comparison with numerical solutions under Vs = 300 m/s and the external
excitation

..
ug(t) = −0.001v2 sin vt (v = 5.811 rad/s). The relative errors for the maximum

sloshing displacement between present and numerical solutions are −5.27% for the broad
tank and −0.32% for the slender tank, respectively. The good agreement between the
present results and the finite-element results in Table 3 and Figure 11 indicates that the
present method can be used to basically characterize the dynamics of the system with
acceptable precision.
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Figure 10. The numerical model for two baffled liquid storage tanks on a circular surface foundation
given by the software ADINA (Version 9.5).

Table 3. The first third of the convective sloshing frequencies compared with finite-element results
(unit: rad/s).

Frequency
Broad Tank Slender Tank

ωC
11 ωC

12 ωC
13 ωC

11 ωC
12 ωC

13

Present 0.7360 1.9673 2.6415 0.9423 2.1905 2.8442
ADINA 0.7559 2.0156 2.7282 0.9632 2.2242 2.9211
Errors −2.63% −2.40% −3.18% −2.17% −1.52% −2.63%
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Figure 11. The time histories of the sloshing displacement at rigid wall f wall in comparison with
numerical results from the ADINA model for Vs = 300 m/s: (a) broad tank; (b) slender tank.

4. Parameter Analysis
4.1. The Effect of Soil

The parameters of the two tanks are given as follows in this section: R21 = R22 = 15 m,
β11 = β12 = 0.7, γ1 = γ2 = 0.6, β21 = 0.5, β22 = 1.0, and rs = 37.5 m. The first two
convective frequencies of sloshing ωC

11 and ωC
12 of broad and slender tanks for Vs are

depicted in Table 4. The results imply that soft soil has little effect on the convective
frequencies of two storage tanks. Furthermore, with the increase in Vs, the convective
sloshing features of the tanks on soft soil approach the characteristic results of the tanks
on rigid soil. Figure 12 illustrates the horizontal impulsive frequency ωI

h and rotational
impulsive frequency ωI

r for the base versus the shear-wave velocity under different liquid
heights. It is clear that the impulsive frequency keeps the linear increase with the growth
of Vs.
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Table 4. The first two convective frequencies ωC
11 and ωC

12 under various shear-wave velocities Vs.

Vs (m/s)
Broad Tank Slender Tank

ωC
11 (rad/s) ωC

12 (rad/s) ωC
11 (rad/s) ωC

12 (rad/s)

50 0.7529 1.7191 0.9207 1.8392
100 0.7521 1.7185 0.9180 1.8393
150 0.7519 1.7184 0.9174 1.8393
200 0.7519 1.7183 0.9172 1.8393
300 0.7518 1.7183 0.9170 1.8393

Rigid 0.7518 1.7183 0.9169 1.8393

Table 5 gives the detailed near-fault (NF) and far-fault (FF) seismic records. Figure 13
depicts variations of the base shear Fb and base moment Mb versus Vs when tanks are
subjected to NF seismic motion in Table 5. The liquid heights of broad and slender tanks
are β21 = 0.5 and β22 = 1, 2, 3, respectively. It is observed that the effect of softer
soil with lower Vs on the base response is greater than that of stiffer soil with the larger
Vs(Vs ≥ 400 m/s) on the base response. The maxima of Fb and Mb both appear at Vs
equal to 270 m/s for β22 = 3. Furthermore, the larger nondimensional liquid height
characteristically accompanies the larger base response for the same Vs in Figure 13.

Table 5. The selected two kinds of seismic records in the first 30 s.

Earthquake RSN Event Year Station Record PGA (g)

NF 1106 Kobe 1995 KJMA KJM-000 0.834
FF 132 Friuli 1976 Forgaria Cornino FOC-000 0.261
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Figure 13. Variation curves of the base response for different soil shear-wave velocities Vs: (a) base
shear Fb; (b) base moment Mb.

4.2. The Effect of Baffle

If not specified separately in this section, the liquid heights are β21 = 0.5 and β22 = 1.0,
with Vs = 200 m/s and rs = 12.5 m, respectively. The inner radiuses of the two tanks
are considered as R21 = R22 = 5 m. Figure 14 depicts first-order convective slosh-
ing frequencies ωC

11 of broad and slender tanks versus different baffle heights β1 with
γ = 0.4, 0.6, 0.8. It is seen in Figure 14 that, by increasing the nondimensional baffle height,
ωC

11 both decline in two storage tanks. Figure 15 shows first-order convective sloshing
frequencies ωC

11 of broad and slender tanks under different baffle inner radiuses γ, with
β1 = 0.3, 0.5, 0.7. In Figure 15, ωC

11 both improve with the growth of the nondimen-
sional baffle inner radius of broad and slender tanks. Figure 16 reveals the time history
of f wall for β11 = β12 = 0.7 and γ1 = γ2 = 0.8 subjected to the excitation frequencies
..
ug(t) = −0.001v2 sin vt (v = 1.6 rad/s, 3.0 rad/s, 5.8 rad/s). The first convective slosh-
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ing frequencies ωC
11 of the broad tank and the slender tank are, respectively, 1.5272 rad/s

and 1.7691 rad/s. The results in Figure 16 imply that resonance of liquid sloshing could
occur when the excitation frequencies approach sloshing frequencies since damping effects
are neglected in the present analysis.
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slender tank.
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αb1 is defined as the ratio of the maximum rocking component of Fb to the horizontal
one. αb2 is defined as the ratio of the maximum rocking component of Mb to the horizontal
one. The utilized horizontal excitation is

..
ug(t) = −0.001v2 sin vt (v = 5.811 rad/s).

Figure 17 depicts the dynamic response results of αb1 and αb2 for the baffle height β1
with γ = 0.4, 0.5, 0.6 and R21 = R22 = 0.508 m. It is observed that, by increasing the
nondimensional baffle location, αb1 declines first and then increases slightly, indicating the
non-monotonic change. With the growth of the dimensionless height of the annular baffle,
αb2 declines monotonically. Figure 18 shows the dynamic response results of αb1 and αb2 for
the radius of the annular rigid baffle γ, with β1 = 0.3, 0.5, 0.7 and R21 = R22 = 0.508 m. It is
observed that, with the growth of the inner radius, αb1 and αb2 both increase monotonically.
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Figure 17. The ratio of the maximum value of the rocking component of base responses to the
maximum value of the horizontal component versus the nondimensional baffle height β1: (a) ratio of
the base shear αb1; (b) ratio of the base moment αb2.

The influences of the baffle height and inner radius on system responses are investi-
gated undergoing NF and FF earthquake excitations. Figures 19 and 20 give influences
of the baffle height on the maximum value of the base shear Fbmax and moment Mbmax
with γ = 0.4, 0.6, 0.8, respectively. It is observed that, by improving the nondimensional
baffle height, the maximum base shear increases; however, the maximum base moment
first declines and then increases. Moreover, the maximum base shear and moment under
NF earthquake excitation are greater than those under FF earthquake excitation. Figure 21
illustrates the maximum value of the horizontal relative acceleration of the base abmax for
the nondimensional baffle height. The result shows that abmax increases with the increase
of the nondimensional baffle height.
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Figure 19. The influence of the nondimensional baffle height β1 on the maximum base shear Fbmax of
the coupling system: (a) NF wave; (b) FF wave.
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Figure 20. The influence of the nondimensional baffle height β1 on the maximum base moment
Mbmax of the coupling system: (a) NF wave; (b) FF wave.
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Figure 21. Effect of the nondimensional baffle height β1 on the maximum value of the horizontal
acceleration of the base abmax: (a) NF wave; (b) FF wave.

Consider the nondimensional baffle heights of two tanks as β1 = 0.3, 0.5, 0.7. Figure 22
depicts the influences of the baffle’s inner radius γ on the maximum base shear Fbmax
subjected to NF and FF seismic excitations. The result implies that Fbmax diminishes with
the growth of the nondimensional inner radius. Furthermore, the maximum base shear
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under NF seismic excitation is larger than that under FF seismic excitation owing to the
great amplitude in the lower frequency range in terms of the power spectral density of NF
seismic records. Accordingly, more attention should be paid to the structure dynamics in the
vicinity of the seismic mobile moving fault. Figure 23 shows abmax for the nondimensional
baffle radius. It is observed that abmax declines with the growth of the baffle radius.

Buildings 2024, 14, x FOR PEER REVIEW 21 of 30 
 

Consider the nondimensional baffle heights of two tanks as 1 0.3, 0.5, 0.7.β =  Figure 
22 depicts the influences of the baffle’s inner radius γ  on the maximum base shear bmaxF  
subjected to NF and FF seismic excitations. The result implies that bmaxF  diminishes with 
the growth of the nondimensional inner radius. Furthermore, the maximum base shear 
under NF seismic excitation is larger than that under FF seismic excitation owing to the 
great amplitude in the lower frequency range in terms of the power spectral density of NF 
seismic records. Accordingly, more attention should be paid to the structure dynamics in 
the vicinity of the seismic mobile moving fault. Figure 23 shows bmaxa  for the nondimen-
sional baffle radius. It is observed that bmaxa  declines with the growth of the baffle radius. 

  

Figure 22. Effect of the nondimensional baffle inner radius γ  on the maximum base shear force of 
the coupling system: (a) NF wave; (b) FF wave. 

  

Figure 23. Effect of the nondimensional baffle inner radius γ  on the maximum horizontal acceler-
ation of the base bmaxa : (a) NF wave; (b) FF wave. 

4.3. The Effect of Liquid Height 
Consider the parameters of two tanks supported on the same circular surface foun-

dation in this section to be 21 22 15 m,R R= =   11 12 0.8,β β= =   1 2 0.7γ γ= =  , s 200 m/sV =  , 
and s 37.5 m.r =  Figure 24 illustrates the calculation results of the horizontal impulsive 
frequency I

hω   and the rotational impulsive frequency I
rω   for 21β   and 22β  . In Figure 

24a, the liquid height is 22 1.0.β =  In Figure 24b, the liquid height is 21 0.5.β =  It is clear 
that I

hω  and I
rω  decline with the increase in the liquid height. Figure 25 illustrates the 

maxima of the sloshing displacement at wall fmax of two cylindrical tanks for non-

Figure 22. Effect of the nondimensional baffle inner radius γ on the maximum base shear force of the
coupling system: (a) NF wave; (b) FF wave.

Buildings 2024, 14, x FOR PEER REVIEW 21 of 30 
 

Consider the nondimensional baffle heights of two tanks as 1 0.3, 0.5, 0.7.β =  Figure 
22 depicts the influences of the baffle’s inner radius γ  on the maximum base shear bmaxF  
subjected to NF and FF seismic excitations. The result implies that bmaxF  diminishes with 
the growth of the nondimensional inner radius. Furthermore, the maximum base shear 
under NF seismic excitation is larger than that under FF seismic excitation owing to the 
great amplitude in the lower frequency range in terms of the power spectral density of NF 
seismic records. Accordingly, more attention should be paid to the structure dynamics in 
the vicinity of the seismic mobile moving fault. Figure 23 shows bmaxa  for the nondimen-
sional baffle radius. It is observed that bmaxa  declines with the growth of the baffle radius. 

  

Figure 22. Effect of the nondimensional baffle inner radius γ  on the maximum base shear force of 
the coupling system: (a) NF wave; (b) FF wave. 

  

Figure 23. Effect of the nondimensional baffle inner radius γ  on the maximum horizontal acceler-
ation of the base bmaxa : (a) NF wave; (b) FF wave. 

4.3. The Effect of Liquid Height 
Consider the parameters of two tanks supported on the same circular surface foun-

dation in this section to be 21 22 15 m,R R= =   11 12 0.8,β β= =   1 2 0.7γ γ= =  , s 200 m/sV =  , 
and s 37.5 m.r =  Figure 24 illustrates the calculation results of the horizontal impulsive 
frequency I

hω   and the rotational impulsive frequency I
rω   for 21β   and 22β  . In Figure 

24a, the liquid height is 22 1.0.β =  In Figure 24b, the liquid height is 21 0.5.β =  It is clear 
that I

hω  and I
rω  decline with the increase in the liquid height. Figure 25 illustrates the 

maxima of the sloshing displacement at wall fmax of two cylindrical tanks for non-

Figure 23. Effect of the nondimensional baffle inner radius γ on the maximum horizontal acceleration
of the base abmax: (a) NF wave; (b) FF wave.

4.3. The Effect of Liquid Height

Consider the parameters of two tanks supported on the same circular surface founda-
tion in this section to be R21 = R22 = 15 m, β11 = β12 = 0.8, γ1 = γ2 = 0.7, Vs = 200 m/s,
and rs = 37.5 m. Figure 24 illustrates the calculation results of the horizontal impulsive
frequency ωI

h and the rotational impulsive frequency ωI
r for β21 and β22. In Figure 24a,

the liquid height is β22 = 1.0. In Figure 24b, the liquid height is β21 = 0.5. It is clear that
ωI

h and ωI
r decline with the increase in the liquid height. Figure 25 illustrates the maxima

of the sloshing displacement at wall f max of two cylindrical tanks for non-dimensional
liquid heights β21 (β22 = 1.0) and β22 (β21 = 0.5). The horizontal excitation considered
is

..
ug(t) = −0.001v2 sin vt (v = 5.811 rad/s). It is observed that with the increase in

liquid heights of the two tanks, f max both increase. Furthermore, the maximum value of
the sloshing displacement of the slender storage tank is greater than that of the broad
storage tank.
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Figure 25. The maxima of the sloshing displacement at the rigid wall f max of two cylindrical tanks
versus the nondimensional liquid height: (a) the liquid height for the broad tank β21; (b) the liquid
height for the slender tank β22.

Figure 26 gives time histories of the base shear Fb and base moment Mb for β21 = 0.4,
0.5, 0.6 and β22 = 1.0 under Kobe excitation. Figure 27 illustrates time histories of Fb
and Mb for β21 = 0.5 and β22 = 1.0, 1.2, 1.4 under NF excitation. It is clear that Fb
and Mb both increase with the growth of liquid heights of each tank. The values of the
maximum Fb and Mb for β21 = 0.6 increase 32.71% and 19.14% in comparison with those
of β21 = 0.4, respectively. The values of the maximum Fb and Mb for β22 = 1.4 increase
33.56% and 81.45% in comparison with those of β22 = 1.0, respectively. Figure 28 shows
the normalized maximum base shear Fbmax/(Mfg) and the normalized maximum base
moment Mbmax/(0.5MfgH) versus the dimensionless liquid height β2 with Vs = 150 m/s,
200 m/s, 250 m/s under NF excitation. Mf stands for the total liquid mass. It is observed
that the normalized base responses show the non-monotonical variation with the growth of
the dimensionless liquid height. In addition, non-monotonical change occurs at the larger
liquid height in terms of the greater soil shear-wave velocity.
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5. Discussion

In this study, dynamic characteristics and responses of multiple cylindrical liquid
storage tanks with baffles and resting on soil undergoing any type of horizontal excitation
are examined. The influences of soil and baffle parameters on dynamic performances are
considered in the investigation.

In this study, sloshing resonance could occur if excitation frequencies approach slosh-
ing frequencies since damping effects are neglected. Thus, installing an internal baffle is
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an effective measure to mitigate sloshing. The baffle’s existence could reduce the sloshing
amplitude of the liquid surface, which is consistent with the available reports [42] seen in
Figure 7 from Section 3.2.

In this study, good agreement between the present results and the numerical results
indicates that the present method can be utilized to basically characterize the dynam-
ics of the system with acceptable accuracy, which is considered the first novelty of the
present investigation.

In addition, in terms of each solution to the dynamic responses, the simulation from the
ADINA numerical model takes approximately 486 s on a laptop with the Intel Core i9-9900K
CPU, whereas the simulation of the present model by the MATLAB procedure only takes
about 11 s on the same laptop. Thus, the solution efficiency of system dynamics from the
present model is 40–50 times faster than that from the ADINA model. The result implies that
the present method can also provide high calculation efficiency when studying the dynamic
behaviors of the coupling system, which is the second novelty of the present investigation.

6. Conclusions

A mechanical model is first proposed to obtain dynamic features and earthquake
responses of the multiple tanks with a single baffle and supported on a surface foundation.
Combined with the substructure method, a mass-spring theoretical model for sloshing in
each rigid circular cylindrical tank based on the semi-analytical liquid subdomain partition
technique is assembled with the soil lumped-parameter model representing horizontal,
rocking, and coupling dynamic impedance functions. The proposed model simplifies
the dynamics of the complicated system with high calculation efficiency and acceptable
accuracy, which is a novelty of the present study. The present dynamic properties and
responses of the baffled tanks on rigid and soft soil foundations are compared with the
exact results and numerical results, including those from ADINA to prove the reliability
and applicability of the coupling model. Effects of the soil shear-wave velocity, baffle height,
and size, as well as liquid height on system dynamics undergoing near-fault and far-fault
horizontal seismic motions, are investigated.

(1) The impulsive frequency keeps increasing linearly with the increase in soil stiffness.
Soils with different stiffnesses have little influence on the sloshing height; however,
soil–structure interaction can exert a remarkable effect on the base response of multiple
tanks. The base shear and moment both vary non-monotonically with the growth of
the soil’s stiffness;

(2) By increasing the nondimensional baffle location, the maximum base shear increases;
however, the maximum base overturning moment varies non-monotonically. The
maximum base shear and moment under near-fault seismic excitation are greater than
those under far-fault seismic excitation;

(3) The impulsive frequencies of the base diminish with the growth of the nondimensional
liquid height. The non-monotonical variation for the normalized base responses
occurs at the larger liquid height in terms of the greater soil shear-wave velocity.
The results show that the maximum base shear and moment subjected to near-fault
seismic activity could increase, respectively, 33.56% and 81.45% with the growth of
the liquid height of the slender tank on soft soil.

In this research, the movement equations of rigid bodies of a group of tanks partially
filled with liquid are equivalent to those connected to mass-spring oscillators. From the
perspective of the application, the mechanical model of the original system can be more
informative when studying each element’s role in the system. In terms of the large liquid
storage systems built on soft foundations, it is essential to account for soil–tank–liquid–
baffle interaction to obtain the seismic design with acceptable accuracy. The present
method is limited to the dynamic analysis of influences of the rigid annular baffle in
multiple rigid tanks resting on soft soil. The method will be modified in future research
investigating the influences of the elastic baffle and tank wall, which is more in line with
practical engineering.
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Appendix A

The Equations (28)–(31) can be derived as the following forms:
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Appendix B
The mass matrix M has the following form:
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where M
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where Am∗
1n and Hm∗

1n are the nth order convective mass and its location in the mth tank,
respectively. Am∗

10 and Hm∗
10 are the impulsive mass and its location in the mth tank, respec-

tively. Mt is the total mass of the tanks and base. yt and Jt denote the barycenter and the
moment of inertia for tanks with the base.

The stiffness matrix K has the form:
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1n is the corresponding stiffness of the springs of the nth order convective mass. kh
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s ,

and kr
s are static stiffnesses of horizontal, horizontal–rocking coupling, and rocking LPMs,

respectively. χh
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j , and χr
j (j = 1, . . . , Ns) are stiffness coefficients of the jth degree of

freedom in the corresponding LPMs, respectively.
The stiffness matrix C has the following form:
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0 Chr Cr


(

V
∑

m=1
Nm+2Ns+2)×(

V
∑

m=1
Nm+2Ns+2)

, Ch
(Ns+1)×(Ns+1) =



ch
s 0

ch
1

. . .
ch

j

. . .
0 ch

Ns


,

Chr
(Ns+1)×(Ns+1) =



chr
s 0

chr
1

. . .
chr

j
. . .

0 chr
Ns


, Cr

(Ns+1)×(Ns+1) =



cr
s 0

cr
1

. . .
cr

j
. . .

0 cr
Ns


,

ch
s = σhrskh

s
Vs

, ch
j =

δh
j rskh

s
Vs

, chr
s = σhrrskhr

s
Vs

, chr
j =

δhr
j rskhr

s
Vs

, cr
s = σrrskr

s
Vs

, cr
j =

δr
j rskr

s
Vs

. σh, σhr, and
σr represent damping coefficients at the high-frequency limit of horizontal, horizontal–
rocking coupling, and rocking nested LPMs, respectively. δh

j , δhr
j , and δr

j (j = 1, . . . , Ns)

denote the damping coefficients of the jth degree of freedom in the corresponding nested
LPMs, respectively.
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